рабочая программа по математике 5-6 класс
рабочая программа по математике (5, 6 класс)

Ганеева Айгуль Раиловна

Рабочая программа по учебнику Мерзляк А.Г., В.Б. Полонский, Якир М.С. "Математика" 5-6 класс рассчитана на 34 учебные недели. Срок реализации - 2 года

Скачать:

ВложениеРазмер
Файл rab_programma_fgos_5_-6_matematika.docx37.18 КБ

Предварительный просмотр:


1. Пояснительная записка

 Курс математики 5–6 классов является фундаментом для математического образования и развития школьников, доминирующей функцией при его изучении в этом возрасте является интеллектуальное развитие учащихся. Курс построен на взвешенном соотношении новых и ранее усвоенных знаний, обязательных и дополнительных тем для изучения, а так же учитывает возрастные и индивидуальные особенности усвоения знаний учащимися.

Практическая значимость школьного курса математики 5–6 классов состоит в том, что предметом её изучения являются пространственные формы и количественные отношения реального мира. В современном обществе математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности. Математика является одним из опорных школьных предметов. Математические знания и умения необходимы для изучения алгебры и геометрии в 7–9 классах, а так же для изучения смежных дисциплин.

Одной из основных целей изучения математики является развитие мышления, прежде всего формирование абстрактного мышления. С точки зрения воспитания творческой личности особенно важно, чтобы в структуру мышления учащихся, кроме алгоритмических умений и навыков, которые сформулированы в стандартных правилах, формулах и алгоритмах действий, вошли эвристические приемы, как общего, так и конкретного характера. Эти приёмы, в частности, формируются при поиске решения задач высших уровней сложности. В процессе изучения математики также формируются и такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающее в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение математике даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения.

В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

 Знакомство с историей развития математики как науки формирует у учащихся представления о математике как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, обобщение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения задач прикладного характера, на пример решения текстовых задач, денежных и процентных расчётов, умение пользоваться количественной информацией, представленной в различных формах, умение читать графики. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, под хода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа.

Рабочая программа составлена на основании:

  1. ФГОС ООО, утвержденным приказом Министерства образования и науки Российской Федерации от «17»  декабря 2010 г. № 1897;
  2. авторской программой А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко (Математика: программы : 5–9 классы А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко /. — М. : Вентана-Граф, 2015.;
  3. Учебника. «Математика:» 5 класс, учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2017.
  4. Учебника. «Математика:» 6 класс, учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2017.
  5. Учебного плана  на 2017-2018 учебный год
  6. Положения о рабочей программе педагога Устава школы

В ней так же учитываются доминирующие идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции — умения учиться.

Общая характеристика курса математики в 5–6 классах

Содержание математического образования в 5–6 классах представлено в виде следующих содержательных разделов: «Арифметика», «Числовые и буквенные выражения. Уравнения», «Наглядная геометрия», «Элементы статистики, вероятности. Комбинаторные задачи», «Математика в историческом развитии».

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию вычислительной культуры и логического мышления, формированию умения пользоваться алгоритмами, а так же приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе связано с изучением рациональных чисел: натуральных чисел, обыкновенных и десятичных дробей, положительных и отрицательных чисел.

Содержание раздела «Числовые и буквенные выражения. Уравнения» формирует знания о математическом языке. Существенная роль при этом отводится овладению формальным аппаратом буквенного исчисления. Изучение материала способствует формированию у учащихся математического аппарата решения задач с помощью уравнений.

Содержание раздела «Наглядная геометрия» формирует у учащихся понятия геометрических фигур на плоскости и в пространстве, закладывает основы формирования геометрической «речи», развивает пространственное воображение и логическое мышление.

Содержание раздела «Элементы статистики, вероятности. Комбинаторные задачи» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности, умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор вариантов, в том числе в простейших прикладных задачах.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики отводится 5 часов в неделю, всего 170 часов в год (34 учебных недели).

Целью изучения курса математики в 5–6 классах является: систематическое развитие понятий числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии.

Задачи курса:

  • развивать представление о месте и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
  • научить владеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
  • развивать пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
  • дать представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
  • развивать логическое мышление и речь – умение логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
  • формировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

2. Планируемые результаты изучения математики в 5–6 классах

Личностными результатами изучения предмета «Математика» являются следующие качества:

  • независимость мышления;
  • воля и настойчивость в достижении цели;
  • представление о математической науке как сфере человеческой деятельности;
  • креативность мышления, инициатива, находчивость, активность при решении математической задачи;
  • умение контролировать процесс и результат учебной математической деятельности;

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных

действий (УУД).

Регулятивные УУД:

  • самостоятельно  обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;
  • выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости)конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
  • составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
  • работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);
  • в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

Познавательные УУД:

  • анализировать, сравнивать, классифицировать и обобщать факты и явления;
  • осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
  • строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;
  • создавать математические модели;
  • составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);
  • вычитывать все уровни текстовой информации.
  • уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.
  • понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.
  • Уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей.

Коммуникативные УУД:

  • самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
  • отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
  • в дискуссии уметь выдвинуть контраргументы;
  • учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
  • понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
  • уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Предметные результаты:

  • осознание значения математики для повседневной жизни человека;
  • представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
  • развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;
  • владение базовым понятийным аппаратом по основным разделам содержания;
  • практически значимые математические умения и навыки, их применение к решению математических и не математических задач, предполагающее умения:
  • выполнять вычисления с натуральными числами, обыкновенными и десятичными дробями;
  • решать текстовые задачи арифметическим способом и с помощью составления и решения уравнений;
  • изображать фигуры на плоскости;
  • использовать геометрический «язык» для описания  предметов окружающего мира;
  • измерять длины отрезков, величины углов, вычислять площади и объёмы фигур;
  • распознавать и изображать равные и симметричные фигуры;
  • проводить несложные практические вычисления с процентами, использовать прикидку и оценку; выполнять необходимые измерения;
  • использовать буквенную символику для записи общих утверждений, формул, выражений, уравнений;
  • строить на координатной плоскости точки по заданным координатам, определять координаты точек;
  • читать и использовать информацию, представленную в виде таблицы, диаграммы (столбчатой или групповой), в графическом виде;
  • решать простейшие комбинаторные задачи перебором возможных вариантов.

Арифметика

По окончании изучения курса учащийся научится:

• понимать особенности десятичной системы счисления;

• использовать понятия, связанные с делимостью натуральных чисел;

• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

• сравнивать и упорядочивать рациональные числа;

• выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;

• использовать понятия и умения, связанные с процентами, в ходе решения математических задач и задач из смежных предметов, выполнять не сложные практические расчёты;

• анализировать графики зависимостей между величинами (расстояние, время; температура и т. п.).

Учащийся получит возможность:

• познакомиться с позиционными системами счисления и основаниями, отличными от 10;

• углубить и развить представления о натуральных числах и свойствах делимости;

• научиться использовать приёмы, рационализирующие вычисления, приобрести навык контролировать вычисления, выбирая подходящий для ситуации способ.

Числовые и буквенные выражения. Уравнения

По окончании изучения курса учащийся научится:

• выполнять операции с числовыми выражениями;

• выполнять преобразования буквенных выражений (раскрытие скобок, приведение подобных слагаемых);

• решать линейные уравнения, решать текстовые задачи алгебраическим методом.

Учащийся получит возможность:

• развить представления о буквенных выражениях и их преобразованиях;

• овладеть специальными приёмами решения уравнений, применять аппарат уравнений для решения как текстовых, так и практических задач.

Наглядная геометрия

По окончании изучения курса учащийся научится:

• распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы;

• строить углы, определять их градусную меру;

• распознавать и изображать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

• определять по линейным размерам развёртки фигуры, линейные размеры самой фигуры и наоборот;

• вычислять объём прямоугольного параллелепипеда и куба.

Учащийся получит возможность:

• научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

• углубить и развить представления о пространственных геометрических фигурах;

• научиться применять развёртки для выполнения практических расчетов.

Элементы статистики, вероятности. Комбинаторные задачи

По окончании изучения курса учащийся научится:

• использовать простейшие способы представления и анализа статистических данных;

• решать комбинаторные задачи на нахождение количества объектов или комбинаций.

Учащийся получит возможность:

• приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;

• научиться некоторым специальным приёмам решения комбинаторных задач.

3. Содержание учебного предмета «Математика» в 5-6 классах

Арифметика

Натуральные числа

Ряд натуральных чисел. Десятичная запись натуральных чисел. Округление натуральных чисел.

Координатный луч.

Сравнение натуральных чисел. Сложение и вычитание натуральных чисел. Свойства сложения.

Умножение и деление натуральных чисел. Свойства умножения. Деление с остатком. Степень числа с натуральным показателем.

Делители и кратные натурального числа. Наибольший общий делитель. Наименьшее общее кратное. Признаки делимости на 2, на 3, на 5, на 9, на 10.

Простые и составные числа. Разложение чисел на простые множители.

Решение текстовых задач арифметическими способами.

Дроби

Обыкновенные дроби. Основное свойство дроби. Нахождение дроби от числа. Нахождение числа по значению его дроби. Правильные и неправильные дроби. Смешанные числа.

Сравнение обыкновенных дробей и смешанных чисел. Арифметические действия с обыкновенными дробями и смешанными числами.

Десятичные дроби. Сравнение и округление десятичных дробей. Арифметические действия с десятичными дробями. Прикидки результатов вычислений. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Бесконечные периодические  десятичные дроби. Десятичное приближение обыкновенной дроби

Отношение. Процентное отношение двух чисел. Деление числа в данном отношении. Масштаб.

Пропорция. Основное свойство пропорции. Прямая и обратная пропорциональные зависимости.

Проценты. Нахождение процентов от числа. Нахождение числа по его процентам.

Решение текстовых задач арифметическими способами.

Рациональные числа

Положительные, отрицательные числа и число 0. Противоположные числа. Модуль числа.

Целые числа. Рациональные числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства сложения и умножения рациональных чисел.

Координатная прямая. Координатная плоскость.

Величины. Зависимости между величинами

Единицы измерения длины, площади, объема, массы, времени, скорости.

Примеры зависимостей между величинами. Представление зависимостей в виде формул. Вычисления по формулам.

Числовые и буквенные выражения. Уравнения

Числовые выражения. Значение числового выражения. Порядок действий в числовых выражениях. Буквенные выражения. Раскрытие скобок. Подобные слагаемые, приведение подобных слагаемых. Формулы.

Уравнения. Корень уравнения. Основные свойства уроавнений. Решение текстовых задач с помощью уравнений.

Элементы статистики, вероятности. Комбинаторные задачи

Представление данных в виде таблиц, круговых и столбчатых диаграмм, графиков.

Среднее арифметическое. Среднее значение величины.

Случайное событие. Достоверное и невозможное события. Вероятность случайного события. Решение комбинаторных задач.

Наглядная геометрия

Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырёхугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Изображение геометрических фигур и их конфигураций.

Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины.

Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира. Биссектриса угла.

Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближённое измерение площади фигур на клетчатой бумаге. Равновеликие фигуры. Разрезание и составление геометрических фигур.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры развёрток многогранников, цилиндра и конуса. Изготовление моделей пространственных фигур.

Понятие объёма; единицы объёма. Объём прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Математика в историческом развитии

История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магницкий. Л. Эйлер.

4. Тематическое планирование в 5 – 6 классах

Тематическое планирование в 5 классе

№ п/п

Наименование   разделов и тем

Количество часов

Количество контрольных работ

1

Натуральные числа и шкалы

20

1

2

Сложение и вычитание натуральных чисел

33

2

3

Умножение и деление натуральных чисел

37

2

4

Обыкновенные дроби

19

1

5

Десятичные дроби

49

3

6

Повторение и систематизация учебного материала

12

1

Всего

170

10

Тематическое планирование в 6 классе

№ п/п

Наименование   разделов и тем

Количество часов

Количество контрольных работ

1

Делимость натуральных чисел

17

1

2

Обыкновенные дроби

38

3

3

Отношения и пропорции

28

2

4

Рациональные числа и действия над ними

70

5

5

Повторение и систематизация учебного материала

17

1

Всего

170

12

Методическая литература:

1. УМК по математике для 5-6 классов (авторы А.Г. Мерзляк, В.Б. Полонский, М.С. Якир)

2. Е. В. Буцко, А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. ФГОС. Алгоритм успеха. Математика.5 класс. Методическое пособие. Москва. Издательский центр.«Вентана-Граф». 2012 (контрольные работы).

3. А. Г. Мерзляк, В. Б. Полонский, Е.М. Рабинович, М. С. Якир. Сборник задач и заданий для тематического оценивания по математике для 5 класса. Харьков, «Гимназия», 2010

4. Программа по  математике (5-6 кл.)    Авторы: А.Г. Мерзляк, В.Б. Полонский, М.С. Якир.


По теме: методические разработки, презентации и конспекты

Рабочая программа "Музыка 5 класс" на основе авторской программы "Музыка 1-7 класс", Е.Д.Критская, Г.П.Сергеева, Т.С.Шмагина, 2010.

Данная  рабочая  программа разработана на основе авторской программы «Музыка» (Программы для общеобразовательных учреждений: Музыка: 5-9 кл., Е.Д. Критская, Г.П. Сергеева, Т.С. Шмагина – Мос...

Рабочая программа "Музыка 6 класс" на основе авторской программы "Музыка 1-7 класс", Е.Д.Критская, Г.П.Сергеева, Т.С.Шмагина, 2010.

Данная  рабочая  программа разработана на основе авторской программы «Музыка» (Программы для общеобразовательных учреждений: Музыка: 5-9 кл., Е.Д. Критская, Г.П. Сергеева, Т.С. Шмагина – Мос...

Рабочая программа по английскому языку (7 класс) на тему: Рабочая программа для 7 класса по ФГОС НОО по английскому языку к УМК под редакцией Биболетовой М.З.

1. Пояснительная запискаОбщая характеристика учебного предмета. Иностранный язык (в том числе английский) входит в общеобразовательную область «Филология». Язык является важнейшим средством общен...

рабочая программа русский язык 11 класс, рабочая программа литература 11 класс

рабочая программа русский язык 11 класс, рабочая программа литература 11 класс...

Рабочая программа для 10 класса ( 2 часа в неделю), Рабочая программа для 10 класса ( 5 часов в неделю)

Пояснительная запискаРабочая программа по физике на 2022/23 учебный год для обучающихся 10 классов МБОУ «СШ№ 25» разработана в соответствии с требованиями:•  Федерального закона ...

Рабочая программа для 11 класса ( 2 часа в неделю) , Рабочая программа для 11 класса ( 5 часов в неделю)

Пояснительная записка      Рабочая программа по физике на 2022/23 учебный год для обучающихся 11 классов МБОУ «СШ№ 25» разработана в соответствии с требованиями:&bull...