Лекции

Палаева Инна Геннадиевна

Биология как наука. Роль биологии в жизни и практической деятельности человека. Признаки и свойства живого. Уровни организации живой природы.

Биология как наука. Роль биологии в жизни и практической деятельности человека. Признаки и свойства живого. Уровни организации живой природы.

Термин «биология» образуется из двух греческих слов «bios» —жизнь и «logos» — знание, учение, наука. Отсюда и классическое определение биологии как науки, изучающей жизнь во всех ее проявлениях.

Биология исследует многообразие существующих и вымерших живых существ, их строение, функции, происхождение, эволюцию, распространение и индивидуальное развитие, связи друг с другом, между сообществами и с неживой природой.

Биология рассматривает общие и частные закономерности, присущие жизни во всех ее проявлениях и свойствах: обмен веществ, размножение, наследственность, изменчивость, приспособляемость, рост, развитие, раздражимость, подвижность и т.д.

Методы исследований в биологии

  1. Наблюдение — самый простой и доступный метод. Например можно наблюдать сезонные изменения в природе, в жизни растений и животных, поведение животных и т.д.
  2. Описание биологических объектов (устная или письменная характеристика).
  3. Сравнение– нахождение сходств и различий между организмами, применяется в систематике.
  4. Экспериментальный метод (в лабораторных или естественных условиях) – биологические исследования с использованием различных приборов и методов физики, химии.
  5. Микроскопия – исследование строения клеток и клеточных структур с помощью световых и электронных микроскопов. Световые микроскопы позволяют увидеть формы и размеры клеток, отдельных органоидов. Электронные – мелкие структуры отдельных органоидов.
  6. Биохимический метод - исследование химического состава клеток и тканей живых организмов.
  7. Цитогенетический– метод изучения хромосом под микроскопом. Можно обнаружить геномные мутации (например, синдром Дауна), хромосомные мутации (изменения формы и размеров хромосом).
  8. Ультрацентрифугирование- выделение отдельных клеточных структур (органелл) и дальнейшее их изучение.
  9. Исторический метод– сопоставление полученных фактов с ранее полученными результатами.
  10. Моделирование – создание различных моделей процессов, структур, экосистем и т.д. с целью прогнозирования изменений.
  11. Гибридологический метод – метод скрещивания, главный метод изучения закономерностей наследственности.
  12. Генеалогический метод – метод составления родословных, применяется для определения типа наследования признака.
  13. Близнецовый метод – метод, позволяющий определять долю влияния факторов среды на развитие признаков. Применяется к однояйцевым близнецам.

Связь биологии с другими науками.

Многообразие живой природы столь велико, что современную биологию нужно представлять как комплекс наук. Биология лежит в основе таких наук, как медицина, экология, генетика, селекция, ботаника, зоология, анатомия, физиология, микробиология, эмбриология и др. Биология совместно с другими науками образовала такие науки, как биофизика, биохимия, бионика, геоботаника, зоогеография и др. В связи с бурным развитием науки и техники появляются новые направления изучения живых организмов, появляются новые науки, связанные с биологией. Это еще раз доказывает, что живой мир является многогранным и сложным и он тесно связан с неживой природой.

Основные биологические науки-объекты их изучения

  1. Анатомия – внешнее и внутреннее строение организмов.
  2. Физиология – процессы жизнедеятельности.
  3. Медицина — заболевания человека, их причины и методы их лечения.
  4. Экология – взаимосвязи организмов в природе, закономерности процессов в экосистемах.
  5. Генетика – законы наследственности и изменчивости.
  6. Цитология- наука о клетках (строении, жизнедеятельности и т.д.).
  7. Биохимия – биохимические процессы в живых организмах.
  8. Биофизика – физические явления в живых организмах.
  9. Селекция – создание новых и улучшение существующих сортов, пород, штаммов.
  10. Палеонтология – ископаемые останки древних организмов.
  11. Эмбриология- развитие зародышей.

Знания в области биологии человек может применить:

  • для профилактики и лечения заболеваний
  • при оказании первой помощи пострадавшим при несчастных случаях;
  • в растениеводстве, животноводстве
  • в природоохранных мероприятиях, способствующих решению глобальных экологических проблем (знания о взаимосвязях организмов в природе, о факторах, отрицательно влияющих на состояние окружающей среды и т д.).БИОЛОГИЯ КАК НАУКА

Признаки и свойства живого:

1. Клеточное строение. Клетка является единой структурно-функциональной единицей, а также единицей развития почти для всех живых организмов на Земле. Исключением являются вирусы, но и у них свойства живого проявляются, лишь когда они находятся в клетке. Вне клетки у них признаки живого не проявляются..

2. Единство химического состава. Живые существа образованы теми же химическими элементами, что и неживые объекты, но в живых существах 90% массы приходится на четыре элемента: С, О, N, Н, которые участвуют в образовании сложных органических молекул, таких, как белки, нуклеиновые кислоты, углеводы, липиды.

3. Обмен веществ и энергии – главное свойство живого. Он осуществляется в результате двух взаимосвязанных процессов: синтеза органических веществ в организме (за счет внешних источников энергии света и пищи) и процесса распада сложных органических веществ с выделением энергии, которая затем расходуется организмом. Обмен веществ обеспечивает постоянство химического состава в непрерывно меняющихся условиях окружающей среды.

4. Открытость. Все живые организмы представляют собой открытые системы, т. е. системы, устойчивые лишь при условии непрерывного поступления в них энергии и вещества из окружающей среды.

5. Самовоспроизведение (репродукция). Способность к самовоспроизведению является важнейшим свойством всех живых организмов. В ее основе лежит информация о строении и функциях любого живого организма, заложенная в нуклеиновых кислотах и обеспе­чивающая специфичность структуры и жизнедеятельности живого.

6. Саморегуляция. Благодаря механизмам саморегуляции сохраняется относительное постоянство внутренней среды организма, т.е. поддерживается постоянство химического состава и интенсивность течения физиологических процессов - гомеостаз.

7. Развитие и рост. В процессе индивидуального развития (онто­генеза) постепенно и последовательно проявляются индивидуальные свойства организма (развитие) и осуществляется его рост (увеличение размеров). Кроме того, все живые системы эволюционируют — изменяются в ходе исторического разви­тия (филогенеза).

8. Раздражимость. Любой живой организм способен реагировать на внешние и внутренние воздействия.

9. Наследственность. Все живые организмы способны сохранять и передавать основные признаки потомству.

10. Изменчивость. Все живые организмы способны изменяться и приобретать новые признаки.

Основные уровни организации живой природы

Вся живая природа представляет собой совокупность биологических систем. Важными свойствами живых систем является многоуровневость и иерархическая организация. Части биологических систем сами являются системами, состоящими из взаимосвязанных частей. На любом уровне каждая биологическая система уникальна и отличается от других систем.

Ученые на основании особенностей проявления свойств живого выделили несколько уровней организации живой природы:

1. Молекулярный уровень - представлен молекулами органических веществ (белков, липидов, углеводов и др.), находящихся в клетках. На молекулярном уровне можно исследовать свойства и структуры биологических молекул, их роль в клетке, в жизнедеятельности организма и так далее. Например, удвоение молекулы ДНК, структуры белков и так далее.

2. Клеточный уровень представлен клетками. На уровне клеток начинают проявляться свойства и признаки живого. На клеточном уровне можно исследовать строение и функции клеток и клеточных структур, процессы, протекающие в них. Например, движение цитоплазмы, деление клетки, биосинтез белков в рибосомах и так далее.

3. Органо-тканевой уровень представлен тканями и органами многоклеточных организмов. На этом уровне можно исследовать строение и функции тканей и органов, процессы, идущие в них. Например, сокращение сердца, передвижение воды и солей по сосудам и так далее.

4. Организменный уровень представлен одноклеточными и многоклеточными организмами. На этом уровне изучается организм, как целое: его строение и жизнедеятельность, механизмы саморегуляции процессов, приспособление к условиям обитания и так далее.

5. Популяционно-видовой уровень – представлен популяциями, состоящими из особей одного вида, длительно обитающих совместно на какой-то территории. Жизнь одной особи генетически определена, а популяция при благоприятных условиях может существовать неограниченно долго. Так как на данном уровне начинают действовать движущие силы эволюции – борьба за существование, естественный отбор и др. На популяционно-видовом уровне изучают динамику численности особей, половозрастной состав популяции, эволюционные изменения в популяции и так далее.

6. Экосистемный уровень– представлен популяциями различных видов, совместно обитающими на определенной территории. На данном уровне изучаются взаимоотношения организмов и среды, условия, определяющие продуктивность и устойчивость экосистем, изменения в экосистемах и так далее.

7. Биосферный уровень– высшая форма организации живой материи, объединяющая все экосистемы планеты. На этом уровне изучаются процессы в масштабе всей планеты – круговороты веществ и энергии в природе, глобальные экологические проблемы, изменения климата Земли и т д. В настоящее время первостепенное значение имеет изучение влияния человека на состояние биосферы в целях предотвращения глобального экологического кризиса.

 

Палаева Инна Геннадиевна

Клеточная теория

Клеточная теория

Клетки – это структурные единицы организмов. Впервые этот термин употребил Роберт Гук в 1665 году. К XIX веку усилиями многих учёных (особенно Маттиаса Шлейдена и Теодора Шванна) сложилась клеточная теория. Её основными положениями были следующие утверждения:

  • клетка – основная единица строения и развития всех живых организмов;
  • клетки всех организмов сходны по своему строению, химическому составу, основным проявлениям жизнедеятельности;
  • каждая новая клетка образуется в результате деления исходной (материнской) клетки;
  • в многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани. Из тканей состоят органы, которые тесно связаны между собой и подчинены системам регуляции.

Практически все ткани многоклеточных организмов состоят из клеток. С другой стороны, слизевики состоят из неразделённой перегородками клеточной массы со множеством ядер. Сходным образом устроена и сердечная мышца животных. Ряд структур организма (раковины, жемчужины, минеральная основа костей) образованы не клетками, а продуктами их секреции.

Мелкие организмы могут состоять всего лишь из сотен клеток. Организм человека включает в себя 1014 клеток. Самая маленькая из известных сейчас клеток имеет размер 0,2 мкм, самая большая – неоплодотворенное яйцо эпиорниса – весит около 3,5 кг. Типичные размеры растительных и животных клеток составляют от 5 до 20 мкм. При этом между размерами организмов и размерами их клеток прямой зависимости обычно нет.

70–80 % массы клетки – это вода.

Для того, чтобы поддерживать в себе необходимую концентрацию веществ, клетка должна быть физически отделена от своего окружения. Вместе с тем, жизнедеятельность организма предполагает интенсивный обмен веществ между клетками. Роль барьера между клетками играет плазматическая мембрана.

Внутреннее строение клетки долгое время было загадкой для ученых; считалось, что мембрана ограничивает протоплазму – некую жидкость, в которой и происходят все биохимические процессы. Благодаря электронной микроскопии тайну протоплазмы удалось раскрыть, и сейчас известно, что внутри клетки имеются цитоплазма, в которой присутствуют различные органоиды, и генетический материал в виде ДНК, собранный, в основном, в ядре (у эукариот).

Строение клетки является одним из важных принципов классификации организмов. В последующих параграфах мы сначала рассмотрим структуры, общие для растительных и животных клеток, затем характерные особенности клеток растений и доядерных организмов. Закончится этот раздел рассмотрением принципов деления клетки.

Изучением клеток занимается цитология.

 

 

 

Палаева Инна Геннадиевна

Лекция 3. ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ В КЛЕТКЕ

 

В составе клеток содержится множество органических соединений. Мы рассмотрим наиболее важные группы, которые определяют основные свойства клетки и организма в целом. К ним относятся Б, Ж, У, НК, АТФ.

Многие органические соединения, входящие в состав клетки, характеризуются большим размером молекул и называются макромолекулами. Обычно они состоят из повторяющихся, сходных по структуре низкомолекулярных соединений, ковалентно связанных между собой – мономеров. Образованная мономерами макромолекула называется полимером. Большинство природных полимеров построены их одинаковых мономеров и называются регулярными (А-А-А-А-А), полимеры, в которых нет определенной последовательности мономеров называются нерегулярными (А-Б-В-Б-В-А)

Белки

Больше всего в клетке, после воды, содержится белков – 10-20%. Белки – нерегулярные полимеры, мономерами которых являются АК. Белки, по сравнению с обычными органическими соединениями, обладают рядом существенных особенностей: огромная молекулярная масса. Молекулярная масса одного из белков яйца равна 36000, а одного из мышечных белков достигает 1500000 кДа. В то время как молекулярная масса бензола 78, а этилового спирта – 46. Ясно, что белковая молекула по сравнению с ними – великан.

Как было сказано выше, мономерами белков являются АК. В составе белковых полимеров обнаружено 20 различных аминокислот, каждая их которых имеет особое строение, свойство и название. При этом, молекула каждой АК состоит из двух частей. Одна из которых одинаковая у всех аминокислот и в ее состав входит аминогруппа и кислотная карбоксильная группа, а другая – различна и называется радикалом. Через общую группировку происходит сцепление АК при образовании белкового полимера. Между соединившимися АК возникает связь –HN-CO-, называемая пептидной связью, а образовавшееся соединение – пептидом. Из двух АК образуется дипептид (димер), из трех – трипептид (триммер), из многих – полипептид (полимер).

Белки различаются по АК составу и по числу АК звеньев, и по их порядку расположения в цепи. Если обозначить каждую АК буквой, то получится алфавит из 20 букв.

Строение молекулы белка. Если учесть, что размер каждого АК звена составляет около 3 ангстрем, то очевидно, макромолекула белка, которая состоит из нескольких сотен АК звеньев, должна была представлять собой огромную цепь. В действительности макромолекулы белка имеют вид шариков (глобул). Следовательно, в природном белке полипептидная цепь каким-то образом закручена, как-то уложена. Исследования показали, что в укладке полипептидной цепи нет ничего случайного и хаотичного, каждому белку присущ определенный постоянный характер укладки.

Выделяют несколько уровней организации белковой молекулы:

· первичная структура белка представляющая собой полипептидную цепь, состоящую из цепи аминокислотных звеньев, связанных между собой пептидными связями.

 

· вторичная структура белка, где белковая нить закручивается в виде спирали. Витки спирали располагаются тесно, и между атомами и аминокислотными радикалами, находящимися на соседних витках, возникает напряжение. В частности, между пептидными связями, расположенными на соседних витках, образуются водородные связи (между NH- и CO-группами). Водородные связи слабее ковалентных, но повторяясь многократно, они дают прочное сцепление. Такая структура является довольно устойчивой. Вторичная структура подвергается дальнейшей укладке.

· третичная структура белка поддерживается еще более слабыми связями, чем водородные – гидрофобными. Несмотря на их слабость, в сумме они дают значительную энергию взаимодействия. Участие «слабых» связей в поддержание специфической структуры белковой макромолекулы обеспечивает ее достаточную устойчивость и высокую подвижность.

· четвертичная структура белка образуется в результат соединения нескольких белковых макромолекул друг с другом, которые и являются мономерами макромолекулы белка. Крепление четвертичной структуры обусловлена наличием слабых связей и –S-S- связи.

Чем выше уровень организации белка, тем слабее поддерживающие его связи. Под влияние различных физических и химических факторов – высокой температуры, действия химических веществ, лучистой энергии и др. – «слабые» связи рвутся, структура белка – четвертичная, третичная и вторичная – деформируются, разрушаются и свойства его изменяются. Нарушение природной уникальной структуры белка называется денатурацией. Степень денатурации белка зависит от интенсивности воздействия на него различного фактора: чем интенсивнее воздействие, тем глубже денатурация. Белки отличаются друг от друга по легкости денатурации: яичный белок – 60-70 ºС, сократительный белок мышц – 40-45 ºС. Многие белки денатурируются от ничтожных концентраций химических веществ, а некоорые даже от незначительного механического воздействия.

Процесс денатурации обратим, т.е. денатурированный белок может перейти обратно в природный. Даже полностью развернутая молекула способна самопроизвольно восстановит свою структуру. Отсюда следует, что все особенности строения макромолекулы природного белка определяются первичной структурой, т.е. составом АК и порядком их следования в цепи.

Роль белков в клетке. Значение белков для жизни велико и многообразно. Прежде всего белки – строительный материал. Они участвуют в образовании оболочки, органоидов и мембран клетки. У высших животных из белков построены кровеносные сосуды, сухожилия, волосы и т.д.

Громадное значением имеет каталитическая роль белков. Скорость химических реакций зависит от свойств реагирующих веществ и от их концентрации. Чем вещества активнее, чем концентрация их больше, тем скорость реакции выше. Химическая активность клеточных веществ, как правило, невелика. Концентрация их в клетке большей частью незначительна. Т.о. реакции в клетке должны протекать очень медленно. А между тем известно, что химические реакции внутри клетки протекают со значительной скоростью. Это достигается благодаря наличию в клетке катализаторов. Все клеточные катализаторы – белки. Их называют биокатализаторами, а чаще – ферментами. По химической структуре катализаторы – белки, т.е. они состоят из обычных АК, обладают вторичной и третичной структурами. В большинстве случаев ферменты катализируют превращение веществ, размеры молекул которых по сравнению с макромолекулами ферментов очень малы. Почти каждая химическая реакции в клетке катализируется своим собственным ферментом.

Кроме каталитической роли очень важна двигательная функция белков. Все виды движений, к которым способны клетки и организмы, - сокращение мышц у высших животных, мерцание ресничек у простейших, движение жгутиков, двигательные реакции у растений – выполняют особые сократительные белки.

Еще одна функция белков – транспортная. Белок крови гемоглобин присоединяя к себе кислород, разносит его по всему организму.

При введении в организм чужеродных веществ или клеток в нем происходит выработка особых белков, называемых антителами, которые связывают и обезвреживают чужеродные тела. В этом случае белки выполняют защитную роль.

Наконец, существенная значительна роль белков как источника энергии. Белки распадаются в клетке до АК. Часть их расходуется на синтез белков, а часть подвергается глубокому расщеплению, в ходе которого освобождается энергия. При полном распаде 1 г белка освобождается 17,6 кДж (4,2 ккал).

Углеводы

В животной клетке углеводы содержатся в небольшом количестве – 0,2-2%. В клетках печени и мышцах содержание их более высокое – до 5 %. Наиболее богаты углеводами растительные клетки. В высушенных листьях, семенах, плодах, клубнях картофеля их почти 90%.

Углеводы – органические вещества, в состав которых входят углерод, кислород и водород. Все углеводы разделяются на две группы: моносахариды и полисахариды. Несколько молекул моносахаридов, соединяясь между собой с выделением воды, образуют молекулы полисахарида. Полисахариды – полимеры, в которых роль мономеров играют моносахариды.

Моносахариды. Эти углеводы называются простыми сахарами. Они состоят из одной молекулы и представляют собой бесцветные, твердые кристаллические вещества, сладкие на вкус. В зависимости от числа углеродных атомов, входящих в состав солекулы углевода, различают триозы – моносахариды, содержащие 3 атома углерода; тетраозы – 4 атома углерода; пентозы – 5 атомов углерода, гексозы – 6 атомов углерода.

Глюкоза в свободном состоянии встречается как в растениях, так и в животных организмах.

Глюкоза – первичный и главный источник энергии для клеток. Она обязательно находится в крови. Снижение ее количества в крови приводит к нарушению жизнедеятельности нервных и мышечных клеток, иногда сопровождается судорогами и обморочным состоянием.

Глюкоза является мономером таких полисахаридов как крахмал, гликоген, целлюлоза.

Фруктоза в большом количестве в свободном виде встречается в плодах, поэтому ее часто называют плодовым сахаром. Особенно много фруктозы в меде, сахарной свекле, фруктах. Путь распада короче, чем у глюкозы, что имеет большое значение при питании больного диабетом, когда глюкоза очень слабо усваивается клетками.

Полисахариды. Из двух моносахаров образуются дисахариды, из трех – трисахариды, из многих – полисахариды. Ди- и трисахариды, подобно моносахаридам, хорошо растворимы в воде, обладают сладким вкусом. С увеличением числа мономерных звеньев растворимость полисахаридов уменьшается, сладкий вкус исчезает.

Сахароза состоит из остатков сахарозы и фруктозы. Чрезвычайно широко распространена в растениях. Играет большую роль в питании многих животных и человека. Хорошо растворима в воде. Главный источник получения ее в пищевой промышленности – сахарная свекла и сахарный тростник.

Лактоза – молочный сахар, имеет в составе глюкозу и галактозу. Этот дисахарид находится в молоке и является основным источником энергии для детенышей млекопитающего. Используется в микробиологии для приготовления питательных сред.

Мальтоза состоит из двух молекул глюкозы. Мальтоза – основной структурный элемент крахмала и гликогена.

Лактоза – молочный сахар, имеет в составе глюкозу и галактозу. Этот дисахарид находится в молоке и является основным источником энергии для детенышей млекопитающего. Используется в микробиологии для приготовления питательных сред.

Крахмал – резервный полисахарид растений; содержится в большом количестве в клетках клубней картофеля, плодов и семян. Находится в виде зернышек слоистого строения, нерастворимых в холодной воде. В горячей воде крахмал образует коллоидный раствор.

Гликоген – полисахарид, содержащийся в клетках животных и человека, а также в грибах, в т.ч. и дрожжах. Он играет важную роль в обмене углеводов в организме. В значительных количествах накапливается в клетках печени, мышцах, сердце. Является поставщиком глюкозы в кровь.

Функции углеводов. Энергетическая функция, т.к. углеводы служат основным источником энергии для организма, для осуществления любой формы клеточной активности. Углеводы подвергаются в клетке глубокому окислению и расщеплению до простейших продуктов: СО2 и Н2О. В ходе этого процесса освобождается энергия. При полном расщеплении и окислении 1 г углеводов освобождается 17,6 кДж (4,2 ккал) энергии.

Структурная функция. Во всех без исключения клетках обнаружены углеводы и их производные, которые входят в состав клеточных оболочек, принимают участие в синтезе многих важнейших веществ. В растениях полисахариды выполняют опорную функцию. Так целлюлоза входит в состав клеточной стенки бактерий и растительных клеток, хитин образует клеточные стенки грибов и хитиновый покров тела членистоногих. Углеводы обеспечивают процесс узнавания клетками друг друга. Благодаря этому происходит опознание сперматозоидами яйцеклетки своего биологического вида, клетки одного типа удерживаются вместе с образованием тканей, отторгаются несовместимые организмы и трансплантаты.

Запасание питательных веществ. В клетках углеводы накапливаются в виде крахмала у растений и гликогена у животных и грибов. Эти вещества представляют собой запасную форму углеводов и расходуются по мере возникновения потребности в энергии. В печени при полноценном питании может накапливаться до 10% гликогена, а при голодании его содержание может снижаться до 0,2% массы печени.

Защитная функция. Вязкие секреты (слизи), выделяемые различными железами, богаты углеводами и их производными, в частности гликопротеидами. Они предохраняются стенки полых органов (пищевода, кишечника, желудка, бронхов) от механических повреждений, проникновения вредных бактерий и вирусов. Углеводы запускают сложные каскады иммунных реакций

Углеводы входят в состав носителей генетической информации – нуклеиновых кислот: рибоза – РНК, дезоксирибоза – ДНК; рибоза входит в состав основного носителя энергии клетки – АТФ, акцепторов водорода – ФАД, НАД, НАДФ.

Липиды

Под термином липиды объединяют жиры и жироподобные вещества. Липиды – органические соединения с различной структурой, но общими свойствами. Они нерастворимы в воде, но хорошо растворимы в органических растворителях: эфире, бензине, хлороформе. Липиды очень широко представлены в живой природе и играют чрезвычайно важную роль в клетке. Содержание жира в клетках составляет от 5-15% от сухой массы. Однако существуют клетки содержание жира, в которых достигает почти 90% от сухой массы – клетки жировой ткани. Жир содержится в молоке всех млекопитающих животных, причем самок дельфинов содержание жира в молоке достигает 40%. У некоторых растений большое количество жира сосредоточено в семенах и плодах (подсолнечника, грецкого ореха)

По химической структуре жиры представляют собой соединения глицерина (трехатомного спирта) с высокомолекулярными органическими кислотами. Из них чаще всего встречается пальмитиновая (СН3-(СН2)14-СООН), стеариновая (СН3-(СН2)16-СООН), олеиновая (СН3-(СН2)7-СН=СН-(СН2)7СООН) жирные кислоты.

Из формулы видно, что молекула жира содержит остаток глицерина – вещества хорошо растворимого в воде, и остатки жирных кислот, углеводородные цепочки которых практически нерастворимы в воде. При нанесении капли жира на поверхность воды в сторону воды обращена глицериновая часть молекулы жира, а из воды вверх «торчат» цепочки жирных кислот. Такая организация веществ, входящих в состав клеточных мембран, препятствует смешиванию содержимого клетки с окружающей средой.

Кроме жира, в клетке обычно присутствует довольно большое количество веществ, обладающих, как и жиры, сильно гидрофобными свойствами – липоиды, которые по химической структура сходны с жирами. Особенно много их содержится в желтке яйца, в клетках мозговой ткани.

Функции липидов. Биологическое значение жира многообразно. Прежде всего, велико его значение как источника энергии – энергетическая функция. Жиры, как и углеводы, способны расщепляться в клетке до простых продуктов (СО2 и Н2О), и в ходе этого процесса освобождается 38,9 кДж на 1 г жира (9,3 ккал), что в два раза больше по сравнению с углеводами и белками.

Структурная функция. Двойной слой фосфолипидов является основой клеточной мембраны. Липиды принимают участие в образовании многих биологически важных соединений: холестерина (желчные кислоты), зрительного пурпура глаза (липопротеины); необходимы для нормального функционирования нервной ткани (фосфолипиды).

 

Функция запасания питательных веществ. Жиры являются своего рода энергетическими консервантами. Жировыми депо могут быть и капли жира внутри клетки, и «жировое тело» у насекомых, и подкожная клетчатка. Жиры являются основным источником энергии для синтеза АТФ, источником метаболической воды (т.е. воды, образующейся входе обмена веществ), которая образуется в ходе окисления жира и очень важна для обитателей пустыни. Поэтому жир в горбе верблюда служит в первую очередь источником воды.

Функция терморегуляции. Жиры плохо проводят тепло. Они откладываются под кожей, образуя у некоторых животных огромные скопления. Например, у кита слой подкожного жира достигает 1 м. Это позволяет теплокровному животному жить в холодной воде полярного океана.

У многих млекопитающих существует специальная жировая ткань, играющая в основном роль терморегулятора, своеобразного биологического обогревателя. Это ткань называют бурым жиром, т.к. она имеет бурый цвет, т.к. богата митохондриями красно-бурой окраски из-за находящихся в ней железосодержащих белков. В этой ткани производится тепловая энергия, имеющая важной значение для млекопитающих в условиях жизни при низких температурах.

Защитная функция. Гликолипиды участвуют распознавании и связывании токсинов возбудителей опасных болезней – столбняк, холера, дифтерия. Воски являются водоотталкивающим покрытием? У растений восковой налет есть на листьях, плодах, семенах, у животных воски входят в состав соединений, покрывающих кожу, шерсть, перья.

Регуляторная функция. Многие гормоны являются производными холестерина: половые (тестостерон у мужчин и прогестерон у женщин). Жирорастворимые витамины (А, D, E, K) необходимы для роста и развития организма. Терпенами являются душистые вещества растений, привлекающие насекомых-опылителей, гиббереллины – регуляторы роста растений.

Нуклеиновые кислоты

Название «нуклеиновые кислоты» происходит от латинского «нуклеус» - ядро. Они впервые были обнаружены и выделены из ядерных клеток. Впервые их описал в 1869 году швейцарский биохимик Фридрих Мишер. Из остатков клеток, содержащихся в гное, он выделил вещество, в состав которого входят азот и фосфор. НК – природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах. НК – важные биополимеры, построенные из большого числа мономерных единиц, называемых нуклеотидами, определяющие основные свойства живого.

В природу существуют НК двух типов, различающихся по составу, строению и функциям:

ДНК – полимерная молекула, состоящая из тысячи и даже миллионов мономеров – дезоксирибонуклеотидов (нуклеотид). ДНК содержится преимущественно в ядре клеток, а также небольшое количество в митохондриях и хлоропластах. Количество ДНК в клетке относительно постоянно.

Из рисунка видно, что нуклеотид, являющийся мономером, является продуктом химического соединения трех разных веществ: азотистого основания, углевода (дезоксирибозы) и фосфорной кислоты. В ДНК входят 4 типа нуклеотидов, отличающихся лишь по структуре азотистого основания: пуриновые основания – аденин (А) и гуанин (Г), пиримидиновые основания – цитозин (Ц) и тимин (Т).

Сцепление нуклеотидов между собой, когда они соединяются в цепь ДНК, происходит через фосфорную кислоту. За счет гидроксила фосфорной кислоты одного нуклеотида и гидроксила дезоксирибозы соседнего нуклеотида выделяется молекула воды и остатки нуклеотидов соединяются прочной ковалентной связью.

При этом следует отметить, что количество пуриновых оснований аденина (А) равно количеству пиримидиновых оснований тимина (Т), т.е. А=Т; количество пурина гуанина (Г) всегда равно количеству пиримидина – цитозина Г=Ц – правило Чаргаффа.

 

ДНК состоит из двух спирально закрученных одна вокруг другой полинуклеотидных цепей. Ширина спирали около 20 ангстрем, а длина значительно велика и может достигать нескольких десятков и даже сотен микрометров. А цепи каждой ДНК нуклеотиды следуют в определенном и постоянном порядке. При замене хотя бы одного нуклеотида возникает новая структура с новыми свойствами.

При образовании спирали азотистые основания одной цепи располагаются точно против азотистых оснований другой. В расположении противоположных нуклеотидов имеется важная закономерность: против А одной цепи оказывается всегда Т другой цепи, а против Г – только Ц – комплементарность. Объясняется это тем, что края молекул А = Т, Г ≡ Ц соответствуют друг другу геометрически. При это между молекулами образуются водородные связи, причем связь Г-Ц более прочная. Двойная спираль прошита многочисленными слабыми водородными связями, что обуславливает ее прочность и подвижность.

Принцип комплементарности позволяет понять, как синтезируются новые молекулы ДНК незадолго до деления клетки. Этот синтез обусловлен замечательной способностью ДНК к удвоению и определяет передачу наследственных свойств от материнской клетки к дочерней.

Спиральная двутяжня цепь ДНК начинает раскручиваться с одного конца, и на каждой цепи из находящейся в окружающей среде свободных нуклеотидов собирается новая цепь. Сборка новой цепи идет согласно принципу комплементарности. В результате вместо одной молекулы ДНК возникают две молекулы точно такого же нуклеотидного состава, как и первоначальная. При этом одна цепь материнская, а другая синтезируется вновь.

РНК – полимер, мономером которого является рибонуклеотид. РНК находится в ядре и цитоплазме. Количество РНК в клетке постоянно колеблется. РНК представляет собой однонитевую молекулу, построенную таким же образом как и одна из цепей ДНК. Нуклеотиды РНК очень близки, хотя и не тождественны нуклеотидам ДНК. Их тоже 4, состоят они из азотистого основания, пентозы и фосфорной кислоты. Три основания совершенно одинаковы ДНК: А, Г, Ц, однако вместо Т, присутствующего в ДНК, в состав РНК входит У. В РНК вместо углевода дезоксирибозы – рибоза. Связь между нуклеотидами также осуществляется через остаток фосфорной кислоты.

Палаева Инна Геннадиевна

Лекция 4. Химический состав клеток. Вода, соли

 

Цитология. Изучением клетки занимается цитология (от греч. цитос – клетка и логос – наука). Изучается строение клеток, строение и функции клеточных органоидов, процессы жизнедеятельности, протекающие в клетке. Каждая клетка проявляет все свойства живого – обмен веществ, раздражимость, развитие и размножение, является элементарной (наименьшей) единицей строения. Изучение клетки логично начать с изучения химического состава клетки.

Химический состав клеток.

Все клетки, независимо от уровня организации, сходны по химическому составу. В живых организмах обнаружено 86 химических элементов периодической системы Д.И.Менделеева. Для 25 элементов известны функции, которые они выполняют в клетке. Эти элементы называются биогенными. По количественному содержанию в живом веществе элементы делятся на три категории:

Макроэлементы, элементы, концентрация которых превышает 0,001%. Они составляют основную массу живого вещества клетки (около 99%). Макроэлементы делят на элементы 1 и 2 группы. Элементы 1-ой группы – C, N, H, O (на их долю приходится 98% от всех элементов). Элементы 2-ой группы – K, Na, Ca, Mg, S, P, Cl, Fe (1,9%).

Микроэлементы (Zn, Mn, Cu, Co, Mo, и многие другие), доля которых составляет от 0,001% до 0,000001%. Микроэлементы входят в состав биологически активных веществ – ферментов, витаминов и гормонов.

Ультрамикроэлементы (Hg, Au, U, Ra и др.), концентрация которых не превышает 0,000001%. Роль большинства элементов этой группы до сих пор не выяснена.

 

Макро- и микроэлементы присутствуют в живой материи в виде разнообразных химических соединений, которые подразделяются на неорганические и органические вещества.

К неорганическим веществам относятся: вода и минеральные вещества. К органическим веществам относятся: белки, жиры, углеводы, нуклеиновые кислоты, АТФ и другие низкомолекулярные органические вещества. Процентное соотношение указано в таблице 1.

 

 

 


 

Неорганические вещества клетки. Вода.

Вода – самое распространенное в живых организмах неорганическое соединение. Ее содержание колеблется в широких пределах: в клетках эмали зубов вода составляет по массе около 10%, а в клетках развивающегося зародыша – более 90%.

Без воды жизнь невозможна. Она не только обязательный компонент живых клеток, но и среда обитания организмов. Биологическое значение воды основано на ее химических и физических свойствах. Химические и физические свойства воды необычны. Они объясняются, прежде всего, малыми размерами молекул воды, их полярностью и способностью соединяться друг с другом водородными связями.

В молекуле воды один атом кислорода ковалентно связан с двумя атомами водорода. Молекула полярна: кислородный атом несет частичный отрицательный заряд, а два водородных – частично положительные заряды. Это делает молекулу воды диполем. Поэтому при взаимодействии молекул воды друг с другом между ними устанавливаются водородные связи. Они слабее ковалентной, но, поскольку каждая молекула воды способна образовывать 4 водородные связи, они существенно влияют на физические свойства воды. Большая теплоемкость, теплота плавления и теплота парообразования объясняются тем, что большая часть поглощаемого водой тепла расходуется на разрыв водородных связей между ее молекулами. Вода обладает высокой теплопроводностью, благодаря чему в различных участках клетки поддерживается одинаковая температура. Вода практически не сжимается, прозрачна в видимом участке спектра. Наконец, вода – единственное вещество, плотность которого в жидком состоянии больше, чем в твердом.

 

 

Рис. . Вода. Значение воды.

Вода – хороший растворитель ионных (полярных) соединений, а также некоторых не ионных, в молекуле которых присутствуют заряженные (полярные) группы. Если энергия притяжения молекул воды к молекулам какого-либо вещества больше, чем энергия притяжения между молекулами вещества, то молекулы гидратируются и вещество растворяется. По отношению к воде различают гидрофильные вещества – вещества, хорошо растворимые в воде и гидрофобные вещества – вещества, практически нерастворимые в воде. Есть органические молекулы, у которых один участок – гидрофилен, другой – гидрофобен. Такие молекулы называют амфипатическими, к ним относятся, например, фосфолипиды, образующие основу биологических мембран.

Вода является непосредственным участником многих химических реакций (гиролитическое расщепление белков, углеводов, жиров и др.), необходима как метаболит для реакций фотосинтеза.

Большинство биохимических реакций может идти только в водном растворе; многие вещества поступают в клетку и выводятся из нее в водном растворе. Благодаря большой теплоте испарения воды, происходит охлаждение организма.

Максимальная плотность воды при +4°С, при понижении температуры вода поднимается вверх, а так как плотность льда меньше плотности воды, то лед образуется на поверхности, поэтому при замерзании водоемов подо льдом остается жизненное пространство для водных организмов.

Благодаря силам когезии (электростатическому взаимодействию молекул воды, водородным связям) и адгезии (взаимодействию с окружающими ее стенками) вода обладает свойством подниматься по капиллярам – один из факторов, обеспечивающих движение воды в сосудах растений.

Несжимаемость воды определяет напряженное состояние клеточных стенок (тургор), а также выполняет опорную функцию (гидростатический скелет, например, у круглых червей).

Итак, значение воды для организма заключается в следующем:

  1. Является средой обитания для многих организмов;
  2. Является основой внутренней и внутриклеточной среды;
  3. Обеспечивает транспорт веществ;
  4.  Обеспечивает поддержание пространственной структуры растворенных в ней молекул (гидратирует полярные молекулы, окружает неполярные молекулы, способствуя их слипанию);
  5. Служит растворителем и средой для диффузии;
  6. Участвует в реакциях фотосинтеза и гидролиза;
  7. При испарении участвует в терморегуляции организма;
  8. Обеспечивает равномерное распределение тепла в организме;
  9. Максимальная плотность воды при +4°С, поэтому лед образуется на поверхности воды.

 

Минеральные вещества.

Минеральные вещества клетки в основном представлены солями, которые диссоциируют на анионы и катионы, некоторые используются в неионизированной форме (Fe, Mg, Cu, Co, Ni и др.)

Для процессов жизнедеятельности клетки наиболее важны катионы Na+, Ca2+, Mg2+, анионы HPO42-, Cl-, HCO3-. Концентрации ионов в клетке и среде ее обитания, как правило, различны. В нервных и мышечных клетках концентрация К+ внутри клетки в 30-40 раз больше, чем вне клетки; концентрация Na+ вне клетки в 10-12 раз больше, нежели в клетке. Ионов Сl- вне клетки в 30—50 раз больше, чем внутри клетки. Существует ряд механизмов, позволяющих клетке поддерживать определенное соотношение ионов в протопласте и внешней среде.

 

Табл. 1. Важнейшие химические элементы

Химический элемент

Вещества, в которых химический элемент содержится

Процессы, в которых химический элемент участвует

Углерод, водород, кислород, азот

Белки, нуклеиновые кислоты, липиды, углеводы и др. органические вещества

Синтез органических веществ и весь комплекс функций, осуществляемых этими органическими веществами

Калий, натрий

Na+ и K+

Обеспечивают функции мембран, в частности, поддерживают электрический потенциал клеточной мембраны, работу Na+/Ka+-насоса, проведение нервных импульсов, анионный, катионный и осмотический балансы

Кальций

Са+2

Фосфат кальция, карбонат кальция

Пектат кальция

Участвует в процессе свертывания крови, сокращения мышц, входит в состав костной ткани, зубной эмали, раковин моллюсков

Формирование срединной пластинки и клеточной стенки у растений

Магний

Хлорофилл

Фотосинтез

Сера

Белки

Формирование пространственной структуры белка за счет образования дисульфидных мостиков

Фосфор

Нуклеиновые кислоты, АТФ

Синтез нуклеиновых кислот, фосфорилирование белков (их активирование)

Хлор

Cl-

 

 

 

HCl

Поддерживает электрический потенциал клеточной мембраны, работу Na+/Ka+-насоса, проведение нервных импульсов, анионный, катионный и осмотический балансы

Активизирует пищеварительные ферменты желудочного сока

Железо

Гемоглобин

Цитохромы

Транспорт кислорода

Перенос электронов при фотосинтезе и дыхании

Марганец

Декарбоксилазы, дегидрогеназы

Окисление жирных кислот, участие в процессах дыхания и фотосинтеза

Медь

Гемоцианин

Тирозиназа

Транспорт кислорода у некоторых беспозвоночных

Образование меланина

Кобальт

Витамин В12

Формирование эритроцитов

Цинк

Входит в состав более 100 ферментов: Алькогольдегидрогеназа, карбоангидраза

 

 

 

Анаэробное дыхание у растений

Транспорт СО2 у позвоночных

Фтор

Фторид кальция

Костная ткань, зубная эмаль

Иод

Тироксин

Регуляция основного обмена

Молибден

Нитрогеназа

Фиксация азота

 

Различные ионы принимают участие во многих процессах жизнедеятельности клетки: катионы К+, Na+, Ca2+ обеспечивают раздражимость живых организмов; катионы Mg2+, Mn2+, Zn2+, Ca2+ и др. необходимы для нормального функционирования многих ферментов; образование углеводов в процессе фотосинтеза невозможно без Mg2+ (составная часть хлорофилла).

От концентрации солей внутри клетки зависят ее буферные свойства. Буферностью называют способность клетки поддерживать слабощелочную реакцию своего содержимого на постоянном уровне (рН около 7,4). Внутри клетки буферность обеспечивается главным образом анионами H2PO4- и НРО42-. Во внеклеточной жидкости и в крови роль буфера играют Н2СО3 и НСО3-.

 

Фосфатная буферная система:

Низкий pH                                  Высокий pH

НРО42- + Н+                                                           H2PO4-

Гидрофосфат – ион                    Дигидрофосфат – ион

 

Бикарбонатная буферная система:

Низкий pH                                  Высокий pH

НСО3- + Н+                                             H2СO3

Гидрокарбонат – ион                 Угольная кислота

 

Некоторые неорганические вещества содержатся в клетке не только в растворенном, но и в твердом состоянии. Например, Са и Р содержатся в костной ткани, в раковинах моллюсков в виде двойных углекислых и фосфорнокислых солей.

 

Ключевые термины и понятия

 

1. Общая биология. 2. Тропизмы, таксисы, рефлексы. 2. Биогенные элементы. 3. Макроэлементы. 4. Элементы 1 и 2 групп. 5. Микро- и ультрамикроэлементы. 6. Гидрофильные и гидрофобные вещества. 7. Амфипатические вещества. 8. Гидролиз. 9. Гидратация. 10. Буферность.

 

Основные вопросы для повторения

 

  1. Строение молекулы воды и ее свойства.
  2. Значение воды.
  3. Процентное соотношение органических веществ в клетке.
  4. Важнейшие катионы клетки и их концентрация в нервных и мышечных клетках.
  5. Реакция фосфатной буферной системы при понижении рН.
  6. Реакция карбонатной буферной системы при повышении рН.

 

Палаева Инна Геннадиевна

Лекция 3

Химический состав клетки. Свойства и значение органических и неорганических веществ.