06) Задания для математических олимпиад

Макарова Татьяна Павловна

Математические олимпиады являются одной из разновидностей соревнований. Сегодня олимпиады по математике являются наиболее массовой формой внеклассной работы по математике.

 
Целями проведения олимпиад являются:
  • расширение кругозора учащихся;
  • развитие интереса учащихся к изучению математики;
  • общий подъем математической культуры, интеллектуального уровня учащихся;
  • выявление учащихся, проявивших себя по математике, для участия их в следующем туре олимпиад и для организации индивидуальной работы с ними;
  • знакомство учащихся с важнейшими проблемами и методами современной математики.

 

 

Скачать:


Предварительный просмотр:



Предварительный просмотр:



Предварительный просмотр:

Задания школьного тура математической олимпиады

октябрь 2011, 5 класс

  1. Сколько всего трехзначных чисел?
  2. Календарь представляет собой два кубика, у каждого кубика на всех гранях написано по цифре. Дату (день месяца) составляют, используя один или два кубика. Придумайте, как написать цифры на кубиках, чтобы можно было получить любую дату от 1 до 31. (В ответе напишите, какие цифры должны быть на одном кубике, а какие – на другом.)
  3. Разрежьте фигуру на рисунке справа на 4 равные части.
  4. Три математика ехали в разных вагонах одного поезда. Когда поезд подъезжал к станции, математики насчитали на перроне 7, 12 и 15 скамеек. А когда поезд отъезжал, один из них насчитал еще 2 скамейки. Сколько насчитали остальные?
  5. Дедка вдвое сильнее Бабки, Бабка втрое сильнее Внучки, Внучка вчетверо сильнее Жучки, Жучка впятеро сильнее Кошки, Кошка вшестеро сильнее Мышки. Без Мышки все остальные не могут вытащить репку, а вместе с Мышкой – могут. Сколько мышек надо собрать вместе, чтобы эти мышки смогли вытащить репку сами?
  6. Мальчик Сережа увидел двоих двухголовых дракончиков, головы которых спутались. Драконы бывают либо правдивые, т.е. обе головы говорят только правду, либо лживые, т.е. обе головы всегда лгут. Сережа решил помочь дракончикам распутать головы. Но для этого ему надо знать, где чья голова. Он спросил это у дракончиков, на что головы ответили:

первая:  «я – правдивая голова»;
вторая:         «третья голова – моя родная голова»;
третья:         «вторая голова – не родная мне голова»;
четвертая: «третья голова – лживая».

Какие головы принадлежат каким дракончикам?



Предварительный просмотр:

Задания школьного тура математической олимпиады

октябрь 2011, 6 класс

  1. Календарь представляет собой два кубика, у каждого кубика на всех гранях написано по цифре. Дату (день месяца) составляют, используя один или два кубика. Придумайте, как написать цифры на кубиках, чтобы можно было получить любую дату от 1 до 31. (В ответе напишите, какие цифры должны быть на одном кубике, а какие – на другом)
  2. Одной черепахе 300 лет, а другой 15 лет. Через сколько лет первая черепаха будет вдвое старше второй?
  3. Сад разбит на квадраты. Садовник начал обход с верхнего правого квадрата, обошел весь сад и вернулся в тот же угловой квадрат. В закрашенных квадратиках он не был (там располагаются пруды). Во всех остальных квадратиках он побывал по одному разу, причем через вершины квадратов он не проходил. Начертите возможный путь садовника.
  4. На некотором острове каждый житель либо всегда лжет, либо всегда говорит правду. Трое островитян А, Б, В сказали следующее:

А: «Б – лжец»;
Б: «ровно один из А и В лжец»;
В: «у меня есть крокодил».

Есть ли у В крокодил?

  1. Прямоугольник разрезали на три прямоугольника, два из которых имеют размеры 5x11 и 4x6. Какие размеры мог иметь третий прямоугольник? (Найдите все возможности.)
  2. Винни-Пуху дали полную тарелку манной каши. Он съел половину и положил в тарелку еще столько же меда. Затем он съел треть содержимого тарелки (каши с медом) и снова доложил мед. Потом съел четверть содержимого и опять доложил медом, после чего с аппетитом все съел. Чего в итоге Винни-Пух съел больше: каши или меда?


Предварительный просмотр:

Задания школьного тура математической олимпиады

октябрь 2011, 9 класс

  1. Придумайте такое нецелое число, что 15% и 33% от него – целые числа.
  2. Туристам-байдарочникам нужны восемь одинаковых «сидушек» – мягких ковриков длиной не менее 35 см и шириной не менее 20 см. В спортивном магазине продаются большие коврики длиной 110 см и шириной 56 см. Хватит ли большого коврика на восемь «сидушек»?
  3. Бумажный треугольник разрезали на два многоугольника прямолинейным разрезом, один из полученных многоугольников вновь разрезали на два и т. д. Какое наименьшее количество разрезов следует произвести, чтобы суммарное количество вершин у полученных многоугольников стало равно 400? Как это сделать?
  4. У разбойников есть 13 слитков золота. Имеются весы, с помощью которых можно узнать суммарный вес любых двух слитков. Придумайте, как за 8 взвешиваний выяснить суммарный вес всех слитков.
  5. У каждого трехзначного числа нашли произведение его цифр. Получилось  произведений от  до . Чему равна их сумма?
  6. Шестиугольник ABCDEF вписан в окружность. Докажите, что если AB||DE, AF||DC, то и BC||EF.


Предварительный просмотр:

Задания школьного тура математической олимпиады

октябрь 2011, 11 класс

  1. Придумайте такое нецелое число, что 15% и 33% от него – целые числа.
  2. Найдите сумму: 1002–992+982–972+...+22–12.
  3. Встретились несколько друзей. Каждый из них обменялся рукопожатием с каждым, кроме Федота Бурчеева, который, будучи не в духе, некоторым пожал руку, а некоторым – нет. Всего было сделано 197 рукопожатий. Сколько рукопожатий сделал Федот?
  4. Докажите, что для любых  и  справедливо неравенство:

  1. В четырехугольнике АВСD углы А и С – прямые. Из точек В и D опустили перпендикуляры на диагональ АC и получили соответственно точки M и N. Докажите, что AM=CN.
  2. Существует ли одиннадцатигранник (не обязательно выпуклый), у которого каждая грань – многоугольник с четным числом сторон?



Предварительный просмотр:

Задания школьного тура математической олимпиады

октябрь 2011, 7 класс

  1. Замените буквы цифрами так, чтобы получилось верное равенство:
                            О + Л + И + М + П + И + А = ДА
    (Одинаковые буквы надо заменять одинаковыми цифрами, разные – разными, ДА – двузначное число)
  2. На каждой перемене Робин-Бобин-Барабек съедает по конфете. За неделю (с понедельника по субботу) было 30 уроков. Сколько всего конфет съел Робин на переменах?
  3. Из двух одинаковых железных проволок кузнец сковал по железной цепи. Первая содержит 80 звеньев, а вторая – 100. Каждое звено первой цепи на 5 граммов тяжелее каждого звена второй цепи. Какова масса цепей?
  4. Углы АОВ, ВОС и СОD равны между собой, а угол АОD втрое меньше каждого из них. Все лучи ОА, ОВ, ОС, ОD различны. Найдите величину угла AOD (перечислите все возможные варианты).
  5. На некотором острове каждый житель либо всегда лжет, либо всегда говорит правду. Трое островитян А, Б, В сказали следующее:

А: «Б – лжец»;
Б: «ровно один из А и В лжец»;
В: «у меня есть крокодил».

Есть ли у В крокодил?

  1. Имеется 6 гирь: по паре зеленых, красных и белых. В каждой паре одна гиря тяжелая, а другая – легкая, причем все легкие весят одинаково и все тяжелые весят одинаково. Можно ли определить 3 тяжелые гири за два взвешивания на чашечных весах? (Чашечные весы показывают, равны ли веса грузов на чашках, а если не равны, то какая чашка тяжелее.)


Предварительный просмотр:

Олимпиада по математике от проекта ИНФОУРОК.РУ

9-11 классы

2012 / 2013 учебный год

  1. Иван Петрович купил американский автомобиль, спидометр которого показывает скорость в милях в час. Американская миля равна 1609 м. Какова скорость автомобиля в километрах в час, если спидометр показывает 45 миль в час (ответ округлите до целого числа)?
  1. 36 км/ч
  2. 73 км/ч
  3. 64 км/ч
  4. 72 км/ч

  1. Шоколадка стоит 25 рублей. В воскресенье в супермаркете действует специальное предложение: заплатив за три шоколадки, покупатель получает четыре (одну в подарок). Сколько шоколадок можно получить на 230 рублей в воскресенье?
  1. 3
  2. 12
  3. 4
  4. 13

  1. Больному прописано лекарство, которое нужно пить по 0,5 г 5 раз в день в течение 10 дней. В одной упаковке 14 таблеток лекарства по 0.5 г Какого наименьшего количества упаковок хватит на весь курс лечения?
  1. 7
  2. 4
  3. 3
  4. 5

  1. В среднем из 1500 лампочек, поступивших в продажу, 3 неисправны. Найдите вероятность того, что одна купленная лампочка окажется исправной.
  1. 0,998
  2. 0,999
  3. 0,98
  4. 0,098

  1. Найдите значение выражения (5х-1)(5х+1)-25х2-5х-38 при х=130.
  1. -569
  2. -688
  3. -689
  4. -764

  1. Найдите корень уравнения
  1. 9
  2. 8
  3. 6
  4. 7

  1. Если a=216, b=49, c=312, то:
  1. b
  2. a
  3. c
  4. c

  1. Железнодорожный билет для взрослого стоит 420 рублей. Стоимость билета для школьника составляет 50% от стоимости билета для взрослого. Группа состоит из 15 школьников и 3 взрослых. Сколько рублей стоят билеты на всю группу?
  1. 4620 руб.
  2. 5040 руб.
  3. 3780 руб.
  4. 4410 руб.

  1. В помощь садовому насосу, перекачивающему 5 литров воды за 2 минуты, подключили второй насос, перекачивающий тот же объем воды за 3 минуты. Сколько минут эти два насоса должны работать совместно, чтобы перекачать 25 литров воды?
  1. 7
  2. 6
  3. 8
  4. 5

  1. Двое рабочих, работая вместе, могут выполнить работу за 12 дней. За сколько дней, работая отдельно, выполнит эту работу первый рабочий, если он за два дня выполняет такую же часть работы, какую второй — за три дня?
  1. 15
  2. 20
  3. 18
  4. 22

  1. Четыре рубашки дешевле куртки на 8%. На сколько процентов пять рубашек дороже куртки?
  1. 23%
  2. 15%
  3. 17%
  4. 13%

  1. Интернет-провайдер предлагает три тарифных плана.

План

Абонентская плата

Трафик

0

Нет

2,5 руб. за 1 Мб

500

550 руб. за 500 Мб

2 руб. за 1 Мб

800

736 руб. за 800 Мб

1,5 руб. за 1 Мб

 Пользователь планирует, что его трафик составит 650 Мб и, исходя из этого, выбирает наиболее дешевый тарифный план. Сколько рублей заплатит пользователь за месяц, если его трафик действительно будет равен 650 Мб?

  1. 750 руб.
  2. 736 руб.
  3. 1625 руб.
  4. 975 руб.

  1. Высота трапеции равна 10, площадь равна 150. Найдите среднюю линию трапеции.
  1. 15
  2. 17
  3. 25
  4. 20

  1. Найдите площадь треугольника, вершины которого имеют координаты (1;7), (8;7), (10;9).
  1. 9
  2. 5
  3. 8
  4. 7

  1. Известно, что процент учеников одного из классов гимназии, повысивших во втором полугодии успеваемость, заключен в пределах от 2,9% до 3,1 %. Определить минимально возможное число учеников в классе.
  1. 32
  2. 29
  3. 31
  4. 33



Предварительный просмотр:

Задания школьного тура математической олимпиады

октябрь 2011, 8 класс

  1. Числитель дроби увеличили на 5, а знаменатель – на 2 (числитель и знаменатель – целые положительные числа). При этом значение дроби уменьшилось. Приведите пример, как такое могло произойти.
  2. Дано трехзначное число ABB. Если перемножить его цифры, то получится двузначное число АС, а если перемножить цифры АС, то получится С. Найдите исходное число.
  3. Три математика ехали в разных вагонах одного поезда. Когда поезд подъезжал к станции, математики насчитали на перроне 7, 12 и 15 скамеек. Когда поезд отъезжал, каждый из них насчитал еще несколько скамеек, причем один из них насчитал в три раза больше, чем другой. А сколько насчитал третий?
  4. В треугольнике АВС (см. рисунок) CD – биссектриса угла ACB, АВ=ВС, BD=BK, BL=CL. Докажите, что BF – биссектриса угла CBE.

  1. Имеется 6 гирь: по паре зеленых, красных и белых. В каждой паре одна гиря тяжелая, а другая – легкая, причем все легкие весят одинаково и все тяжелые весят одинаково. Можно ли определить 3 тяжелые гири за два взвешивания на чашечных весах?
  2. У каждого трехзначного числа нашли произведение его цифр. Получилось  произведений от  до . Чему равна их сумма?

Предварительный просмотр:

Предварительный просмотр:

Предварительный просмотр:

Предварительный просмотр: