урок одной теоремы: "Признак перпендикулярности прямой и плоскости"

Герасимова Галина Романовна

конспект урока

Скачать:

ВложениеРазмер
Microsoft Office document icon Urok_issledovaniepolnaya.doc84 КБ

Предварительный просмотр:

Урок исследование

Перпендикулярность прямой и плоскости.

Цель урока: Показать множественность подходов к доказательству теоремы; совершенствовать исследовательские умения и навыки учащихся.

Подготовка к уроку: ученики-консультанты дома готовят по дополнительной литературе семь доказательств  признака перпендикулярности прямой и плоскости.

Ход урока:                                            I

Вступительное слово учителя:

           Сегодняшний урок – урок исследования. Всем вместе предстоит в процессе решения задач и ответов на проблемные вопросы, подойти к формулировке теоремы перпендикулярности прямой и плоскости и познакомиться с семью вариантами доказательств этой теоремы с тем, чтобы выбрать наиболее оптимальный из них, обстоятельно мотивировать своё мнение.

1.Подготовка к формулировке теоремы:

Повторение определения перпендикуляра к плоскости, анализ практического применения данного понятия посредством решения задач.

Задача 1.

Даны: Плоскость , точки А и В в этой плоскости; АМ – прямая перпендикулярная этой плоскости. Определить вид треугольника АМВ.

Задачи по вариантам.

I

Дан плоский четырёхугольник АВСD. АМ – перпендикуляр к плоскости ABCD. Какие из треугольников ABC, ACD, ABD, BCD, ADM, ABM, CAM – прямоугольные.

II

ABCD – квадрат. Прямая ВК перпендикулярна плоскости квадрата. Какие из треугольников ABD, BCD, ABK, BDK, BCK – прямоугольные.

        Консультанты собирают листочки и проверяют решения, а учитель подводит учащихся к выводу:

           1.Верно ли утверждение, что прямая, перпендикулярная к плоскости,

перпендикулярна любой прямой лежащей в этой плоскости?

           2.Когда же прямая перпендикулярна плоскости?

           3.Сколько прямых лежат на плоскости? Можно ли их посчитать?

Далее учитель создаёт проблемную ситуацию, в основе которой – поиск ответа на вопрос: Сколько прямых достаточно в плоскости, чтобы можно было сказать, что прямая перпендикулярна плоскости?

  Ученик – консультант на модели из спиц показывает различные варианты: в плоскости две прямые в плоскости, прямая перпендикулярна одной из них. Вывод: прямая не перпендикулярна плоскости. Следующий вариант модели: прямая перпендикулярна двум прямым, лежащим в плоскости, и, оказывается, перпендикулярна плоскости. Далее для закрепления, можно взять модель из трёх прямых и т. д.

По завершению работы с моделями перед учащимися ставится очередной проблемный    вопрос: сколько прямых достаточно в плоскости, чтобы сказать, что прямая перпендикулярна плоскости?

          Исследовав ситуацию перпендикулярности прямой и плоскости, мы в плотную подошли к теореме, которая даст возможность выяснить на чертежах, на моделях и в практика перпендикулярность к прямой и плоскости. Попробуем сформулировать теорему.

          Ребята предлагают свои варианты формулировки теоремы. Учитель выделяет наиболее рациональнее и предлагает прослушать различные варианты  формулировки и доказательства рассматриваемой теоремы, которые ученик разыскали дома в рекомендованной литературе.

2. Доказательство теоремы:

I вариант автор А.П. Киселев

P

A1

C

B

A

Теорема: Если прямая, пересекающаяся с плоскостью, перпендикулярна каким - нибудь двум прямым, проведённым на этой плоскости через точку пересечения данной прямой и плоскости, то она перпендикулярна и ко всякой третьей прямой проведённой в этой плоскости через ту же точку пересечения.

                                             O

                                                

                                                         D

Доказательство: Отложим на прямой AA1  произвольной длины, но равные отрезки   OA и OA1  и проведём на плоскости какую-нибудь прямую, которая пересекла бы три прямые исходящие из точки О в точках C, D, и B  .Эти точки соединим с точками A и A1; мы получим несколько треугольников.∆ACB= ∆A1CB, так как у них BC - общая, AC=A1C -  как наклонные к прямой AA1, одинаково удаленые от основания О перпендикуляра ОС. По той же причине AB=A1B .Из равенства этих треугольников следует, что ∟ABC=∟A1BC.

  ∆ABD=∆A1BD по первому признаку равенства треугольников: BD - общая, AB=A1B по доказанному, ∟ABC= ∟A1BC .Из равенства этих треугольников следует, что AD=A1D.

∆АОD=∆A1OD по третьему признаку равенства треугольников. Из равенства этих треугольников следует, что   AOD=  A1OD; и так как эти углы смежные, то AA1  перпендикулярна  OD.

II вариант. Автор М.И.Башмаков

Теорема: Прямая, перпендикулярная двум пересекающимся прямым, принадлежащим плоскости, перпендикулярна плоскости.

                            A  a

O

     B

b

C

     c

p

P

 

Первый случай, когда все прямые a, b, c проходят через точку О – точку пересечения прямой с плоскостью α. Отметим на прямой р вектор OP, на прямой с вектор OC и докажем, что произведение векторов OP и OC равно 0.

                                                                           Разложим вектор OC по векторам OA и OB, расположенные соответственно на прямых a и b; тогда (речь идет о векторах) OC=OA+OB. Значит:

OP∙OC=OP (OA+OB)=OP∙OA+OP∙OB

Но OP ┴ OA, OP ┴ OB; поэтому OP∙OA=0, OP∙OB=0. Отсюда OP∙OC=0; значит OP ┴ OC и р ┴ с. Но с – любая прямая плоскости; значит, р ┴ α

Второй случай, когда прямые a, b, c не проходят через точку О. Проведем через точку О прямые a1||a; b1||b; c1||c. По условию p ┴ а, p ┴ b, значит p ┴ а1, p ┴ b1, и, по доказанному выше, p ┴ с1, а поэтому p ┴ с. Прямая с – любая прямая плоскости α; значит прямая р перпендикулярна ко всем прямым, лежащим в плоскости α, а поэтому p ┴ α.

III вариант. Автор А. В. Погорелов.

Теорема: Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна данной плоскости.

Доказательство можно взять из учебника А.В. Погорелов «Геометрия 7-11»

                                                    А1

                          α               A            X               B

                                C                                 b

                        c                        x

                                

                                        А2

                                        

IV вариант Э.Е. Лежандр

Теорема: Прямая перпендикулярная двум прямым, лежащим на плоскости, перпендикулярна самой плоскости.                              O

                                             C

А

S

В

Дано:  SOOA, SOOB, OA C .,OB C

Доказать: SO

Доказательство:

1. Медиану треугольника можно выразить через стороны

В

А

С

М

                        4AM2=2(AB2+AC2)-BC2

2 Через точку С проведём прямую так, чтобы отрезок АВ, заключённый между сторонами угла АОВ, разделился бы в этой точке пополам, то есть АС=ВС. SC – медиана треугольника АSВ: 4SС2=2(SА2+SВ2)-АВ2. ОС – медиана треугольника АОВ: 4ОВ2=2(АО2+ОВ2)-АВ2. Почленно вычитая эти равенства, получим: 4(SС2-ОС2)=2((SА2-АО2)+(SВ2-ОВ2)). Выражение в скобках в правой части равенства можно заменить по т. Пифагора. Для треугольника АОS: SО2=SА2-ОА2. Для треугольника ВОS: SО2=SВ2-ОВ2.

Отсюда: 4(SС2-ОС2)=2(SО2+SО2), 4(SС2-ОС2)=4SО2, SС2-ОС2=SО2, откуда SС2=SО2+ОС2. Согласно обратной теоремы Пифагора, SООС. ОС – произвольная прямая, принадлежащая плоскости , значит SО.

                

                        V вариант автор О.К. Яковлев.

Теорема: Если прямая перпендикулярна каждой из двух пересекающихся прямых лежащих в плоскости, то эта прямая перпендикулярна плоскости.

M

D1

 L

A

 0

C

Докажем, что прямая l перпендикулярна любой третьей прямой в плоскости

  1. Построение: Прямые m, n, g перенесем параллельно в точку О; ОА=ОС=ОD=ОВ, отсюда ABCD – прямоугольник, соединим  A, B, C, D с некоторой точкой М.
  2. Треугольник АМD равен ВМС по трем сторонам, отсюда угол1 равен углу2. Треугольник МDL равен треугольнику МКВ по двум сторонам и углу между ними. МD=МВ, LD=BK – центрально симметричны; следовательно MK=LM.
  3.  Треугольник MLK – равнобедренный, ОМ – медиана, значит, и высота. Получили ОМ g, отсюда l  g, следовательно l  

VI вариант автор И.В. Фетисов.

Теорема: Если прямая перпендикулярна двум пересекающимся прямым на плоскости, то она перпендикулярно самой плоскости.

l

 l1

m

n

Р1

 О

Р

Доказательство основано на симметрии относительно оси плоскости.

  1. Построение: l  l 1, m. O l 1, m n = O, OP=OP’ .
  2. Точки Р и Р’ – симметричны относительно оси m, также Р и Р’ – симметричны относительно оси n. Тогда ((mn)) – плоскость симметрии точек Р и Р’, следовательно, l 

            VII вариант автор Атанасян (разобрать самостоятельно по учебнику).

          3.Обсуждение различных вариантов доказательства теоремы. Учащиеся высказываю свои мнения о том, какое из доказательств, на их взгляд, является оптимальным и почему. Учитель разрешает выбрать для себя любой вариант и увязывает теорему с примерами из жизни: В технике часто встречается направление, перпендикулярное плоскости. Колонны устанавливают так, что их ось перпендикулярна плоскости фундамента; гвозди забивают в доску так, что они перпендикулярны плоскости доски; в цилиндре паровой машины шток перпендикулярен плоскости поршня и т.д. Особенно важно вертикальное направление, то есть направление силы тяжести, оно перпендикулярно горизонтальной плоскости.

Задача: ABCD – ромб, прямая ОК перпендикулярна диагоналям ромба.

Доказать: ОК перпендикулярна плоскости ромба.

Итог урока.

Задание на дом: п17, №120, №129


 

Комментарии

Щудрова Лариса Германовна

Я работаю по учебнику Погорелова. Ваш урок мне очень понравился . Иногда провожу урок одной задачи. Вы позволите воспользоваться вашей идеей урока? Спасибо за урок!
Герасимова Галина Романовна

спасибо за добрые слова, конечно пользуйтесь