Главные вкладки

    План-конспект урока геометрии (8 класс) по теме:
    Разработка урока по геометрии 8 класс: "Подобные треугольники. Отношение подобных треугольников."

    Козлова Наталия Вячеславовна

    В работе дан развернутый конспект урока геометрии в 8 классе по теме: "Подобные треугольники. Отношение подобных треугольников".

    Скачать:

    Предварительный просмотр:

    МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 23

     Имени В.А. Шеболдаева

    г. Гуково Ростовской

    Конспект урока

     по геометрии в 8 классе

    По теме: «Подобные треугольники. Отношение подобных треугольников».

    учитель математики

    I квалификационной категории МОУ СОШ№23

    Козлова Н.В.

    г. Гуково 2010

    Конспект урока по геометрии в 8-м классе.

     Тема урока : "Подобные треугольники. Отношение подобных треугольников".

     Цели урока:

    1. Образовательная ― передача новой информации, в частности теоремы, решение новых видов задач. Данная цель реализуется при объяснении нового материала. Для учащихся эта теорема новая и в дальнейшем они поймут, какие возможности даёт эта теорема при решении задач.
    2. Развивающая ― развитие самостоятельности мышления и речи при доказательстве теоремы, ее краткой записи и решении задач. Данная цель реализуется при доказательстве теоремы (эвристическая беседа), при оформлении краткой записи (предлагаю ученикам самостоятельно записать кратко основные положения теоремы) и при решении задач ученик думает о том, что откуда можно выразить и куда подставить, а также думает каким образом можно связать те или иные величины.
    3. Воспитательная ― самостоятельное оформление доказательства теоремы, классной и домашней работ. Записывая краткую теорему, краткое дано классной задачи, а также ее краткое решение ученики учатся самостоятельно оформлять, что им пригодится и в домашней работе.

    I. Организационный момент.

    II. Актуализация опорных знаний.

    1. Проверка домашнего задания.

    Домашним заданием были п. 56, 57, №541, 542, а также необходимо было повторить п.52, по учебнику "Геометрия 7-9" под ред. Л.С. Атанасяна. Сначала я спрашиваю кто сделал, а кто не сделал домашнее задание. Кто поднял руку и говорит, что сделал домашнее задание, к тому подхожу и смотрю, если все правильно, то вызываю к доске. Так выбираю два ученика на задачи №541 и №542. На задачу 541 можно вызвать ученика послабее, на 542―посильнее. Тем, кто не сделал домашнее задание или имеет какие-то недочеты рекомендую позже обратить внимание на доску.

    Ученики, стоящие у доски должны сделать рисунок, и краткое дано, а потом рассказать решение. Если необходимы записи вычислений, то они делают эти записи.

    Пока эти ученики готовятся с класс вспоминает или повторяет п.56, 57 (устно).

    Ученики, стоящие у доски представляют задачи.

    №541. Подобны ли треугольники АВС И DEF, если А=106˚, В=34˚, E=106˚, F=40˚, AC=4,4 см, AB=5,2 см, BC=7,6 см, DE=15,6 см, DF=22,8 см, EF=13,2 см?

    От ученика, который решает эту задачу, требую, чтобы он данные обозначил на чертеже.

    E

    А

    Решение .

    22.8

    F

    D

    В

    С

    5,2

    4,4

    7,6

    106˚

    34˚

    15.6

    13.2

    40˚

    106˚

    А=Е=106˚.

    ΔABC: А+В+C =180˚, C=180˚-А -В, C=180˚-106˚-34˚=40˚.

    ΔEDF: E+D+F =180˚, D=180˚-E -F, D=180˚-106˚-40˚=34˚.

    Имеем равенство углов:      С=F=40˚, В=D=34˚.

    Устанавливаем подобие треугольников. Пользуясь данными, получаем

    ,   ,  .  Итак .

    Имеем пропорциональность сторон, следовательно, по определению подобных треугольников: углы равны, стороны пропорциональны, значит, треугольники подобны, то есть ΔABC~ΔEDF.

    Ответ. Подобны .

    №542.В подобных треугольниках ABC и KMN стороны AB и KM, BC и MN являются сходственными. Найдите стороны треугольника KMN, если АВ=4см, BC=5см, АС=7 см,  

    М

    Решение.

    К

    N

    4,4

    5,2

    В

    С

    А

    1.    следовательно, KM=2,1·AB=2,1·4=8,4.

    2. Так как, треугольник ABC~KMN, то .

    Получаем,                  MN=2,1·ВС=2,1·5=10,5            KN=2,1·АС=2,1·7=14,7.

    Задача №541 необходима для повторения и закрепления определения подобных треугольников.

    Задача №542 необходима для того, чтобы показать учащимся, как непосредственно найти стороны одного треугольника через стороны подобного ему треугольника.

    Чертежи не стираем, а ученики садятся на место.

    1. Устные упражнения.

    После проверки домашнего задания, а конкретнее домашних задач, приступаем к устным упражнениям.

    Также на дом была задана теорема из п.52 (повторить). Теорема :"Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы".

    Чертежи №1 и №2  подготовлены мною еще на перемене.

    Предлагаю учащимся решить эти задачи. Спрашиваю того, кто поднял руки.

    Найти: ΔАВС.

    Решение.

    ΔАВС=7·ΔBMN ΔBMN=7·7=49

    В

    №1.                                                                   Дано: ΔBMN=7см²

    А

    2

    7

    N

    С

    5

    М

    В

    №2.                                                                           Дано: ,            

    ΔАОС=4 см

    Найти:. ΔBOK.

    Решение.

    1.

     , следовательно,

    D

    К

    А

    С

    О

                                                                   

    2.   ,          ,        ,       3·BK=BD-BK

     следовательно, BD=4·BK                    следовательно, см

    Задачи №1 и №2 необходимы для повторения п.52 (теоремы) и для того, чтобы учащимся в дальнейшем было легко доказывать новую теорему об отношении площадей подобных треугольников. Как видно задача №1 состоит из одного действия, а задача №2 состоит из двух таких же действий как одно в задаче №1.

    1. Изучение нового материала ( объяснение и эвристическая беседа).

    После повторения п.52 по задачам №1 и №2 переходим к новому материалу. Произношу теорему и записываю на доске краткое дано и что доказать.

    В1

    Теорема. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.                                                                                            Дано:

    ΔАВС~ ΔА1В1С1

    .

    Доказать:

    А1

    С1

    А

    В

    С

         

     После этого, указываю учащимся на то, что в новой теореме есть отношение площадей и в домашней теореме (п.52) также есть отношение площадей.

    Если учащиеся хорошо подготовлены к восприятию нового материала, то изучение теоремы провожу с помощью беседы. Если же специальная подготовленная работа не дала нужного результата, то целесообразно реализовать объяснение нового материала.

     Объяснение.

    Для того , чтобы доказать указанное в требовании соотношение необходимо каждую из площадей выразить через элементы треугольника, найти отношение этих площадей и показать, что отношение равно  . Эти элементы будут являться связью между площадями и коэффициентом подобия.

    Площадь любого треугольника выражается через стороны, а коэффициент подобия есть отношение сходственных сторон.

    Выпишем пары сходственных сторон в треугольниках  ΔАВС~ ΔА1В1С1. Это будут следующие пары  и ,  и ,  и . Значит, через сходственные стороны мы должны выразить наши площади. Выразим площадь первого треугольника АВС. Поскольку ΔАВС произвольный, выразим площадь по формуле половины произведения двух сторон на синус угла между ними. Возьмем, например, стороны АВ и CD.

    Выразим площадь второго треугольника через стороны ,сходственные сторонам АВ и СD

    =.

    Найдем отношение полученных площадей и покажем, что это отношение будет равно :

    , преобразуем это отношение.

    Так как ΔАВС~ ΔА1В1С1, то , градусные меры углов равны, следовательно, . После сокращения дроби получаем

    Что и требовалось доказать.

    Эвристическая беседа.

    Что нам необходимо доказать?

    -Отношение площадей треугольников АВС и А1В1С1 равно k².

    Как можно связать площади треугольников и коэффициент подобия?

    -Через стороны, площадь треугольника выражается через стороны и коэффициент подобия равен отношению сходственных сторон. Каким образом можно выразить площади треугольников?

    -По формуле площади треугольника.

    Хорошо! Что мы знаем о треугольниках АВС и А1В1С1?

    -Они подобны.

    А что значит: треугольники подобны?

    -У них равны углы и стороны пропорциональны.

    Вы сказали равные углы, а что мы знаем о площадях треугольников, имеющих равные углы?

    -Что их площади относятся как отношения произведения сторон, заключающих эти углы, например, используем .

    Записываем отношение. Я пишу, вы диктуете.    

    Что можно сказать об отношениях  и ?

    -И одна и вторая дроби равны k.

    Тогда что мы имеем?

    -=k·k=k².

    Перед тем , как кратко записать теорему или ее доказательство необходимо еще раз вместе с учениками просмотреть доказательство необходимо еще раз вместе с учениками просмотреть доказательство от начала до конца, только уже не от искомых к данным, а от данных к искомому. После этого кратко записываем доказательство теоремы.

    Краткая запись в тетради.

    Чертеж, "дано", "доказать" уже записаны на доске.

    Доказательство.

    1. , так как ΔАВСА1В1С1
    2. , так как
    3. , так как
    4. =k², так как ==k

    После записи вызываю ученика и теперь он с места прослеживает линию доказательства. Если все проходит успешно, то вызываю ученика, который будет восстанавливать краткую запись доказательства.

    Если это у него не получилось, то предлагаю ему восстановить линию объяснения или обосновать записанные пункты.

    Т.е.

    1. ,                                        (ученик записывает аргументы утверждения)
    2. ,                              (ученик записывает аргументы утверждения)  
    3. ,                    (ученик записывает аргументы утверждения)        
    4. ,                (ученик записывает аргументы утверждения)
    5.  =k²,            (ученик записывает аргументы утверждения) .

    Можно и по другому "восстановить" аргументацию утверждений

    1. , так как ΔАВСА1В1С1
    2. (Ученик)
    3. ,
    4. (ученик)
    5. (ученик)

    Таким образом, мы закрепили доказательство.

    Чертеж после доказательства не удаляется.

    1. Применение новой теоремы.

    После доказательства теоремы перехожу к обучению учеников применению этой теоремы. С помощью теоремы можно находить: площади треугольников, коэффициент подобия, стороны треугольников, периметр и т.д.

    Задачи.

    №1

    Даны два подобных треугольника ΔАВС и ΔА1В1С1 с коэффициентом подобия k=1/5. Найти отношение площадей этих треугольников. Пользуясь чертежом из доказательства теоремы.

    Дано :  ΔАВС~ ΔА1В1С1, k=1/5.

    Найти :  

    Решение :  =k²=

    Ответ. =.

    Задача №1 выступает как демонстративная задача в одно действие, которая показывает как непосредственно применить нашу теорему.

    №2.

    Площади двух подобных треугольников равны 25 см² и 100 см². Одна из сторон второго треугольника равна 6 см, а другая 10 см. найдите сходственные стороны первого треугольника.

    Пользуемся чертежом предыдущей задачи.

    Дано :, , АВ=6 СМ, ВС=10 см.

    Найти :.

    Решение: ==k,  =k².   . Следовательно

     см                             см.

    Ответ. см ,  см.

    №2 Необходима для того ,чтобы показать учащимся как непосредственно применять новую теорему, а также как через известные площади найти сторону треугольника, сходственную стороне известной в первом треугольнике, т. е. задача на нахождение сторон.

    №547. Докажите, что отношение периметров двух подобных треугольников равно коэффициенту подобия.

    Чертеж из предыдущей задачи.

    Дано : ΔАВСА1В1С1,

    Найти:.

    Решение. =,     =k, следовательно  и

    =k

    =.

    Памятка для учащихся:  

    Задача № 547 показывает как связать периметры и коэффициент подобия. Их связь находится в сторонах первого и второго подобных треугольников. Полученную формулу можно применять в задачах как теорему или знание.

    1. Итоги урока, домашнее задание.

    Данная теорема дает большие возможности при решении задач, связанных с подобием треугольников. Выделяют несколько видов задач на эту теорему.

    1. Можно найти отношение площадей или площадь одного какого-то треугольника.
    2. Можно найти коэффициент подобия.
    3. Можно найти стороны треугольника.
    4. Можно найти периметры треугольников.
    5. С помощью этой теоремы можно доказать подобие двух треугольников.

    Запишем домашнее задание:

    П.58 (выучить), №546, 544, 548.

    1


    По теме:
    методические разработки, презентации и конспекты уроков

    Урок геометрии в 8 классе "Теорема Пифагора"

    Представлен конспект урока по геометрии "Теорема Пифагора"...

    Соли. 11 класс

    Презентация урока в 11 классе по общей химии.Тема: соли.2011 год, Санкт-Петербург....

    Викторина "Поймай рыбку"

    викторина  для  учащихся  7  класса  по  теме  "Давление  жидкостей  и ...

    Комплексные соединения. Общая химия, 11 класс

    Презентация урока в 11 классе по общей химии.Тема: комплексные соединения.2011 год, Санкт-Петербург....

    Урок в 9 классе"Обобщение знаний о бессоюзных сложных предложениях"

    Основной целью этого урока является развитие навыков пунктуационного анализа предложения, умение обобшать, сравнивать и ...

    Подари мне этот Мир!

    Мероприятие посвящено событиям атомной бомбардировки японских городов Хиросимы и Нагасаки в 1945 году. Описаны последств...

    Flughafen-Rallye

    Методическая разработка для подготовки группы школьников  к поездке в Германию ( Аэропорт)...

    РЕКОМЕНДАЦИИ ПО ИСПОЛЬЗОВАНИЮ ИНТЕНЕТ-РЕСУРСОВ

     Обзор сайтов, которые могут быть рекомендованы к использованию при конструировании ДО....

    Электронное строение атома. 11 класс.

    Презентация урока в 11 классе по общей химии.Тема: электронное строение атома2011 год, Санкт-Петербург....

    Спортивно - математическая эстафета "Магия чисел"

     Внеклассное мероприятие "Магия чисел" для учащихся 5-6 классов. Задачи мероприятия показать детям тесную взаимосвя...