Справочные материалы по математике

Бирюкова Елена Викторовна

Справочные материалы. Алгебра, геометрия.

Скачать:

ВложениеРазмер
Microsoft Office document icon celye.doc29.5 КБ
Microsoft Office document icon kompleksnye_chisla.doc90 КБ
Microsoft Office document icon priblizhennye2.doc24.5 КБ

Предварительный просмотр:

Раздел 1. Развитие понятия о числе.

Целые числа и рациональные числа.

Число — абстракция, используемая для количественной характеристики объектов. Числа возникли еще в первобытном обществе в связи с потребностью людей считать предметы. С течением времени по мере развития науки число превратилось в важнейшее математическое понятие.

Для решения задач и доказательства различных теорем необходимо понимать, какие бывают виды чисел. Основные виды чисел включают в себя: натуральные числа, целые числа, рациональные числа, действительные числа.

Натуральные числа – это числа, получаемые при естественном счёте предметов, а вернее при их нумерации («первый», «второй», «третий»...). Множество натуральных чисел обозначается латинской буквой N (можно запомнить, опираясь на английское слово natural). Можно сказать, что N ={1,2,3,....}

Целые числа – это числа из множества {0, 1, -1, 2, -2, ....}. Это множество состоит из трех частей – натуральные числа, отрицательные целые числа (противоположные натуральным числам) и число 0 (нуль). Целые числа обозначаются латинской буквой Z. Можно сказать, чтоZ={1,2,3,....}.

Рациональные числа – это числа, представимые в виде дроби, где m — целое число, а n — натуральное число. Для обозначения рациональных чисел используется латинская буква Q. Все натуральные и целые числа – рациональные. Также в качестве примеров рациональных чисел можно привести: ,4, -5, 0,25..

Действительные (вещественные) числа

 Это числа, которое применяются для измерения непрерывных величин. Множество действительных чисел обозначается латинской буквой  R. Действительные числа включают в себя рациональные числа и иррациональные числа. Иррациональные числа – это числа, которые получаются в результате выполнения различных операций с рациональными числами (например, извлечение корня, вычисление логарифмов), но при этом не являются рациональными. Примеры иррациональных чисел – это   ,.

Между множеством всех действительных чисел и множеством всех точек прямой существует взаимно однозначное соответствие, т.е. что каждое действительное число изображается точкой прямой, и обратно: каждая точка прямой выражается действительным числом, которое называется абциссой этой точки.

Соответствие между действительными числами и точками прямой сохраняет порядок, т.е.если число а1 меньше числа а2, то точка е1, соответствующая числу а1 находится левее точки е2, соответствующей числу а2.

Прямая, точки которой находятся во взаимно однозначном соответствии с действительными числами, называется числовой прямой, или числовой осью.

Прямую линию мы представляем себе непрерывной.



Предварительный просмотр:

Мнимая единица

Мнимая единица — комплексное число, квадрат которого равен отрицательной единице.

В математике, физике мнимая единица обозначается как латинская i или j. Она позволяет расширить поле действительных чисел до поля комплексных чисел. Точное определение зависит от способа этого расширения.

Основной причиной введения мнимой единицы является то, что не каждое уравнение f(x) = 0 с действительными коэффициентами имеет решения в поле действительных чисел. Например, уравнение x2 + 1 = 0 не имеет действительных корней. Однако если предположить, что корнями являются комплексные числа, тогда это уравнение, как и любое другое уравнение, имеет решение.

Утверждение о том, что мнимая единица — это «квадратный корень из −1», не совсем корректно, т.к. −1 имеет два арифметических квадратных корня, один из которых можно обозначить как i, а другой как − i.

Определение

Мнимая единица — число, квадрат которого равен −1. Таким образом i — это решение уравнения

или

Если мы определим i таким образом и будем считать ее неизвестной («воображаемой», «мнимой») переменной, тогда вторым решением уравнения будет − i, что можно проверить подстановкой.

Кто и когда открыл: Итальянский математик Джероламо Кардано, друг Леонардо да Винчи, в 1545 году.

Число i ни константой, ни даже настоящим числом назвать нельзя. Учебники описывают его как величину, которая, будучи возведенной в квадрат, дает минус один. Другими словами, это сторона квадрата с отрицательной площадью. В реальности такого не бывает. Но иногда из нереального тоже можно извлечь пользу.

История открытия этой постоянной такова. Математик Джероламо Кардано, решая уравнения с кубами, ввел мнимую единицу. Это был просто вспомогательный трюк — в итоговых ответах i не было: результаты, которые его содержали, выбраковывались. Но позже, присмот ревшись к своему «мусору», математики попробовали пустить его в дело: умножать и делить обычные числа на мнимую единицу, складывать результаты друг с другом и подставлять в новые формулы. Так родилась теория комплексных чисел.

Минус в том, что «реальное» с «нереальным» нельзя сравнивать: сказать, что больше — мнимая единица или 1 — не получится. С другой стороны, неразрешимых уравнений, если воспользоваться комплексными числами, практически не остается. Поэтому при сложных расчетах удобнее работать с ними и только в самом конце «вычищать» ответы. Физики именно так обращаются с полями и волнами. Можно даже считать, что все они существуют в комплексном пространстве, а то, что мы видим, — только тень «настоящих» процессов.

Число i позволяет свести в одной формуле главные математические константы и действия. Формула выглядит так: eπi+1 = 0, и некоторые говорят, что такой сжатый свод правил математики можно отправлять инопланетянам, чтобы убедить их в нашей разумности.

Выражения вида , появляющиеся при решении квадратных и кубических уравнений, стали называть «мнимыми» в XVI—XVII веках, однако даже для многих крупных ученых XVII века алгебраическая и геометрическая сущность мнимых величин представлялась неясной. Лейбниц, например, писал: «Дух божий нашел тончайшую отдушину в этом чуде анализа, уроде из мира идей, двойственной сущности, находящейся между бытием и небытием, которую мы называем мнимым корнем из отрицательной единицы».

Долгое время было неясно, все ли операции над комплексными числами приводят к комплексным результатам, или, например, извлечение корня может привести к открытию какого-то нового типа чисел. Задача о выражении корней степени n из данного числа была решена в работах Муавра (1707) и Котса (1722).

Символ предложил Эйлер (1777, опубл. 1794), взявший для этого первую букву слова лат. imaginarius. Он же распространил все стандартные функции, включая логарифм, на комплексную область. Эйлер также высказал в 1751 году мысль об алгебраической замкнутости поля комплексных чисел. К такому же выводу пришел Д’Аламбер (1747), но первое строгое доказательство этого факта принадлежит Гауссу (1799). Гаусс и ввёл в широкое употребление термин «комплексное число» в 1831 году, хотя этот термин ранее использовал в том же смысле французский математик Лазар Карно в 1803 году.

Геометрическое истолкование комплексных чисел и действий над ними появилось впервые в работе Весселя (1799). Первые шаги в этом направлении были сделаны Валлисом (Англия) в 1685 году. Современное геометрическое представление, иногда называемое «диаграммой Аргана», вошло в обиход после опубликования в 1806-м и 1814-м годах работы Ж. Р. Аргана, повторявшей независимо выводы Весселя.

Арифметическая модель комплексных чисел как пар вещественных чисел была построена Гамильтоном (1837); это доказало непротиворечивость их свойств.

Рассмотрим неполное квадратное уравнение:

x 2 =  a ,

где  а – известная величина. Решение этого уравнения можно записать как:

Здесь возможны три случая:

  1). 

Если  a = 0 , то  x = 0.

  2). 

Если  а  – положительное число, то его квадратный корень имеет два значения: одно положительное, другое отрицательное; например, уравнение x 2 = 25 имеет два корня:  5 и – 5. Это часто записывается как корень с двойным знаком:

 

  3). 

Если  а  – отрицательное число, то это уравнение не имеет решений среди известных нам положительных и отрицательных чисел, потому что вторая степень любого числа есть число неотрицательное. Но если мы хотим получить решения уравнения   x 2 = a  также и для отрицательных значений  а , мы вынуждены ввести числа нового типа – мнимые числа. Таким образом,  мнимым называется число, вторая степень которого является числом отрицательным. Согласно этому определению мнимых чисел мы можем определить и мнимую единицу:


Тогда для уравнения  x 2 = – 25  мы получаем два мнимых корня:

Подставляя оба эти корня в наше уравнение, получаем тождество. В отличие от мнимых чисел все остальные числа (положительные и отрицательные, целые и дробные, рациональные и иррациональные) называются действительными или вещественными числами. Сумма действительного и мнимого числа называется комплексным числом и обозначается:

 

a + b i ,

 

где  a, b  –  действительные числа,  i  –  мнимая единица. 

Более подробно о комплексных числах см. раздел «Комплексные числа».

 

П р и м е р ы   комплексных чисел:    3 + 4 i ,   7 – 13.6 i ,   0 + 25 i = 25 i ,  2 + i.

Степени мнимой единицы

Степени i повторяются в цикле:

Что может быть записано для любой степени в виде:

где n — любое целое число.

Отсюда:

где mod 4 представляет остаток от деления на 4.

Комплексные числа

 Комплексные числа  записываются в виде:  a+ bi. Здесь  a и  b – действительные числа, а  i – мнимая единица, т.e.  i 2 –1. Число  называется абсциссой, a  b – ординатой комплексного числа  a+ bi. Два комплексных числа  a+ bi и  a – bi называются сопряжёнными комплексными числами.

 

Основные договорённости:

1.  Действительное число  а  может быть также записано в форме комплексного числа:  a+ 0 i  или  a – 0 i.  Например, записи  5 + 0 i  и  5 – 0 i  означают одно и то же число  5 .

 

2.  Комплексное число 0bi  называется чисто мнимым числом. Запись bi означает то же самое, что и  0bi.

 

3.  Два комплексных числа  a+ bi и c+ di считаются равными, если  a= c и b= d. В противном случае комплексные числа не равны.

 

Сложение.  Суммой комплексных чисел  a+ bi  и  c+ di  называется комплексное число ( a+ c ) + ( b+ d ) i. Таким образом, при сложении комплексных чисел отдельно складываются их абсциссы и ординаты.

Это определение соответствует правилам действий с обычными многочленами.

 

Вычитание.  Разностью двух комплексных чисел  a+ bi (уменьшаемое) и c+ di (вычитаемое) называется комплексное число (  c ) + ( b  d ) i.

Таким образом, при вычитании двух комплексных чисел отдельно вычитаются их абсциссы и ординаты.

 

Умножение.  Произведением комплексных чисел  a+ bi  и  c+ di называется комплексное число:

ac – bd ) + ( ad + bc ) i . Это определение вытекает из двух требований:

 

  1)  числа  a+ bi  и  c+ di должны перемножаться, как алгебраические двучлены,

  2)  число i  обладает основным свойством:  i 2 = 1.

 

П р и м е р .  ( a+ bi )( a – bi )= a 2 + b 2Следовательно, произведение

                      двух сопряжённых комплексных чисел равно действительному

                      положительному числу.

 

Деление. Разделить комплексное число  a+ bi (делимое) на другое c+ di (делитель) - значит найти третье число  e+ f i  (чатное), которое будучи умноженным на делитель c+ di,  даёт в результате делимое  a+ bi.

Если делитель не равен нулю, деление всегда возможно.

 

Модулем комплексного числа называется длина вектора OP, изображающего комплексное число на координатной (комплексной) плоскости. Сопряжённые комплексные числа имеют одинаковый модуль.   

Изображение комплексных чисел.

Рассмотрим на плоскости декартову прямоугольную систему координат  . Каждому комплексному числу  можно сопоставить точку с координатами  , и наоборот, каждой точке с координатами  можно сопоставить комплексное число  . Таким образом, между точками плоскости и множеством комплексных чисел устанавливается взаимно однозначное соответствие. Поэтому комплекные числа можно изображать как точки плоскости. Плоскость, на которой изображают комплексные числа, обычно называют комплексной плоскостью.

        Пример    Изобразим на комплексной плоскости числа 

                                 

        

Однако чаще комплексные числа изображают в виде вектора с началом в точке  , а именно, комплексное число                          изображается радиус-вектором точки с координатами                  . В этом случае изображение комплексных чисел из предыдущего примера будет таким:



Предварительный просмотр:

Приближенные вычисления

Приближенные вычисления – вычисления, производимые над числами, которые известны нам с определённой Выполняя вычисления, всегда необходимо помнить о той точности, которую нужно или которую можно получить. Недопустимо вести вычисления с большой точностью, если данные задачи не допускают или не требуют этого. И наоборот.точностью, например, полученными в эксперименте. Разница между точным числом x и его приближенным значением aназывается погрешностью данного приближенного числа. Если известно, что | x - a | < Da, то величина Da называется абсолютной погрешностью приближенной величины a.

Отношение Da / a = da называется относительной погрешностью; последнюю часто выражают в процентах. 3,14 является приближенным значением числа П, погрешность его равна 0,00159..., абсолютную погрешность можно считать равной 0,0016, а относительную погрешность v равной 0.0016/3.14 = 0,00051 = 0,051%.

Значащие цифры -  все цифры числа, начиная с 1-й слева, отличной от нуля, до последней, за правильность которой можно ручаться.

Приближенные числа следует записывать, сохраняя только верные знаки. Если, например, абсолютная погрешность числа 52438 равна 100, то это число должно быть записано, например, в виде 524 .10или 0,524 .105. Оценить погрешность приближенного числа можно, указав, сколько верных значащих цифр оно содержит.

Если число a = 47,542 получено в результате действий над приближенными числами и известно, что da = 0,1%, то a имеет 3 верных знака, т.е. а = 47,5

Если приближенное число содержит лишние (или неверные) знаки, то его следует округлить. При округлении сохраняются только верные знаки; лишние знаки отбрасываются, причем если первая отбрасываемая цифра больше или равна 5, то последняя сохраняемая цифра увеличивается на единицу.

Результат действий над приближёнными числами представляет собой также приближённое число. Число значащих цифр результата можно вычислить при помощи следующих правил:

  1. При сложении и вычитании приближённых чисел в результате следует сохранять столько десятичных знаков, сколько их в приближённом данном с наименьшим числом десятичных знаков.
  2. При умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближённое данное с наименьшим числом значащих цифр.