Задания для подготовки к ЕГЭ по математике профильного уровня
Предварительный просмотр:
1. Объем прямоугольного параллелепипеда равен 162. Площадь одной его грани равна 18. Найдите ребро параллелепипеда, перпендикулярное этой грани.
2. Найдите значение выражения
3. Перед отправкой тепловоз издал гудок с частотой Гц. Чуть позже издал гудок подъезжающий к платформе тепловоз. Из-за эффекта Доплера частота второго гудка больше первого: она зависит от скорости тепловоза по закону (Гц), где – скорость звука (в м/с). Человек, стоящий на платформе, различает сигналы по тону, если они отличаются не менее чем на 10 Гц. Определите, с какой минимальной скоростью приближался к платформе тепловоз, если человек смог различить сигналы, а м/с. Ответ выразите в м/с.
4.
Первая труба наполняет резервуар на 6 минут дольше, чем вторая. Обе трубы наполняют этот же резервуар за 4 минуты. За сколько минут наполняет этот резервуар одна вторая труба?
5. Найдите точку минимума функции
6. а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
7. В правильной треугольной пирамиде SABC сторона основания AB равна 12, а боковое ребро SAравно 13. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
а) Докажите, что плоскость α делит медиану CE основания в отношении 5 : 1, считая от точки C.
б) Найдите площадь многоугольника, являющегося сечением пирамиды SABC плоскостью α.
8. Решите неравенство:
9. Дана трапеция с основаниями и Диагональ разбивает её на два равнобедренных треугольника с основаниями и
а) Докажите, что луч — биссектриса угла .
б) Найдите , если известны диагонали трапеции: и
1. Объем прямоугольного параллелепипеда равен 162. Площадь одной его грани равна 18. Найдите ребро параллелепипеда, перпендикулярное этой грани.
2. Найдите значение выражения
3. Перед отправкой тепловоз издал гудок с частотой Гц. Чуть позже издал гудок подъезжающий к платформе тепловоз. Из-за эффекта Доплера частота второго гудка больше первого: она зависит от скорости тепловоза по закону (Гц), где – скорость звука (в м/с). Человек, стоящий на платформе, различает сигналы по тону, если они отличаются не менее чем на 10 Гц. Определите, с какой минимальной скоростью приближался к платформе тепловоз, если человек смог различить сигналы, а м/с. Ответ выразите в м/с.
4.
Первая труба наполняет резервуар на 6 минут дольше, чем вторая. Обе трубы наполняют этот же резервуар за 4 минуты. За сколько минут наполняет этот резервуар одна вторая труба?
5. Найдите точку минимума функции
6. а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
7. В правильной треугольной пирамиде SABC сторона основания AB равна 12, а боковое ребро SAравно 13. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
а) Докажите, что плоскость α делит медиану CE основания в отношении 5 : 1, считая от точки C.
б) Найдите площадь многоугольника, являющегося сечением пирамиды SABC плоскостью α.
8. Решите неравенство:
9. Дана трапеция с основаниями и Диагональ разбивает её на два равнобедренных треугольника с основаниями и
а) Докажите, что луч — биссектриса угла .
б) Найдите , если известны диагонали трапеции: и
Предварительный просмотр:
1. Диаметр основания конуса равен 10, а длина образующей равна 13. Найдите высоту конуса.
2. Найдите значение выражения
3. По закону Ома для полной цепи сила тока, измеряемая в амперах, равна , где – ЭДС источника (в вольтах), Ом – его внутреннее сопротивление, – сопротивление цепи (в омах). При каком наименьшем сопротивлении цепи сила тока будет составлять не более от силы тока короткого замыкания ? (Ответ выразите в омах.)
4. Две бригады, состоящие из рабочих одинаковой квалификации, одновременно начали строить два одинаковых дома. В первой бригаде было 3 рабочих, а во второй — 9 рабочих. Через 4 дня после начала работы в первую бригаду перешли 7 рабочих из второй бригады, в результате чего оба дома были построены одновременно. Сколько дней потребовалось бригадам, чтобы закончить работу в новом составе?
5. Найдите наибольшее значение функции на отрезке
6. а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
7. В правильной четырехугольной пирамиде SABCD все ребра равны 5. На ребрах SA, AB, BC взяты точки P, Q, R соответственно так, что
а) Докажите, что плоскость PQR перпендикулярна ребру SD.
б) Найдите расстояние от вершины D до плоскости PQR.
8. Решите неравенство
9. Дан треугольник ABC. Серединный перпендикуляр к стороне AB пересекается с биссектрисой угла BAC в точке K, лежащей на стороне BC.
а) Докажите, что б) Найдите радиус окружности, вписанной в треугольник AKB , если а площадь треугольника AKC равна
1. Диаметр основания конуса равен 10, а длина образующей равна 13. Найдите высоту конуса.
2. Найдите значение выражения
3. По закону Ома для полной цепи сила тока, измеряемая в амперах, равна , где – ЭДС источника (в вольтах), Ом – его внутреннее сопротивление, – сопротивление цепи (в омах). При каком наименьшем сопротивлении цепи сила тока будет составлять не более от силы тока короткого замыкания ? (Ответ выразите в омах.)
4. Две бригады, состоящие из рабочих одинаковой квалификации, одновременно начали строить два одинаковых дома. В первой бригаде было 3 рабочих, а во второй — 9 рабочих. Через 4 дня после начала работы в первую бригаду перешли 7 рабочих из второй бригады, в результате чего оба дома были построены одновременно. Сколько дней потребовалось бригадам, чтобы закончить работу в новом составе?
5. Найдите наибольшее значение функции на отрезке
6. а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
7. В правильной четырехугольной пирамиде SABCD все ребра равны 5. На ребрах SA, AB, BC взяты точки P, Q, R соответственно так, что
а) Докажите, что плоскость PQR перпендикулярна ребру SD.
б) Найдите расстояние от вершины D до плоскости PQR.
8. Решите неравенство
9. Дан треугольник ABC. Серединный перпендикуляр к стороне AB пересекается с биссектрисой угла BAC в точке K, лежащей на стороне BC.
а) Докажите, что б) Найдите радиус окружности, вписанной в треугольник AKB , если а площадь треугольника AKC равна