Эпоха Ньютона. Механическая картина мира. Мир Ньютона и мир Декарта.
Формирование механической картины мира (МКМ) происходило в течение нескольких столетий до середины девятнадцатого века под сильным влиянием взглядов выдающихся мыслителей древности: Демокрита, Эпикура, Аристотеля, Лукреция и др. Она явилась необходимым и очень важным шагом на пути познания природы.
В качестве общепринятой и освященной авторитетом церкви существовала картина мира, в основе которой лежали идеи Аристотеля - Птолемея.
Клавдий Птолемей - математик и астроном, живший в г.Александрии во II в. н. э. Он составил "Альмагест" - математическую и астрономическую энциклопедию, в которой точно изложил систему геоцентризма. Земля располагалась в центре Вселенной, небесные светила совершали круговые движения вокруг нее, но окружности их движения имели центр, не совпадающий с центром Земли (эксцентрики); кроме того, были и малые круги, по которым обращались планеты вокруг Земли по основному кругу - эпициклы, - все это было сделано столь искусно, что позволяло осуществлять предвычисление небесных светил и лунных затмений. Такая картина в принципе совпадала с идеями о сотворении мира Богом.
Однако еще пифагорейцы - астрономы Никетас и Экфант допускали движение Земли, а знаменитый Аристарх Самосский в III в. до н э. высказывал идеи гелиоцентризма. Сам же Птолемей, защищая геоцентризм, говорил, что если бы Земля не стояла на месте, а двигалась, то облака и птицы без видимой причины улетели бы на Запад, а падающие предметы летали бы не по прямой вниз, а в противоположную от Земли сторону. Подобных же эффектов никто не наблюдал.
Первый сокрушительный удар по системе мира Аристотеля - Птолемея нанес Николай Коперник (1473-1543) – выдающийся польский ученый, экономист, врач и государственный деятель. Он родился в г. Торунь (Польша), получил блестящее и разностороннее образование в Кракове и в Италии. В мае 1543 г. увидело свет его сочинение «О вращениях небесных сфер». В обращении к читателю, напечатанном на титульном листе, автор указывал, что в книге рассмотрены движения звезд и планет, «представленные на основании как древних, так и современных наблюдений; развитые на новых и удивительных теориях». Обращение заканчивалось словами: «Поэтому, усердный читатель, покупай, читай и извлекай пользу. Да не входит никто, не знающий математики». С выходом этой книги в науке началось формирование представлений о гелиоцентрической системе мира.
Учение Коперника противоречило церковным воззрениям на устройство мира и сыграло огромную роль в истории мировой науки.
В системе мира Коперника Земля вращается вокруг своей оси и вместе с другими планетами вокруг Солнца. Сфере звезд Коперник приписал покой. Так Земля перестала быть центром мироздания, стала обычной планетой Солнечной системы. Эти взгляды противоречили вековым, установившимся представлениям о мире, поддерживаемым не только наукой, но и церковью. К отрицанию системы мира, созданной Аристотелем, Коперника привели размышления над этой системой: диаметр сферы, на которой укреплены звезды, огромен, поэтому она должна иметь невероятно большую скорость, чтобы успеть обернуться вокруг Земли за сутки. Почему природа именно так устроила мир? Не проще ли было Земле вращаться вокруг своей оси, ведь эффект был бы тот же... И Коперник приходит к выводу, что вращается Земля.
«Почему не признать,- пишет он,- что небу принадлежит только видимость суточного обращения, действительность же его - самой Земле, так что здесь происходит то, о чем сказано в «Энеиде» Вергилия: «От гавани мы отплываем, а земли и села от нас убегают. Ибо когда корабль движется спокойно, то все, что находится вне его, представляется морякам таким, как если бы все это двигалось по подобию корабля: самих себя и все, что при них, они считали покоящимися». Так в науке вместе с гелиоцентрической картиной мира появляется идея относительности механического движения.
Сам Коперник мало успел сделать, чтобы утвердить свое учение, он боялся церкви и не спешил обнародовать свои идеи. Однако великое творение Коперника сыграло огромную роль не только в истории естествознания, но и в истории мировой науки. Ф. Энгельс так характеризует его значение: «Революционным актом, которым исследование природы заявило о своей независимости... было издание бессмертного творения, в котором Коперник бросил - хотя и робко и, так сказать, лишь на смертном одре - вызов церковному авторитету в вопросах природы». Отсюда начинает свое летосчисление освобождение естествознания от теологии.
Тяготы и гонения выпали на долю других ученых, добровольно взявших на себя защиту и утверждение в науке учения Коперника. Одним из таких мучеников науки был Джордано Бруно. Он не только пропагандировал учение Коперника, которое низвергло Землю с центра Вселенной, он учил, что центра Вселенной нет вообще. Наш мир - один из бесчисленных миров, которых во Вселенной множество, среди них есть миры, населенные живыми существами, человек - лишь мелкое звено в ряду творений... Этого не могла стерпеть церковь. Более семи лет томился Бруно в застенках инквизиции, подвергаясь пыткам и истязаниям. 17 февраля 1600 г. он был сожжен на площади Цветов в Риме. Ныне на этом месте стоит памятник Бруно.
Открытия Коперника заложили хорошую основу для последующих исследований космоса с позиций науки. Иоганн Кеплер (1571-1630 гг.) - великий немецкий астроном, математик, физик и философ - развил далее эти идеи и открыл законы движения планет.
Во-первых, он доказал, что планеты движутся вокруг Солнца не по идеально круговым орбитам, а по эллиптическим. Во-вторых, он пришел к выводу о том, что планеты совершают движение вокруг Солнца неравномерно - их скорость в различных промежутках при этом фиксируется математически. В-третьих, Кеплер установил математически устойчивую зависимость между временем обращения планет вокруг Солнца и их расстоянием от него. Таким образом, впервые была осуществлена формулировка математически безупречных законов, управляющих движением небесных тел. Это позволило - и Кеплер сделал это - составил специальные таблицы для предвычисления движения планет. В итоге стало возможным говорить о научной астрономии, очищенной от религиозных предрассудков и мифов. Все расчеты, приведшие к открытию этих законов, были изложены в двух книгах «Новая астрономия» (1609) и «Гармония мира» (1619). Это открытие обессмертило его имя.
Следующий решающий шаг в борьбе за систему Коперника был сделан Галилео Галилеем (1564-1642) – итальянским ученым, одним из основателей точного естествознания. В 1610 г. вышел «Звездный вестник», в котором Галилей оповещал о своих открытиях, сделанных с помощью изобретенной в 1609 г. подзорной трубы: на Луне существуют горы и глубокие кратеры, вокруг Юпитера движутся спутники точно так же, как Луна вокруг Земли, Млечный Путь - это группы звезд и отдельные звезды, Венера имеет фазы, как и Луна. И это все можно увидеть! Всем желающим Галилей позволял увидеть при помощи подзорной трубы движущиеся вокруг Юпитера четыре «луны».
Галилео Галилей по праву считается основоположником механической картины мира. Всеми своими силами он боролся против схоластики, считая единственно верной основой познания опыт. Деятельность Галилея не нравилась церкви, он был подвергнут суду инквизиции (1633), вынудившей его отречься от своего учения. До конца жизни Галилей был принужден жить под домашним арестом на своей вилле Арчетри близ Флоренции.
В годы детства и юности Галилея в науке господствовали представления об окружающем мире, сохранившиеся со времён античности. И Галилей был одним из первых, кто отважился выступить против них. Механическая картина мира возникла, когда главным критерием истины был признан опыт, а для описания явлений природы стали активно применять математику. Многие ставшие догмой утверждения Аристотеля не выдерживали проверки опытом. Аристотель, например, утверждал, что скорость падения тел пропорциональна их весу. Галилей в присутствии многочисленных свидетелей проводил наблюдения за падением с Пизанской башни тел различной массы (например, мушкетной пули и пушечного ядра). Оказалось, что скорость падения тел не зависит от их массы. Галилей сформулировал первые законы свободного падения тел, дал строгую формулировку понятия скорости и движения, исследовал закон инерции.
Важнейшим достижением Галилея было открытие принципа относительности. Галилей сконструировал первый в мире термоскоп, который явился прообразом термометра. Наблюдения за движением небесных тел сделали его убеждённым сторонником гелиоцентрической системы. Открытия Галилея подрывали доверие к официальным взглядам на строение мира, пропитанным религиозными догмами.
От законов Кеплера и законов, установленных Галилеем (законы равноускоренного движения, принцип относительности механического движения), началось развитие науки механики, законы которой стали основой объяснения явлений окружающего мира,- началось создание механической картины мира.
Среди ее создателей нельзя не вспомнить Декарта. Рене Декарт (1596-1650)- философ, математик, физик, анатом - национальная гордость Франции. Родился в местечке близ Лаэ Тура в знатной, но не богатой семье. Религиозное образование, как ни странно, только укрепило в молодом Декарте скептическое недоверие к тогдашним философским авторитетам. Почти семь лет он провел в странствиях по Европе, набираясь жизненных впечатлений и размышляя над философскими и математическими проблемами. В математике Декарт добился значительных успехов, его достижения отражены в знаменитом сочинении «Геометрия» (1637), в котором заложены основы аналитической геометрии. Декарту же принадлежит и введение общеупотребительной сейчас алгебраической символики. Он первый после Аристотеля взялся за создание единой картины мира, способной охватить все его частности. В опубликованных им в 1644 г. «Началах философии» планетная система изображалась как огромное скопление материальных вихрей, вращающихся вокруг Солнца и движущих при этом планеты. Согласно Декарту, мир первоначально представлял бесформенную, лишенную всяких качеств, обладающую некоторым количеством движения материю, образующую вихри. Солнечная система представляла собой огромный вихрь, в центре которого находилось Солнце. Центрами других вихрей, вращающихся вокруг Солнца, являлись планеты, вокруг которых в подчиненных им вихрях кружились луны.
Декарт развил представление о движении как форме существования материальных тел. Отождествляя тело и занятое им в пространстве место, Декарт считал, что для отделения тела от среды необходимо, чтобы существовала разница скоростей движения тела и среды, которая его окружает. Граница тела с пространством становится реальной, когда тело движется, движение определяет размеры и форму тела!
В мире Декарта нет ничего, кроме движущихся бескачественных частиц. Многокрасочный мир он заменяет бесцветной схемой, все процессы сводит к механическому перемещению частиц. Согласно его теории, между живым организмом и механизмом, построенным человеком, нет разницы; живой организм может образоваться из неорганического вещества: движущиеся частицы при этом давят на окружающую среду и уплотняют ее, образуя стенки сердца. Кровь, также уплотняя при движении окружающую среду, образует кровеносные сосуды, затем образуются различные органы, они связаны множеством рычагов, нитей и т. д. Так Декарт объяснял появление живых существ без вмешательства бога, противоречия его при этом не смущали. Он считал, что задача ученого состоит в том, чтобы из ненадежных гипотез выводить правильные и полезные следствия.
Декарт предположил существование закона сохранения количества движения, положил в основу своих построений принцип несотворимости и неуничтожимости движения. При этом все формы движения он сводил к механическому перемещению тел.
Противоположного мнения на этот счет придерживался другой создатель механической картины мира - Исаак Ньютон (1643-1727). Он был физиком, математиком, астрономом и философом. Вместе с Лейбницем он оспаривал честь быть творцом дифференциального и интегрального исчислений. Материал для теоретических обобщений он черпал из опыта. Его основной тезис: «Гипотез не измышляю!»
Важнейшим научным достижением Ньютона было создание теории движения планет и связанное с этим открытие закона всемирного тяготения, положенного в основу физического обоснования гелиоцентрической системы. Ньютон жил и работал в знаменательную историческую эпоху, оказавшую огромное влияние на дальнейшее историческое развитие Англии и не только Англии. В год рождения Ньютона началась английская революция, в год поступления Ньютона в Кембридж началась реставрация. В 1688 г. произошла так называемая «Славная революция», т. е. компромисс между борющимися за власть буржуазией и дворянством. В ньютоновскую эпоху Англия сформировалась как крупнейшая морская держава, сломившая морское могущество Испании и Голландии и сделавшая решающий шаг в капиталистическом развитии.
Страна жила напряженной политической жизнью, в ней боролись сторонники самых разнообразных политических идей — от приверженцев абсолютной монархии до идеологов уравнительного коммунизма. Бесконечно разнообразны были религиозные теории — от сторонников католицизма (папистов) и англиканской церкви до крайних пуритан и атеистов. Наконец, это была эпоха расцвета опытной науки, провозглашенной Бэконом, •эпоха организации Лондонского Королевского общества, эпоха Бойля, Гука, Галлея.
Ньютон родился в деревушке Вульсторп в графстве Линкольн (Линкольншир), в семье деревенского фермера, умершего незадолго до его рождения. До двенадцатилетнего возраста его воспитывала бабушка. В двенадцать лет Ньютона отдали в городскую школу в Грантаме. По окончании школы он возвратился в родную деревню. Из будущего ученого пытались сделать деревенского фермера. Но юноша не обнаруживал склонности к сельскому хозяйству, и по совету дяди, воспитанника Кембриджского университета, был отправлен обратно в Грантам для подготовки к поступлению в университет.
Одним из учителей Ньютона был профессор Исаак Барроу, занимавший Люкасовскую кафедру, названную так по имени человека, завещавшего средства на ее содержание. Барроу читал лекции по оптике на весьма высоком для того времени уровне (он, например, давал формулы линз для различных частных случаев), и Ньютон с большим интересом и вниманием слушал своего учителя. С ним у Ньютона установились тесные дружеские отношения, и Барроу стал видеть в одаренном ученике своего преемника. Ньютон получил младшую ученую степень бакалавра, затем в 1665 г.— степень магистра. В этом же году разразилась эпидемия чумы, и Ньютон уехал из Кембриджа в деревню, откуда возвратился осенью 1668 г. В деревне он много и напряженно работал, его будущие великие открытия созревали в деревенском уединении. Немудрено, что через год, в 1669 г., Барроу, решив посвятить себя теологии, передал кафедру своему гениальному ученику. Ньютон стал профессором Кембриджа.
Над проблемой движения планет размышляли многие современники Ньютона. Астроном Эдмонд Галлей (1656-1742) понял, что идея Гюйгенса о существовании центростремительной силы позволяет объяснить динамику движения планет, и пытался ее разработать. В ходе работы он встретился с большими трудностями и обратился за консультацией к Ньютону. Ньютон показал ему рукопись, в которой проблема, волновавшая Галлея, была полностью решена. Галлей стал настойчиво убеждать Ньютона опубликовать свой труд. Ньютон долго не соглашался. Только с помощью влиятельных в Кембридже лиц Галлею удалось сломить сопротивление Ньютона. Особенно смущала Ньютона третья часть его труда, в которой речь шла о системе мира. «Третью часть я намерен теперь устранить,— писал он,— философия — это такая наглая и сутяжная дама, что иметь с ней дело — это все равно, что быть вовлеченным в судебную тяжбу». В конце концов, знаменитые «Математические начала натуральной философии» Ньютона вышли в свет в 1687 г., спустя 144 года после того, как Коперник опубликовал свою систему мира. Эта система получила динамическое обоснование и стала прочной научной теорией. Одновременно было завершено начатое Галилеем дело создания новой механики. Три закона Ньютона завершают труды Галилея, Декарта, Гюйгенса и других ученых по созданию классической механики и вместе с тем создают прочную основу для плодотворного ее развития.
В «Началах» дается математическое доказательство гипотезы Коперника в том виде, как она была предложена Кеплером, и все небесные движения объясняются на основании единственного тяготения к центру Солнца, обратно пропорционального квадрату расстояний. Этот труд состоит из трех книг, в которых представлена картина мира, основанная на законах механики, доказано всемирное тяготение как следствие из применений механики к движениям небесных тел. В книгах сформулированы три закона движения (законы Ньютона), даны четкие определения физических величин, изложены основы кинематики и динамики материальной точки, твердого тела, механика жидкостей и газов. Венцом труда можно считать третью книгу - «О системах мира», в которой изложен закон всемирного тяготения, а также «Правила философских умозаключений», на которых было воспитано не одно поколение ученых. Вот они:
1. Не принимать иных причин явлений, кроме тех, которые достаточны для их объяснения.
2. Аналогичные явления относить к одной и той же причине.
3. Считать свойством тел такие свойства, которые присущи всем телам, над которыми мы можем экспериментировать.
Именно следование этим правилам и помогло Ньютону открыть закон всемирного тяготения, закон, на основе которого и была построена им картина мира.
Понимание действия закона пришло к Ньютону в процессе систематизации разнородных фактов: яблоко притягивается к Земле, воды океанов - к Луне, планеты - к Солнцу, значит, все тела притягиваются друг к другу вследствие наличия у них массы. Метод Ньютона - метод индукции - как форма умозаключения, обеспечивающая возможность перехода от единичных фактов к общим положениям, стал широко применяться во всем естествознании. В науке этот период известен под названием «ньютоно-линнеевская» школа, так как первым среди последователей Ньютона можно назвать Карла Линнея.
Картина мира, которая господствовала в XVIII в., была картиной неизменной, однажды созданной природы, и Ньютон также не мог вырваться из рамок господствовавшего тогда мировоззрения. Его теория тяготения позволила объяснить существование такой системы мира, понять, на чем «держится» мир. Эта загадка не давала покоя многим поколениям ученых. Еще Леонардо да Винчи задавал вопрос, на который не мог найти ответа: «Луна, плотная и тяжелая Луна, на чем она держится, эта Луна?» Благодаря Ньютону стало ясно, что Луна, и Солнце, и планеты, и множество звезд во Вселенной удерживаются всемирным тяготением.
Вселенная Ньютона состоит из движущихся тел и пустоты. Пространство в ней только вместилище тел., а время - длительность процессов. Пространство и время Ньютона не связаны между собой и с движением материальных объектов. По Ньютону, Вселенная бесконечна в пространстве и времени и неизменна со дня сотворения и на веки веков. Как она образовалась? На этот вопрос Ньютон не отвечает. А чтобы привести ее в движение, Ньютону понадобился «первый толчок» какого-то таинственного божества. Как видите, сфера «деятельности» бога сужается. Если у Аристотеля бог призван был денно и нощно крутить небосвод, то здесь ему надо было привести в движение Вселенную только в первый момент, а дальше все уже происходило в согласии с законами природы. Чем больше человечество познавало мир, тем меньше в нем оставалось места необъяснимому - сверхъестественной силе.
В первом законе Ньютона сила выступает в качестве причины ускорения; процессы изменения в мире сводятся к ускорениям, а ускорение вызывается воздействием одного тела на другое. Второй закон гласит, что под влиянием силы, действующее на тело в данный момент и в данной точке, скорость меняется, и это мгновенное изменение скорости можно определить. Третий закон говорит, что действия тел друг на друга равны и противоположно направлены, т.е. указывает на взаимный характер воздействия тел друг на друга.
Ньютон вывел закон тяготения, ставший основой физики. Этот закон определяет силу тяготения, которая действует на данную массу в любой точке пространства, если задана масса и положение тела, служащего источником сил тяготения, т.е. притягивающего к себе другие тела. Ньютон показал, что гравитационные силы связывают все без исключения тела природы, они являются не специфическим, а общим взаимодействием. Закон тяготения определяет отношение материи к пространству и всех материальных тел друг к другу.
Система Ньютона оказывала влияние на стиль научного мышления и, более того, на характер мышления людей в целом. Ньютон провозгласил однозначность и единственность всех концепций, входящих в картину мира, а его математическое обобщение физических знаний прокладывало дорогу новому физическому представлению. Это касается понятия производной, дифференциала и интеграла - основы анализа бесконечно малых.
Механическая картина мира была первой в обозримой истории человечества научной картиной, свободной от мифических наслоений и поддающейся строгому описанию. Она давала человеку веру в силу его разума и тем самым определяла развитие его самосознания в направлении обретения им чувства независимости от природной стихии; служила духовной эмансипации личности и подготавливала приход атеистического сознания. В области философии, этики, педагогики и в других областях гуманитарного знания она породила "эпоху разума" (И. Кант, философы эпохи Просвещения). Многие ее положения легли в основу технической науки, т.е. стали теоретическим фундаментом техники и технологии "эпохи машин" (ХVIII-ХIХ вв.), они остаются таковыми и в настоящее время.
Отношение современников к Ньютону характеризует эпитафия, которая помещена на надгробном памятнике:
«Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики движение планет, пути комет и приливы океанов. Он исследовал различие световых лучей и появляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. Прилежный, мудрый и верный истолкователь природы, древности и Святого писания, он утверждал своей философией величие Всемогущего Бога, а нравом выражал евангельскую простоту. Пусть смертные радуются, что существовало такое украшение рода человеческого.»
На статуе, воздвигнутой Ньютону в 1755 г. в Тринити-колледже, высечены стихи из Лукреция:
«Qui genus humanum ingenio superavit. (Разумом он превосходил род человеческий)»
Сам Ньютон оценивал свои достижения более скромно:
«Не знаю, как меня воспринимает мир, но сам себе я кажусь только мальчиком, играющим на морском берегу, который развлекается тем, что время от времени отыскивает камешек более пёстрый, чем другие, или красивую ракушку, в то время как великий океан истины расстилается передо мной неисследованным.»
По словам А. Эйнштейна, «Ньютон был первым, кто попытался сформулировать элементарные законы, которые определяют временной ход широкого класса процессов в природе с высокой степенью полноты и точности» и «… оказал своими трудами глубокое и сильное влияние на всё мировоззрение в целом».
Скачать:
Вложение | Размер |
---|---|
epokha_nyutona_mekhanicheskaya_kartina_mira.doc | 88 КБ |
Предварительный просмотр:
Эпоха Ньютона. Механическая картина мира. Мир Ньютона и мир Декарта.
Формирование механической картины мира (МКМ) происходило в течение нескольких столетий до середины девятнадцатого века под сильным влиянием взглядов выдающихся мыслителей древности: Демокрита, Эпикура, Аристотеля, Лукреция и др. Она явилась необходимым и очень важным шагом на пути познания природы.
В качестве общепринятой и освященной авторитетом церкви существовала картина мира, в основе которой лежали идеи Аристотеля - Птолемея.
Клавдий Птолемей - математик и астроном, живший в г.Александрии во II в. н. э. Он составил "Альмагест" - математическую и астрономическую энциклопедию, в которой точно изложил систему геоцентризма. Земля располагалась в центре Вселенной, небесные светила совершали круговые движения вокруг нее, но окружности их движения имели центр, не совпадающий с центром Земли (эксцентрики); кроме того, были и малые круги, по которым обращались планеты вокруг Земли по основному кругу - эпициклы, - все это было сделано столь искусно, что позволяло осуществлять предвычисление небесных светил и лунных затмений. Такая картина в принципе совпадала с идеями о сотворении мира Богом.
Однако еще пифагорейцы - астрономы Никетас и Экфант допускали движение Земли, а знаменитый Аристарх Самосский в III в. до н э. высказывал идеи гелиоцентризма. Сам же Птолемей, защищая геоцентризм, говорил, что если бы Земля не стояла на месте, а двигалась, то облака и птицы без видимой причины улетели бы на Запад, а падающие предметы летали бы не по прямой вниз, а в противоположную от Земли сторону. Подобных же эффектов никто не наблюдал.
Первый сокрушительный удар по системе мира Аристотеля - Птолемея нанес Николай Коперник (1473-1543) – выдающийся польский ученый, экономист, врач и государственный деятель. Он родился в г. Торунь (Польша), получил блестящее и разностороннее образование в Кракове и в Италии. В мае 1543 г. увидело свет его сочинение «О вращениях небесных сфер». В обращении к читателю, напечатанном на титульном листе, автор указывал, что в книге рассмотрены движения звезд и планет, «представленные на основании как древних, так и современных наблюдений; развитые на новых и удивительных теориях». Обращение заканчивалось словами: «Поэтому, усердный читатель, покупай, читай и извлекай пользу. Да не входит никто, не знающий математики». С выходом этой книги в науке началось формирование представлений о гелиоцентрической системе мира.
Учение Коперника противоречило церковным воззрениям на устройство мира и сыграло огромную роль в истории мировой науки.
В системе мира Коперника Земля вращается вокруг своей оси и вместе с другими планетами вокруг Солнца. Сфере звезд Коперник приписал покой. Так Земля перестала быть центром мироздания, стала обычной планетой Солнечной системы. Эти взгляды противоречили вековым, установившимся представлениям о мире, поддерживаемым не только наукой, но и церковью. К отрицанию системы мира, созданной Аристотелем, Коперника привели размышления над этой системой: диаметр сферы, на которой укреплены звезды, огромен, поэтому она должна иметь невероятно большую скорость, чтобы успеть обернуться вокруг Земли за сутки. Почему природа именно так устроила мир? Не проще ли было Земле вращаться вокруг своей оси, ведь эффект был бы тот же... И Коперник приходит к выводу, что вращается Земля.
«Почему не признать,- пишет он,- что небу принадлежит только видимость суточного обращения, действительность же его - самой Земле, так что здесь происходит то, о чем сказано в «Энеиде» Вергилия: «От гавани мы отплываем, а земли и села от нас убегают. Ибо когда корабль движется спокойно, то все, что находится вне его, представляется морякам таким, как если бы все это двигалось по подобию корабля: самих себя и все, что при них, они считали покоящимися». Так в науке вместе с гелиоцентрической картиной мира появляется идея относительности механического движения.
Сам Коперник мало успел сделать, чтобы утвердить свое учение, он боялся церкви и не спешил обнародовать свои идеи. Однако великое творение Коперника сыграло огромную роль не только в истории естествознания, но и в истории мировой науки. Ф. Энгельс так характеризует его значение: «Революционным актом, которым исследование природы заявило о своей независимости... было издание бессмертного творения, в котором Коперник бросил - хотя и робко и, так сказать, лишь на смертном одре - вызов церковному авторитету в вопросах природы». Отсюда начинает свое летосчисление освобождение естествознания от теологии.
Тяготы и гонения выпали на долю других ученых, добровольно взявших на себя защиту и утверждение в науке учения Коперника. Одним из таких мучеников науки был Джордано Бруно. Он не только пропагандировал учение Коперника, которое низвергло Землю с центра Вселенной, он учил, что центра Вселенной нет вообще. Наш мир - один из бесчисленных миров, которых во Вселенной множество, среди них есть миры, населенные живыми существами, человек - лишь мелкое звено в ряду творений... Этого не могла стерпеть церковь. Более семи лет томился Бруно в застенках инквизиции, подвергаясь пыткам и истязаниям. 17 февраля 1600 г. он был сожжен на площади Цветов в Риме. Ныне на этом месте стоит памятник Бруно.
Открытия Коперника заложили хорошую основу для последующих исследований космоса с позиций науки. Иоганн Кеплер (1571-1630 гг.) - великий немецкий астроном, математик, физик и философ - развил далее эти идеи и открыл законы движения планет.
Во-первых, он доказал, что планеты движутся вокруг Солнца не по идеально круговым орбитам, а по эллиптическим. Во-вторых, он пришел к выводу о том, что планеты совершают движение вокруг Солнца неравномерно - их скорость в различных промежутках при этом фиксируется математически. В-третьих, Кеплер установил математически устойчивую зависимость между временем обращения планет вокруг Солнца и их расстоянием от него. Таким образом, впервые была осуществлена формулировка математически безупречных законов, управляющих движением небесных тел. Это позволило - и Кеплер сделал это - составил специальные таблицы для предвычисления движения планет. В итоге стало возможным говорить о научной астрономии, очищенной от религиозных предрассудков и мифов. Все расчеты, приведшие к открытию этих законов, были изложены в двух книгах «Новая астрономия» (1609) и «Гармония мира» (1619). Это открытие обессмертило его имя.
Следующий решающий шаг в борьбе за систему Коперника был сделан Галилео Галилеем (1564-1642) – итальянским ученым, одним из основателей точного естествознания. В 1610 г. вышел «Звездный вестник», в котором Галилей оповещал о своих открытиях, сделанных с помощью изобретенной в 1609 г. подзорной трубы: на Луне существуют горы и глубокие кратеры, вокруг Юпитера движутся спутники точно так же, как Луна вокруг Земли, Млечный Путь - это группы звезд и отдельные звезды, Венера имеет фазы, как и Луна. И это все можно увидеть! Всем желающим Галилей позволял увидеть при помощи подзорной трубы движущиеся вокруг Юпитера четыре «луны».
Галилео Галилей по праву считается основоположником механической картины мира. Всеми своими силами он боролся против схоластики, считая единственно верной основой познания опыт. Деятельность Галилея не нравилась церкви, он был подвергнут суду инквизиции (1633), вынудившей его отречься от своего учения. До конца жизни Галилей был принужден жить под домашним арестом на своей вилле Арчетри близ Флоренции.
В годы детства и юности Галилея в науке господствовали представления об окружающем мире, сохранившиеся со времён античности. И Галилей был одним из первых, кто отважился выступить против них. Механическая картина мира возникла, когда главным критерием истины был признан опыт, а для описания явлений природы стали активно применять математику. Многие ставшие догмой утверждения Аристотеля не выдерживали проверки опытом. Аристотель, например, утверждал, что скорость падения тел пропорциональна их весу. Галилей в присутствии многочисленных свидетелей проводил наблюдения за падением с Пизанской башни тел различной массы (например, мушкетной пули и пушечного ядра). Оказалось, что скорость падения тел не зависит от их массы. Галилей сформулировал первые законы свободного падения тел, дал строгую формулировку понятия скорости и движения, исследовал закон инерции.
Важнейшим достижением Галилея было открытие принципа относительности. Галилей сконструировал первый в мире термоскоп, который явился прообразом термометра. Наблюдения за движением небесных тел сделали его убеждённым сторонником гелиоцентрической системы. Открытия Галилея подрывали доверие к официальным взглядам на строение мира, пропитанным религиозными догмами.
От законов Кеплера и законов, установленных Галилеем (законы равноускоренного движения, принцип относительности механического движения), началось развитие науки механики, законы которой стали основой объяснения явлений окружающего мира,- началось создание механической картины мира.
Среди ее создателей нельзя не вспомнить Декарта. Рене Декарт (1596-1650)- философ, математик, физик, анатом - национальная гордость Франции. Родился в местечке близ Лаэ Тура в знатной, но не богатой семье. Религиозное образование, как ни странно, только укрепило в молодом Декарте скептическое недоверие к тогдашним философским авторитетам. Почти семь лет он провел в странствиях по Европе, набираясь жизненных впечатлений и размышляя над философскими и математическими проблемами. В математике Декарт добился значительных успехов, его достижения отражены в знаменитом сочинении «Геометрия» (1637), в котором заложены основы аналитической геометрии. Декарту же принадлежит и введение общеупотребительной сейчас алгебраической символики. Он первый после Аристотеля взялся за создание единой картины мира, способной охватить все его частности. В опубликованных им в 1644 г. «Началах философии» планетная система изображалась как огромное скопление материальных вихрей, вращающихся вокруг Солнца и движущих при этом планеты. Согласно Декарту, мир первоначально представлял бесформенную, лишенную всяких качеств, обладающую некоторым количеством движения материю, образующую вихри. Солнечная система представляла собой огромный вихрь, в центре которого находилось Солнце. Центрами других вихрей, вращающихся вокруг Солнца, являлись планеты, вокруг которых в подчиненных им вихрях кружились луны.
Декарт развил представление о движении как форме существования материальных тел. Отождествляя тело и занятое им в пространстве место, Декарт считал, что для отделения тела от среды необходимо, чтобы существовала разница скоростей движения тела и среды, которая его окружает. Граница тела с пространством становится реальной, когда тело движется, движение определяет размеры и форму тела!
В мире Декарта нет ничего, кроме движущихся бескачественных частиц. Многокрасочный мир он заменяет бесцветной схемой, все процессы сводит к механическому перемещению частиц. Согласно его теории, между живым организмом и механизмом, построенным человеком, нет разницы; живой организм может образоваться из неорганического вещества: движущиеся частицы при этом давят на окружающую среду и уплотняют ее, образуя стенки сердца. Кровь, также уплотняя при движении окружающую среду, образует кровеносные сосуды, затем образуются различные органы, они связаны множеством рычагов, нитей и т. д. Так Декарт объяснял появление живых существ без вмешательства бога, противоречия его при этом не смущали. Он считал, что задача ученого состоит в том, чтобы из ненадежных гипотез выводить правильные и полезные следствия.
Декарт предположил существование закона сохранения количества движения, положил в основу своих построений принцип несотворимости и неуничтожимости движения. При этом все формы движения он сводил к механическому перемещению тел.
Противоположного мнения на этот счет придерживался другой создатель механической картины мира - Исаак Ньютон (1643-1727). Он был физиком, математиком, астрономом и философом. Вместе с Лейбницем он оспаривал честь быть творцом дифференциального и интегрального исчислений. Материал для теоретических обобщений он черпал из опыта. Его основной тезис: «Гипотез не измышляю!»
Важнейшим научным достижением Ньютона было создание теории движения планет и связанное с этим открытие закона всемирного тяготения, положенного в основу физического обоснования гелиоцентрической системы. Ньютон жил и работал в знаменательную историческую эпоху, оказавшую огромное влияние на дальнейшее историческое развитие Англии и не только Англии. В год рождения Ньютона началась английская революция, в год поступления Ньютона в Кембридж началась реставрация. В 1688 г. произошла так называемая «Славная революция», т. е. компромисс между борющимися за власть буржуазией и дворянством. В ньютоновскую эпоху Англия сформировалась как крупнейшая морская держава, сломившая морское могущество Испании и Голландии и сделавшая решающий шаг в капиталистическом развитии.
Страна жила напряженной политической жизнью, в ней боролись сторонники самых разнообразных политических идей — от приверженцев абсолютной монархии до идеологов уравнительного коммунизма. Бесконечно разнообразны были религиозные теории — от сторонников католицизма (папистов) и англиканской церкви до крайних пуритан и атеистов. Наконец, это была эпоха расцвета опытной науки, провозглашенной Бэконом, •эпоха организации Лондонского Королевского общества, эпоха Бойля, Гука, Галлея.
Ньютон родился в деревушке Вульсторп в графстве Линкольн (Линкольншир), в семье деревенского фермера, умершего незадолго до его рождения. До двенадцатилетнего возраста его воспитывала бабушка. В двенадцать лет Ньютона отдали в городскую школу в Грантаме. По окончании школы он возвратился в родную деревню. Из будущего ученого пытались сделать деревенского фермера. Но юноша не обнаруживал склонности к сельскому хозяйству, и по совету дяди, воспитанника Кембриджского университета, был отправлен обратно в Грантам для подготовки к поступлению в университет.
Одним из учителей Ньютона был профессор Исаак Барроу, занимавший Люкасовскую кафедру, названную так по имени человека, завещавшего средства на ее содержание. Барроу читал лекции по оптике на весьма высоком для того времени уровне (он, например, давал формулы линз для различных частных случаев), и Ньютон с большим интересом и вниманием слушал своего учителя. С ним у Ньютона установились тесные дружеские отношения, и Барроу стал видеть в одаренном ученике своего преемника. Ньютон получил младшую ученую степень бакалавра, затем в 1665 г.— степень магистра. В этом же году разразилась эпидемия чумы, и Ньютон уехал из Кембриджа в деревню, откуда возвратился осенью 1668 г. В деревне он много и напряженно работал, его будущие великие открытия созревали в деревенском уединении. Немудрено, что через год, в 1669 г., Барроу, решив посвятить себя теологии, передал кафедру своему гениальному ученику. Ньютон стал профессором Кембриджа.
Над проблемой движения планет размышляли многие современники Ньютона. Астроном Эдмонд Галлей (1656-1742) понял, что идея Гюйгенса о существовании центростремительной силы позволяет объяснить динамику движения планет, и пытался ее разработать. В ходе работы он встретился с большими трудностями и обратился за консультацией к Ньютону. Ньютон показал ему рукопись, в которой проблема, волновавшая Галлея, была полностью решена. Галлей стал настойчиво убеждать Ньютона опубликовать свой труд. Ньютон долго не соглашался. Только с помощью влиятельных в Кембридже лиц Галлею удалось сломить сопротивление Ньютона. Особенно смущала Ньютона третья часть его труда, в которой речь шла о системе мира. «Третью часть я намерен теперь устранить,— писал он,— философия — это такая наглая и сутяжная дама, что иметь с ней дело — это все равно, что быть вовлеченным в судебную тяжбу». В конце концов, знаменитые «Математические начала натуральной философии» Ньютона вышли в свет в 1687 г., спустя 144 года после того, как Коперник опубликовал свою систему мира. Эта система получила динамическое обоснование и стала прочной научной теорией. Одновременно было завершено начатое Галилеем дело создания новой механики. Три закона Ньютона завершают труды Галилея, Декарта, Гюйгенса и других ученых по созданию классической механики и вместе с тем создают прочную основу для плодотворного ее развития.
В «Началах» дается математическое доказательство гипотезы Коперника в том виде, как она была предложена Кеплером, и все небесные движения объясняются на основании единственного тяготения к центру Солнца, обратно пропорционального квадрату расстояний. Этот труд состоит из трех книг, в которых представлена картина мира, основанная на законах механики, доказано всемирное тяготение как следствие из применений механики к движениям небесных тел. В книгах сформулированы три закона движения (законы Ньютона), даны четкие определения физических величин, изложены основы кинематики и динамики материальной точки, твердого тела, механика жидкостей и газов. Венцом труда можно считать третью книгу - «О системах мира», в которой изложен закон всемирного тяготения, а также «Правила философских умозаключений», на которых было воспитано не одно поколение ученых. Вот они:
1. Не принимать иных причин явлений, кроме тех, которые достаточны для их объяснения.
2. Аналогичные явления относить к одной и той же причине.
3. Считать свойством тел такие свойства, которые присущи всем телам, над которыми мы можем экспериментировать.
Именно следование этим правилам и помогло Ньютону открыть закон всемирного тяготения, закон, на основе которого и была построена им картина мира.
Понимание действия закона пришло к Ньютону в процессе систематизации разнородных фактов: яблоко притягивается к Земле, воды океанов - к Луне, планеты - к Солнцу, значит, все тела притягиваются друг к другу вследствие наличия у них массы. Метод Ньютона - метод индукции - как форма умозаключения, обеспечивающая возможность перехода от единичных фактов к общим положениям, стал широко применяться во всем естествознании. В науке этот период известен под названием «ньютоно-линнеевская» школа, так как первым среди последователей Ньютона можно назвать Карла Линнея.
Картина мира, которая господствовала в XVIII в., была картиной неизменной, однажды созданной природы, и Ньютон также не мог вырваться из рамок господствовавшего тогда мировоззрения. Его теория тяготения позволила объяснить существование такой системы мира, понять, на чем «держится» мир. Эта загадка не давала покоя многим поколениям ученых. Еще Леонардо да Винчи задавал вопрос, на который не мог найти ответа: «Луна, плотная и тяжелая Луна, на чем она держится, эта Луна?» Благодаря Ньютону стало ясно, что Луна, и Солнце, и планеты, и множество звезд во Вселенной удерживаются всемирным тяготением.
Вселенная Ньютона состоит из движущихся тел и пустоты. Пространство в ней только вместилище тел., а время - длительность процессов. Пространство и время Ньютона не связаны между собой и с движением материальных объектов. По Ньютону, Вселенная бесконечна в пространстве и времени и неизменна со дня сотворения и на веки веков. Как она образовалась? На этот вопрос Ньютон не отвечает. А чтобы привести ее в движение, Ньютону понадобился «первый толчок» какого-то таинственного божества. Как видите, сфера «деятельности» бога сужается. Если у Аристотеля бог призван был денно и нощно крутить небосвод, то здесь ему надо было привести в движение Вселенную только в первый момент, а дальше все уже происходило в согласии с законами природы. Чем больше человечество познавало мир, тем меньше в нем оставалось места необъяснимому - сверхъестественной силе.
В первом законе Ньютона сила выступает в качестве причины ускорения; процессы изменения в мире сводятся к ускорениям, а ускорение вызывается воздействием одного тела на другое. Второй закон гласит, что под влиянием силы, действующее на тело в данный момент и в данной точке, скорость меняется, и это мгновенное изменение скорости можно определить. Третий закон говорит, что действия тел друг на друга равны и противоположно направлены, т.е. указывает на взаимный характер воздействия тел друг на друга.
Ньютон вывел закон тяготения, ставший основой физики. Этот закон определяет силу тяготения, которая действует на данную массу в любой точке пространства, если задана масса и положение тела, служащего источником сил тяготения, т.е. притягивающего к себе другие тела. Ньютон показал, что гравитационные силы связывают все без исключения тела природы, они являются не специфическим, а общим взаимодействием. Закон тяготения определяет отношение материи к пространству и всех материальных тел друг к другу.
Система Ньютона оказывала влияние на стиль научного мышления и, более того, на характер мышления людей в целом. Ньютон провозгласил однозначность и единственность всех концепций, входящих в картину мира, а его математическое обобщение физических знаний прокладывало дорогу новому физическому представлению. Это касается понятия производной, дифференциала и интеграла - основы анализа бесконечно малых.
Механическая картина мира была первой в обозримой истории человечества научной картиной, свободной от мифических наслоений и поддающейся строгому описанию. Она давала человеку веру в силу его разума и тем самым определяла развитие его самосознания в направлении обретения им чувства независимости от природной стихии; служила духовной эмансипации личности и подготавливала приход атеистического сознания. В области философии, этики, педагогики и в других областях гуманитарного знания она породила "эпоху разума" (И. Кант, философы эпохи Просвещения). Многие ее положения легли в основу технической науки, т.е. стали теоретическим фундаментом техники и технологии "эпохи машин" (ХVIII-ХIХ вв.), они остаются таковыми и в настоящее время.
Отношение современников к Ньютону характеризует эпитафия, которая помещена на надгробном памятнике:
«Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики движение планет, пути комет и приливы океанов. Он исследовал различие световых лучей и появляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. Прилежный, мудрый и верный истолкователь природы, древности и Святого писания, он утверждал своей философией величие Всемогущего Бога, а нравом выражал евангельскую простоту. Пусть смертные радуются, что существовало такое украшение рода человеческого.»
На статуе, воздвигнутой Ньютону в 1755 г. в Тринити-колледже, высечены стихи из Лукреция:
«Qui genus humanum ingenio superavit. (Разумом он превосходил род человеческий)»
Сам Ньютон оценивал свои достижения более скромно:
«Не знаю, как меня воспринимает мир, но сам себе я кажусь только мальчиком, играющим на морском берегу, который развлекается тем, что время от времени отыскивает камешек более пёстрый, чем другие, или красивую ракушку, в то время как великий океан истины расстилается передо мной неисследованным.»
По словам А. Эйнштейна, «Ньютон был первым, кто попытался сформулировать элементарные законы, которые определяют временной ход широкого класса процессов в природе с высокой степенью полноты и точности» и «… оказал своими трудами глубокое и сильное влияние на всё мировоззрение в целом».