Кузьмина Елена Юрьевна

сайт учителя математики

Профессия: Методист

Профессиональные интересы: Использование информационных технологий.

Увлечения: Разнообразные

Страна: Россия

Регион: Санкт-Петербург

Населенный пункт: Колпино

Место работы: ГБОУ гимназия № 446

Навигация

Ссылка на мой мини-сайт:
https://nsportal.ru/elena-kuzmina-2

     

О себе

Работаю в гимназии № 446 с 1994 года.

Книги, которые сформировали мой внутренний мир

Разнообразные

Моё портфолио

Три столетия назад один из создателей математического анализа Г. Лейбниц высказал надежду, что когда-либо все споры в любой области знания будут решаться путём вычислений. В этом нашло отражение мнение о непогрешимости математики, о невозможности каких-либо противоречий в этой науке. За истёкшие столетия точка зрения учёных изменилась. Теперь уже не смотрят на аксиомы как на истины, не требующие доказательства ввиду их очевидности, а понимают, что математика на основе той или иной системы аксиом строит различные модели изучаемых явлений и выводит свойства этих моделей, а уж решение вопроса, какая систем наиболее адекватно отображает свойства реальной действительности, делается совсем из иных соображений.

За истёкшие века обнаружились и глубокие противоречия в области оснований математики — попытка построить всю математику на основе теоретико-множественных понятий привела к таким затруднениям, что, по мнению одного из крупнейших математиков XX века Г. Вейля, «вопрос о последних основах математики и её смысле остаётся открытым; мы не знаем, в каком направлении будет найдено его последнее решение, и даже не знаем, можно ли вообще ожидать объективного ответа на него».

Сейчас многие математики, примыкающие к так называемому интуиционистскому направлению, отрицают доказательства, основанные на принципе исключённого третьего и на аксиоме произвольного выбора, хотя среди этих утверждений есть и классические теоремы математического анализа. Нет единства среди математиков и по вопросу о том, как относиться к доказательствам чисто математических теорем, полученных с помощью ЭВМ (выполняющих непосильные для человека операции перебора многих миллионов возможностей).

Но ещё более глубокие противоречия разделяют учёных по таким вопросам, как определение движущих сил развития математической науки, выяснение причин «непостижимой эффективности» математики в физических науках, прогнозирование дальнейшего развития математики и оценка значимости тех или иных достижений. Одни из них (например, виднейший французский математик А. Вейль) убеждены, что математик утоляет свою жажду непосредственно в источнике знаний, который всегда чист и обилен, а представители других наук вынуждены довольствоваться мутным потоком действительности, что целью математики является прославление человеческого духа. Другие (например, известный французский тополог Р. Том и один из крупнейших специалистов в области дифференциальных уравнений Р. Курант) возражают им, утверждая, что важнейшие математические структуры выступают в качестве фундаментальных данных внешнего мира, а их неисчислимое разнообразие находит единственное оправдание в реальности, что жизненные соки математики поступают в неё из корней, уходящих своими бесчисленными разветвлениями в реальность, что абстракция и обобщения не более жизненны для математики, чем индивидуальность феномена и, прежде всего, чем индуктивность интуиции. Мнение же, будто последним оправданием математики является «слава человеческого духа», Курант весьма непочтительно называет «богохульной бессмыслицей».

Такое различие во взглядах на самые существенные проблемы развития математической науки ведёт зачастую к взаимным обвинениям — учёные-прикладники усматривают во многих возникших за последние десятилетия областях математики элементы формализма, схоластики, специалисты же по этим областям математики полагают, что их оппоненты слишком утилитарно смотрят на дело. Надо сказать, что такие споры велись и раньше. Почти две тысячи лет назад Папп Александрийский обвинял некоторых из своих современников (возможно, Диофанта) в том, что они говорят о многомерных объектах, хотя не могут пояснить, что это такое, позднее обвинениям в формализме подвергались алгебраисты, изучавшие комплексные числа (ведь первоначально они не имели никаких приложений), многие математики считали слишком формальной риманову теорию функций комплексного переменного.

С другой стороны, как отмечается в статье Н. Бурбаки «Архитектура математики», в то время когда аксиоматический метод только что начал развиваться, расцветали уродливые математические структуры, полностью лишённые приложений, единственным достоинством которых было то, что с их помощью можно было выяснить значение тех или иных аксиом. Разумеется, и в современной математике имеются такие уродливые, формалистические структуры, однако всегда есть риск, отсекая их, выплеснуть с водой ребёнка. Не следует забывать о том, что некоторые из важных областей современной науки (топология, функциональный анализ и т.д.) в момент зарождения казались чем-то настолько абстрактным, настолько не имеющим отношения к классической математике, что лишь немногие учёные вступали в эти неизведанные области.

Многие из указанных выше проблем обсуждаются в статьях, составляющих содержание данного сборника. Первым помещён доклад «Абстракция и математическая интуиция», сделанный в 1974 г. видным французским математиком Ж. Дьёдонне (одним из основателей группы «Николя Бурбаки») на происходившем в Люксембурге коллоквиуме «Математика и реальность». Высказываемые им мнения характерны для бурбакистского направления в математике: на первый план выступают математические структуры, большое внимание уделено рассказу о взаимопроникновении алгебры, арифметики и теории функций (ввиду излишней специализации некоторых вопросов в данном сборнике текст несколько сокращён).

Иную точку зрения на математику высказывает Р. Курант в статье «Математика в современном мире» (она взята из сборника под тем же названием, опубликованного в 1964 г. в США и переведённого в 1967 г. на русский язык). Для Куранта абстракция — лишь один из этапов «полёта», важнейшей и неизбежной целью которого является «приземление». Замечательно, однако, что оба автора: одинаково оценивают значение таких достижений математической науки, как создание теории бесконечномерных пространств и теории групп (при этом, разумеется, для Дьёдонне важнее внутриматематические приложения этой теории, а для Куранта — её роль в физике элементарных частиц).

Добавить грамоту в портфолио
Мои альбомы