внеклассное мероприятие по химии
внеклассное мероприятие для учащихся 9-11 классов "Химия и космос"
Скачать:
| Вложение | Размер |
|---|---|
| 100.53 КБ | |
| 736.04 КБ |
Предварительный просмотр:
Химия и космос
Ведущий 1. 12 апреля наша страна отмечает День космонавтики. Это всенародный праздник. Для нас кажется привычным, что стартуют с Земли космические корабли. В высоких небесных далях происходят стыковки космических аппаратов. Месяцами в космических станциях живут и трудятся космонавты, уходят к другим планетам автоматические станции. Вы можете сказать “что тут особенного?”
Ведущий 2. Но ведь совсем недавно о космических полетах говорили как о фантастике. И вот 4 октября 1957 года началась новая эра – эра освоения космоса. 12 апреля 1961 года впервые в мире на космическом корабле “Восток” совершил полет первый космонавт планеты. Им был наш гражданин Юрий Алексеевич Гагарин.
Ведущий 1. Жители Земли всегда будут с благодарностью помнить имена людей, открывших новую сферу человеческой деятельности. В этом созвездии одни из самых ярких – имя первого космонавта планеты Юрия Гагарина и имя главного конструктора академика Сергея Павловича Королева.
Из 40000 профессий, существующих на Земле, профессия космонавта самая трудная, опасная и ответственная. Это настоящий подвиг. Подвиг научный, технический, организационный, но, прежде всего – человеческий.
Семь металлов создал свет
По числу семи планет:
Медь, Железо, Серебро…
Дал нам космос на добро.
Злато, олово, свинец…
Сын мой, сера – их отец.
А еще ты должен знать:
Всем им ртуть – родная мать.
Химия и космос
Химия имеет прямое отношение ко многим достижениям человека в освоении космоса.
Без усилий многочисленных ученых-химиков, технологов, инженеров-химиков не были бы созданы удивительные конструкционные материалы, которые позволяют космическим кораблям преодолеть земное притяжение, сверхмощное горючее, помогающее двигателям развить необходимую мощность, точнейшие приборы, инструменты и устройства, которые обеспечивают работу космических орбитальных станций.
Металлы в космосе.
Освоение космоса открывает перед металлургами новые технологические возможности. В невесомости резко меняются процессы течения жидкостей и теплопереноса. Благодаря этому в космосе можно использовать совершенно новые способы получения и переработки металлических и неметаллических материалов.
Расплав под действием поверхностного натяжения принимает шарообразную форму и свободно повисает в пространстве. Как показали американские и советские исследования, расплавленная медь в космосе за 3 секунды образует шар диаметром 10 сантиметров. Металл не загрязняется примесями, которые на
Земле переходят на него со стенок печи. С помощью электрических и магнитных полей свободно парящему расплаву можно предать нужную форму – таким образом родилась новая технология формообразования металлических деталей. Разные расплавы, сильно отличающиеся друг от друга по плотности, идеально смешиваются между собой и после этого не расслаиваются – на Земле это неизбежно происходит под действием силы тяжести. Можно даже смешивать расплавы с газами. Материал содержащий 87% газа и 13% стали, плавает в воде как пробка. Такие вспененные материалы открывают путь для новых конструктивных решений в судостроении и авиации.
Крылатый металл
Монумент в честь покорителей космоса был воздвигнут в Москва в 1964 году. Семь долгих лет ушло на проектирование и сооружение этого обелиска.
У авторов проекта много времен и сил ушло на выбор облицовочного материала монумента. В конце концов был выбран полированный титан - точнее тонкие листы этого металла.
Прошло 37 лет, а металлическая облицовка монумента осталась по-прежнему гладкой и блестящей - как будто ее изготовили каких-нибудь полгода назад...
Действительно, по многим характеристикам, и прежде всего по коррозионной стойкости, титан превосходит подавляющее большинство металлов и сплавов, так что иноргда его даже называют "вечным" металлом.
Титан сегодня - это важнейший конструкционный материал. Это связано с редким сочетанием легкости, прочности и тугоплавкости данного металла. На основе титана создано множество высокопрочных сплавов для авиации, судостроения и ракетной техники.
Широко известен авиционный сплав, состоящий из 90% титана, 6% алюминия и 4% ванадия. Другой авиационный сплав содержит уже 85% титана, 10% ванадия, 3% алюминия и 2% железа. В титановые сплавы иногда вводят даже платину и палладий ( 0,1--0,2%). Эти добавки повышают и без того высокую стойкость титана.
Титан используют для изготовления баллонов, в которых длительное время под давлением могут находиться различные газы. Например, в американских ракетах типа "Атлас" сферические резервуары для хранения сжатых газов сделаны из титана. Из титановых сплавов изготавливают и баки для окислителя ракетного топлива - жидкого кислорода.
Удивительное свойство титановых сплавов с никелем - способность "запоминать" свою форму. Проволока из такого материала может быть использована для изготовления радиоантенны или каркаса солнечной батареи космического корабля. На холоду это изделие можно сжать в небольшой шар. А при нагревании материал "вспоминает" свою первоначальную форму и разворачивается в то изделие, которое было изготовленно вначале.
Горючие металлы
Чтобы преодолеть силы земного тяготения и вырваться в космические просторы, необходимо затратить много энергии. Ракета, которая вывела на орбиту корабль-спутник с первым в мире космонавтом Юрием Гагариным, имела шесть двигателей общей мощностью 20 миллионов лошадиных сил!
Естественно, что выбор ракетного топлива представляет собой проблему исключительной важности. Пока наиболее эффективным горючим считается керосин, окисляемый жидким кислородом. Теплотворность этого топлива составляет 9600 кДж/кг.
Хорошие перспективы может иметь применение металлического горючего. Теорию и методику использования металлов в качестве топлива для ракетных двигателей разработали советские ученые Юрий Васильевич Кондратюк (настоящие имя и фамилия - Александр Игнатьевич Шаргей) (1897-1942) и Фридрих Артурович Цандер (1887-1933) - ученые-изобретатели, пионеры отечественной ракетной техники.
Одним из наиболее подходящих для этой цели металлов является литий. При сгорании 1 килограмма этого металла выделяется почти 43000 кДж! Большей теплотворностью может похвастать лишь бериллий. В США опубликованы патенты на твердое ракетное топливо, содержащее 51- 68% металлического лития.
Любопытно, что в процессе работы ракетных двигателей литий выступает против... лития. Являясь компонентом горючего, он позволяет развивать колоссальные температуры, а обладающие высокой термостойкостью и жароупорностью литиевые керамические материалы, используемые как покрытия сопел и камер сгорания, предохраняют их от разрушительного действия горючего.
При сгорании алюминия в кислороде или фторе тоже отмечается высокое тепловыделение. Поэтому его используют как присадку к ракетному топливу. Ракета "Сатурн" сжигает за время полета 36 т алюминиевого порошка!
Космический цех полупроводников
Важнейшая область применения редкого металла индия - производство полупроводников. Индий высокой чистоты необходим для изготовления германиевых выпрямителей и усилителей: он выступает при этом в роли примеси, обеспечивающей дырочную проводимость в германии. Кстати, сам индий, используемый для этой цели, практически не содержит примесей: выражаясь языком химиков, его чистота - "шесть девяток", т. е. 99,9999%!
Соединения индия с серой, селеном, сурьмой, фосфором и сами являются полупроводниками. Их применяют для изготовления термоэлементов и других приборов. Соединение индия с сурьмой, которое технологи называют "антимонид индия", служит основой инфракрасных детекторов, способных "видеть" в темноте нагретые предметы.
Индий оказался одним из немногих химических элементов, "командированных" в космос, чтобы вписать новые страницы в технологию неорганических материалов.
В 1975 году, незадолго до начала совместного советско-американского космического полета по программе "Союз"- "Аполлон", командиры экипажей Алексей Архипович Леонов и Томас Стаффорд в беседе с корреспондентом ТАСС высказали свое мнение о значении предстоящих экспериментов на орбите.
В частности, они затронули вопрос о технологических опытах по плавке металлов и выращиванию кристаллов различных веществ. "Предстоит выяснить возможность использования невесомости и вакуума для получения новых материалов - металлических и полупроводниковых, - сказал А. Леонов. По мнению советских и американских ученых, в космосе можно сплавлять компоненты, не смешиваемые на Земле, создавать жаропрочные материалы..."
"Наши астронавты, - добавил Т. Стаффорд, - на борту орбитальной станции "Скайлэб" проводили опыты по выращиванию кристаллов антимонида индия. Удалось получить кристалл самый чистый и самый прочный из всех, когда-либо искусственно полученных на Земле".
А в 1978-1980 годах на борту советской орбитальной научной станции "Салют-6" были проведены новые технологические эксперименты, в которых "участвовали" индий и его соединения.
Можно привести множество других примеров того, как используются в космической отрасли достижения науки ХИМИИ..
Несколько фактов про металл на марсе
Марсоход Spirit обнаружил на красной планете сверхлегкий прочный металл, который, по прогнозам металловедов, может в будущем заменить сплавы алюминия. По данным рентгеноскопии, нового металла в почве планеты около 14,5%. Астрологи полагают, что именно высоким содержанием данного металла в почвах планеты объясняется орбита планеты, которая отличается от орбиты других планет солнечной системы.
Напомним, что Spirit оборудован, как заправский полевой геолог: цветные стереокамеры и инфракрасная аппаратура, богатый набор инструментов на выдвижной механической руке. В частности, микроскоп, гамма-спектрометр и даже небольшой бур-дробилка, позволяющий роботу посмотреть – что у выбранного учёными валуна внутри. Хотя максимальная скорость вездехода составляет 5 сантиметров в секунду – средняя будет в пять раз меньше.
Робот запрограммирован на непрерывное движение в течение 10 секунд, затем – остановка и анализ ситуации.
Пусть общее управление (выбор объектов для детального исследования) будет осуществляться с Земли, тактику передвижения машина вычислит сама.
Учёные полагают, что в ближайшее время стоит ожидать новых открытий с Марса.
Тем временем, в ближайшие десять лет NASA планирует отрабатывать на Марсе технологию, тактику и стратегию первой земной планетарной колонизации. Через каких-нибудь 5-7 лет на "красной планете" будет неустанно трудиться команда из 200-500 роботов, которые к концу десятилетия подготовят фазу-II — прибытие первого землянина.
Повлияет ли это на цену алюминия на рынке металлов пока сказать сложно, однако по данным сайта nasa.org около 80 аналитиков алюминиевых и металлургических компаний уже подписались на рассылку новостей. Редакция нашего журнала так же будет внимательно следить за рынком металлов на Марсе.
Неожиданная находка
Марсоход Оппортьюнити, который уже год путешествует по обширной равнине на плато Меридиана, сделал интересную находку, вновь выйдя к месту своей посадки. Большой конусообразный объект, который вы видите на рисунке в центре, это защитный металлический тепловой кожух марсохода, сброшенный при посадке. Сюрпризом оказался камень, лежащий неподалеку от него (на рис. внизу слева), который в основном состоит из плотных металлов железа и никеля. Справа на рисунке -- еще одна часть сброшенного теплового кожуха марсохода Оппортьюнити. Видны также более мелкие осколки этого кожуха. Ученые считают, что обнаруженный кусок металла размером с баскетбольный мяч имеет не марсианское происхождение. Скорее всего, это древний металлический метеорит. Находка метеорита на широкой пыльной равнине Марса вызвала оживленные дискуссии ученых о том, сколько всего камней могло упасть на Марс из космоса. На Земле, в ледяных пустынях Антарктиды, также находили подобные метеориты... Роль металлов в освоении космоса велика и до конца не раскрыта…
Через месяц исполнится ровно полвека первому старту ракеты Р-7, который состоялся 15 мая 1957 года. Эта ракета, которая до сих пор носит всех наших космонавтов, является безусловным триумфом конструкторской идеи над конструкционным материалом. Интересно, что ровно через 30 лет после ее запуска, 15 мая 1987 года, состоялся и первый старт ракеты «Энергия», которая, наоборот, использовала массу экзотических материалов, недоступных 30 лет назад.
Когда Сталин поставил перед Королевым задачу копирования Фау-2, многие ее материалы были новы для тогдашней советской промышленности, но к 1955 году уже исчезли проблемы, которые могли бы помешать конструкторам воплощать идеи. К тому же материалы, использованные при создании ракеты Р-7, даже в 1955 году не отличались новизной – ведь нужно было учитывать затраты времени и денег при серийном производстве ракеты. Поэтому основой ее конструкции стали давно освоенные алюминиевые сплавы.
Раньше модно было называть алюминий «крылатым металлом», подчеркивая, что если конструкция не ездит по земле или по рельсам, а летает, то она обязательно должна быть выполнена из алюминия. На самом деле крылатых металлов много, и это определение давно вышло из моды. Спору нет, алюминий хорош, достаточно дешев, сплавы его сравнительно прочны, он легко обрабатывается и т.д. Но из одного алюминия самолет не построишь. А в поршневом самолете и дерево оказывалось вполне уместным (даже в ракете Р-7 в приборном отсеке есть фанерные перегородки!). Унаследовав алюминий от авиации, этим металлом стала пользоваться и ракетная техника. Но тут-то как раз и обнаружилась узость его возможностей.
Алюминий
«Крылатый металл», любимец авиаконструкторов. Чистый алюминий втрое легче стали, очень пластичен, но не очень прочен.
Чтобы он стал хорошим конструкционным материалом, из него приходится делать сплавы. Исторически первым был дуралюмин (дюралюминий, дюраль, как мы его чаще всего зовем) – такое имя дала сплаву немецкая фирма, впервые его предложившая в 1909 году (от названия города Дюрен). Этот сплав, кроме алюминия, содержит небольшие количества меди и марганца, резко повышающие его прочность и жесткость. Но есть у дюраля и недостатки: его нельзя сваривать и сложно штамповать (нужна термообработка). Полную прочность он набирает со временем, этот процесс назвали «старением», а после термообработки состаривать сплав нужно заново. Поэтому детали из него соединяют клепкой и болтами.
В ракете он годится только на «сухие» отсеки – клепаная конструкция не гарантирует герметичности под давлением. Сплавы, содержащие магний (обычно не больше 6%), можно деформировать и сваривать. Именно их больше всего на ракете Р-7 (в частности, из них изготовлены все баки).
Американские инженеры имели в своем распоряжении более прочные алюминиевые сплавы, содержащие до десятка разных компонентов. Но прежде всего наши сплавы проигрывали заокеанским по разбросу свойств. Понятно, что разные образцы могут немного отличаться по составу, а это приводит к разнице в механических свойствах. В конструкции часто приходится полагаться не на среднюю прочность, а на минимальную, или гарантированную, которая у наших сплавов могла быть заметно ниже средней.
В последней четверти XX века прогресс в металлургии привел к появлению алюминий-литиевых сплавов. Если до этого добавки в алюминий были направлены только на увеличение прочности, то литий позволял сделать сплав заметно более легким. Из алюминий-литиевого сплава был сделан бак для водорода ракеты «Энергия», из него же делают сейчас и баки «Шаттлов».
Наконец, самый экзотический материал на основе алюминия – боралюминиевый композит, где алюминию отведена та же роль, что и эпоксидной смоле в стеклопластике: он удерживает вместе высокопрочные волокна бора. Этот материал только-только начал внедряться в отечественную космонавтику.
Выбор конструктора за прошедшие 50 лет стал намного богаче. Тем не менее как тогда, так и сейчас алюминий – металл №1 в ракете. Но, конечно же, есть и целый ряд других металлов, без которых ракета не сможет полететь.
Железо
Незаменимый элемент любых инженерных конструкций. Железо в виде разнообразных высокопрочных нержавеющих сталей – второй по применению металл в ракетах.
Везде, где нагрузка не распределена по большой конструкции, а сосредоточена в точке или нескольких точках, сталь выигрывает у алюминия.
Сталь жестче – конструкция из стали, размеры которой не должны «плыть» под нагрузкой, получается почти всегда компактнее и иногда даже легче алюминиевой. Сталь гораздо лучше переносит вибрацию, более терпима к нагреву, сталь дешевле, за исключением самых экзотических сортов, сталь, в конце концов, нужна для стартового сооружения, без которого ракета – ну, сами понимаете...
Но и баки ракеты могут быть стальными. Удивительно? Да. Однако первая американская межконтинентальная ракета Atlas использовала баки именно из тонкостенной нержавеющей стали. Для того чтобы стальная ракета выиграла у алюминиевой, многое пришлось радикально изменить. Толщина стенок баков у двигательного отсека достигала 1,27 миллиметра (1/20 дюйма), выше использовались более тонкие листы, и у самого верха керосинового бака толщина составляла всего 0,254 миллиметра (0,01 дюйма). А водородный разгонный блок Centaur, сделанный по такому же принципу, имеет стенку толщиной всего лишь с лезвие бритвы – 0,127 миллиметра!
Столь тонкая стенка сомнется даже под собственной тяжестью, поэтому форму она держит исключительно за счет внутреннего давления: с момента изготовления баки герметизируются, наддуваются и хранятся при повышенном внутреннем давлении.
Какой же металл можно поставить на треье место «по ракетности»? Ответ может показаться очевидным. Титан? Оказывается, вовсе нет.
Медь
Основной металл электро- и тепловой техники. Ну разве не странно? Довольно тяжелый, не слишком прочный, по сравнению со сталью – легкоплавкий, мягкий, по сравнению с алюминием – дорогой, но тем не менее незаменимый металл.
Все дело в чудовищной теплопроводности меди – она больше в десять раз по сравнению с дешевой сталью и в сорок раз по сравнению с дорогой нержавейкой. Алюминий тоже проигрывает меди по теплопроводности, а заодно и по температуре плавления. А нужна эта бешеная теплопроводность в самом сердце ракеты – в ее двигателе. Из меди делают внутреннюю стенку ракетного двигателя, ту, которая сдерживает трехтысячеградусный жар ракетного сердца. Чтобы стенка не расплавилась, ее делают составной – наружная, стальная, держит механические нагрузки, а внутренняя, медная, принимает на себя тепло.
В тоненьком зазоре между стенками идет поток горючего, направляющегося из бака в двигатель, и тут-то выясняется, что медь выигрывает у стали: дело в том, что температуры плавления отличаются на какую-то треть, а вот теплопроводность – в десятки раз. Так что стальная стенка прогорит раньше медной. Красивый «медный» цвет сопел двигателей Р-7 хорошо виден на всех фотографиях и в телерепортажах о вывозе ракет на старт.
В двигателях ракеты Р-7 внутренняя, «огневая», стенка сделана не из чистой меди, а из хромистой бронзы, содержащей всего 0,8% хрома. Это несколько снижает теплопроводность, но одновременно повышает максимальную рабочую температуру (жаростойкость).
Серебро
Драгоценный металл, известный человечеству с древности. Металл, без которого не обойтись нигде. Как гвоздь, которого не оказалось в кузнице в известном стихотворении, он держит на себе все.
Именно он связывает медь со сталью в жидкостном ракетном двигателе, и в этом, пожалуй, проявляется его мистическая сущность. Ни один из других конструкционных материалов не имеет никакого отношения к мистике – мистический шлейф веками тянется исключительно за этим металлом. И так было в течение всей истории его использования человеком, существенно более долгой, чем у меди или железа. Что уж говорить об алюминии, который был открыт только в девятнадцатом столетии, а стал относительно дешевым и того позже – в двадцатом.
За все годы человеческой цивилизации у этого необыкновенного металла было огромное количество применений и разнообразных профессий. Ему приписывали множество уникальных свойств, люди использовали его не только в своей технической и научной деятельности, но и в магии. К примеру, долгое время считалось, что «его боится всевозможная нечисть».
Главным недостатком этого металла была дороговизна, из-за чего его всегда приходилось расходовать экономно, точнее, разумно – так, как требовало очередное применение, которое ему придумывали неугомонные люди. Рано или поздно ему находили те или иные заменители, которые с течением времени с бОльшим или меньшим успехом вытесняли его.
Возможно, когда физики изобретут телепортацию и ракетные двигатели будут уже не нужны, наступит последний час и еще одной сферы его применения. Но пока что найти ему адекватную замену не удалось, и этот уникальный металл остается в ракетостроении вне конкуренции – так же, как и в охоте на вампиров.
Вы уже наверняка догадались, что все вышесказанное относится к серебру. Со времен ГИРДа и до сих пор единственным способом соединения частей камеры сгорания ракетных двигателей остается пайка серебряными припоями в вакуумной печи или в инертном газе. Попытки найти бессеребряные припои для этой цели ни к чему пока не привели.
Драгоценным металлом серебро называют скорее по многотысячелетней привычке, есть металлы, которые не считаются драгоценными, но стоят намного дороже серебра. Взять хотя бы бериллий. Этот металл втрое дороже серебра, но и он находит применение в космических аппаратах (правда, не в ракетах). Главным образом он получил известность благодаря способности замедлять и отражать нейтроны в ядерных реакторах. В качестве конструкционного материала его стали использовать позже.
Конечно, невозможно перечислить все металлы, которые можно назвать гордым именем «крылатые», да и нет в этом нужды Но с металлами, как известно из истории, люди работают уже приблизительно десять тысяч лет, и не так-то просто найти равноценную замену этим материалам.
Титан и титановые сплавы
Самый модный металл космического века.
Вопреки широко распространенному мнению, титан не очень широко применяется в ракетной технике – из титановых сплавов в основном делают газовые баллоны высокого давления (особенно для гелия). Титановые сплавы становятся прочнее, если поместить их в баки с жидким кислородом или жидким водородом, в результате это позволяет снизить их массу.
Эксперимент в космосе.
В один из летних дней 1976 года, когда вокруг Земли вращалась орбитальная научная станция "Салют-5", члены ее экипажа космонавты Б. Волынов и В. Жолобов сообщили в Центр управления полетом, что согласно программе они провели очередной технологический эксперимент под названием "Сфера".
Кем только не приходится быть космонавтам во время полета! Они и геологи, и биологи, и медики, и физики, и химики - да разве перечислишь все их небесные профессии. На этот раз - для проведения эксперимента "Сфера" - космонавты превратились в металлургов, а их металлургическим "цехом" стал компактный прибор, с помощью которого предстояло исследовать процесс затвердевания жидкого металла в условиях невесомости. Точнее, воспользовавшись отсутствием земных сил тяжести, космонавты должны были получить на этом приборе идеальные по форме металлические шарики.
Что же представляет собой прибор и какому металлу суждено было одним из первых войти в летопись космической металлургии? Прибор состоит из специального "магазина" с металлическими заготовками, электронагревателя и прозрачного лавсанового мешочка. Металлом же, на который пал выбор ученых, планировавших этот эксперимент, оказался известный уже более ста лет так называемый сплав Вуда, состоящий из висмута, свинца, олова и кадмия (в соотношении примерно 4:2:1:1). Основная рабочая характеристика сплава - низкая температура плавления (около 70 °С). Именно за эти заслуги сплаву Вуда и была выдана "путевка" в космические дали: чем легче плавится металл, тем конструктивно проще и, следовательно, компактнее может быть прибор, а это обстоятельство в космонавтике имеет первостепенное значение.
Итак, в точно отведенное для эксперимента время космонавты включили прибор и крохотная заготовка, похожая на кусочек карандашного грифеля, поступила из "магазина" в трубку нагревателя. Здесь заготовка быстро превратилась в каплю и специальное устройство вытолкнуло ее в лавсановый мешочек. Если бы дело происходило на Земле, капелька тотчас же упала бы на дно, и на этом опыт закончился бы, так и не состоявшись. В космосе же шарик из расплавленного металла, расставшись с нагревателем, начинает парить в невесомости. Скорость выталкивания капли и размеры мешочка выбраны с таким расчетом, чтобы к моменту соприкосновения с его стенками металл уже успел затвердеть. Капля, еще капля, еще - и вот уже получено много крохотных матовых бусинок.
"Шарики вроде ничего, симпатичные, - комментировал по ходу дела бортинженер В. Жолобов. - Приятно смотреть, как расплавленные капельки парят в невесомости, застывают, ни с чем не соприкасаясь".
Но вот эксперимент "Сфера" закончен. Какую же практическую пользу он принесет? Стоит ли в космосе "огород городить" только ради того, чтобы собрать урожай металлических горошинок, пусть даже идеальной сферической формы? Да и будет ли их форма идеальной?
Лавсановый мешок космонавты доставили на землю, и ученые многих лабораторий подвергли его содержимое всестороннему исследованию. Оказалось, что, застывая, металлические капли приобретали эллипсоидный вид и превращались в крохотные "груши", "луковицы", но отнюдь не в желанные шарики. К тому же сплав Вуда по каким-то причинам терял в невесомости свою однородность. И хотя, как говорится, первый блин - комом, подобные эксперименты, видимо, будут продолжены.
Если они окажутся успешными, перед технологами откроются заманчивые перспективы: ведь в земных условиях, чтобы из металлической заготовки получить шарик для подшипников, требуется выполнить одиннадцать различных операций, потеряв при этом немало металла в отходы. Да к тому же и структура поверхностного слоя шариков порой оставляет желать лучшего. Вот почему можно предположить, что расходы на путешествие сплава Вуда в космос с лихвой окупятся, когда на околоземной орбите начнет действовать первый космический подшипниковый завод. И это время уже не за горами...
Данного события с нетерпением ждало человечество и, конечно же, истинные учёные всего мира. Этот полёт, без споров, дал старт победоносным завоеваниям человечества космического пространства и планет Солнечной системы. Освоение космоса безгранично углубит наши знания в разных сферах науки и подтолкнет решить многие вопросы, связанные с происхождением жизни.
Пускай все люди, независимо от нации, расцветки кожи, от вероисповедания и социальной принадлежности, приложат все усилия, чтобы обеспечить прочный мир во всём мире. Положим конец гонке вооружений! Осуществим всеобщее и полное разоружение под строжайшим международным контролем! Это будет грандиозный вклад в священное дело защиты мира.
ХХI век не даром называют временем научно-технического прогресса.
Вопросы
Луна – серебро
Марс – железо
Меркурий – ртуть (в чистом виде не используется, опасно!)
Юпитер – олово
Венера – медь
Сатурн – свинец
Солнце – золото
Серебро: считается прохладным, но не холодным металлом. Его используют для усиления колдовских чар, оно усиливает интуицию, телепатические способности и ясновидение.
Железо: как металл марса агрессивный, горячий. Используется для защитной магии, когда требуется отразить опасность.
Ртуть: изменчивый металл. В чистом виде не используется, но существуют кольца, в которых ртуть присутствует, заключённая в непроницаемую капсулу. Такие кольца используют при управлении большими потоками энергии.
Олово: самый спокойный и устойчивый среди металлов. Поддерживает стабильную, ровную энергию, используется для обретения власти или для защиты.
Медь: металл, создающий гармонию. Употребляется для усиления стабильности, уравновешенности, для создания любовных талисманов. Повышает способности к колдовству.
Свинец: сильный металл, способный изолировать негативную энергетику. Используется для защиты от колдовства и т.п.
Золото: металл спокойной силы и власти. Его используют для создания амулетов, талисманов, пентаклей. Оберегает жизнь и здоровье.
Предварительный просмотр:
Подписи к слайдам:
12 апреля 1961 года человек впервые совершил полет в космос. Юрий Алексеевич Гагарин – первый космонавт.
Первый космический корабль «Восток – 1».
Химия и космос Химия имеет прямое отношение ко многим достижениям человека в освоении космоса. Без усилий многочисленных ученых-химиков, технологов, инженеров-химиков не были бы созданы удивительные конструкционные материалы, которые позволяют космическим кораблям преодолеть земное притяжение, сверхмощное горючее, помогающее двигателям развить необходимую мощность, точнейшие приборы, инструменты и устройства, которые обеспечивают работу космических орбитальных станций.
Металлы в космосе. Освоение космоса открывает перед металлургами новые технологические возможности. В невесомости резко меняются процессы течения жидкостей и теплопереноса. Благодаря этому в космосе можно использовать совершенно новые способы получения и переработки металлических и неметаллических материалов.
Монумент в честь покорителей космоса был воздвигнут в Москва в 1964 году. Семь долгих лет ушло на проектирование и сооружение этого обелиска. У авторов проекта много времен и сил ушло на выбор облицовочного материала монумента. В конце концов был выбран полированный титан - точнее тонкие листы этого металла. Прошло 37 лет, а металлическая облицовка монумента осталась по-прежнему гладкой и блестящей - как будто ее изготовили каких-нибудь полгода назад ...
Крылатый металл Титан сегодня - это важнейший конструкционный материал. Это связано с редким сочетанием легкости, прочности и тугоплавкости данного металла. На основе титана создано множество высокопрочных сплавов для авиации, судостроения и ракетной техники. Широко известен авиационный сплав, состоящий из 90% титана , 6% алюминия и 4% ванадия . Другой авиационный сплав содержит уже 85% титана , 10% ванадия , 3% алюминия и 2% железа . В титановые сплавы иногда вводят даже платину и палладий ( 0,1--0,2%). Эти добавки повышают и без того высокую стойкость титана.
Ученые изобретатели. Кондратюк Ю. В. (А. И. Шаргей ) Цандер Ф. А.
Горючие металлы. Бериллий Лити й Алюминий
Космический цех полупроводников. Важнейшая область применения редкого металла индия - производство полупроводников. Индий высокой чистоты необходим для изготовления германиевых выпрямителей и усилителей: он выступает при этом в роли примеси, обеспечивающей дырочную проводимость в германии. Кстати, сам индий, используемый для этой цели, практически не содержит примесей: выражаясь языком химиков, его чистота - "шесть девяток", т. е. 99,9999%! Соединения индия с серой, селеном, сурьмой, фосфором и сами являются полупроводниками. Их применяют для изготовления термоэлементов и других приборов.
"Союз"- "Аполлон", командиры экипажей Леонов А. А. Томас Стаффорд
Несколько фактов про металл на Марсе: Марсоход Spirit обнаружил на красной планете сверхлегкий прочный металл, который, по прогнозам металловедов, может в будущем заменить сплавы алюминия. По данным рентгеноскопии, нового металла в почве планеты около 14,5%. Астрологи полагают, что именно высоким содержанием данного металла в почвах планеты объясняется орбита планеты, которая отличается от орбиты других планет солнечной системы.
Большой конусообразный объект , который вы видите на рисунке в центре, это защитный металлический тепловой кожух марсохода , сброшенный при посадке. Сюрпризом оказался камень, лежащий неподалеку от него (на рис. внизу слева), который в основном состоит из плотных металлов железа и никеля .