11.11.2021 г 1 гр Биология 2 урок

Татьяна Васильевна Янченко

конспект урока

Скачать:

ВложениеРазмер
Файл 11.11.2021_g_biologiya_1_gr.docx34.04 КБ
Файл 11.11.2021_biologiya_1_gr_2_urok.docx38.39 КБ

Предварительный просмотр:

11.11.2021 г биология, 1 группа

Тема: Моногибридное скрещивание


Задачи:

  • Обобщить и систематизировать знания об основных понятиях генетики.
  • Сформировать знания о первом и втором законах Г.Менделя.
  • Сформировать навык решения генетических задач.
  • Формировать монологическую речь естественнонаучного характера.

Тип урока: Комбинированный (изучение нового материала и первичное закрепление)

Ход урока

Организационный момент

Актуализация знаний

Самостоятельная индивидуальная работа у доски:

Начнем урок с повторения основных понятий генетики.

Задание: два ученика работают у доски. Дан определенный список, вам необходимо назвать, что здесь записано, затем подумать, можно ли данный список как-то сгруппировать, если да, то что будет критерием этой группировки, объяснить. (Приложение 1)

Устная фронтальная работа:

Задание: учитель говорить определение понятий, учащиеся должны назвать это понятие. (Приложение 2)

Проверка индивидуальных заданий на доске. (Приложение 3)

Рефлексия: 

  • Что мы сейчас повторили? (Основные понятия генетики). С какой целью? (знание данных понятий необходимы для дальнейшего изучения генетики).

Изучение нового материала

На доске записан словарь урока.

Словарь урока: Изменчивость, фенотип, гетерозигота, доминантные гены, гибридологический метод, чистые линии, альтернативные признаки, моногибридное скрещивании, генетика, наследственность, генотип, рецессивные гены, аллельные гены, гомозигота.

Задание: сгруппируйте слова, ответ обоснуйте (слова можно разделить на две группы: понятия, которые мы знаем и понятия, которые мы не знаем).

Исходя из вашей классификации, сформулируйте одну из задач урока (дать определения новым понятиям).

Постановка проблемной ситуации

Посмотрите, как много понятий генетики мы уже знаем, но этот список далеко не полный и сегодня мы дополним его.

Мы с вами знаем, что живые организмы обладают важным свойством – это наследственность, благодаря которому появившийся на свет зайчонок будет такой, как его родители, а растение кактус таким же, как то, от которого мы его пересадили. Мы с вами так же наследуем признаки от своих отцов и матерей, а наши дети унаследуют их от нас.

  • А какие признаки мы можем унаследовать? (цвет волос, глаз и т.д.)

Совершенно верно и самое главное, что большинство внешних признаков передаются из поколения в поколение. А теперь послушайте пример из жизни. В молодой семье родился ребенок. Муж и жена имеют карие глаза, а ребенок родился голубоглазый.

  • Что вас удивило? (почему ребенок голубоглазый)
  • Какой вопрос у вас возникает? (возможно ли это?)
  • Кто считает, что такое возможно, поднимите руки. Кто считает, что это невозможно, поднимите руки. Теперь поднимите руки те, кто сомневается.

Итак, у нас в классе появилось три мнения на данный вопрос и нам необходимо выяснить, какое из них правильное. Как мы можем это выяснить? (учащиеся предлагают разные варианты)

Подводящий диалог

Когда вы в математике пытаетесь доказать или опровергнуть какую-то теорему чем вы пользуетесь? (мы пользуемся правилом и решаем задачи)

Генетика, как и математика, является точной наукой. Значит, мы можем предположить, что в генетике тоже есть законы и правила, которые можно проверить через задачи

А знаем ли мы законы генетики и умеем ли мы решать генетические задачи? (нет)

Значит, какие задачи стоят сегодня перед нами, чему мы должны научиться, что узнать? (учащиеся формулируют задачи урока) 

  1. Узнать некоторые законы генетики
  2. Научиться решать генетические задачи на основе этих законов.
  3. Доказать, возможность или невозможность рождение голубоглазого ребенка от кареглазых родителей (задачи, сформулированные учащимися появляются на доске в виде план а урока)

Поиск решения

Рассмотрим два генетических закона, знание которых помогут нам определить кто из нас прав в комментарии ситуации с молодой семьей.

Многие ученые путем скрещивания родителей с различными вариантами одного и того же признака пытались выявить механизмы наследования, однако честь открытия основных генетических законов принадлежит чешскому ботанику Грегору Менделю. Именно он и является основоположником генетики как науки. Свои эксперименты Г. Мендель проводил на растениях гороха. Как вы думаете, почему Мендель выбрал именно эти растения? (они являются самоопыляющимися и отличаются по многим признакам, т.е. в потомстве могут получиться гибриды)

Основной метод, который Г.Мендель положил в основу своих экспериментов – гибридологический. Давайте подумаем, что может быть заложено в основу данного метода, почему он так называется. (Его суть заключается в скрещивании организмов отличающихся друг от друга по одному или нескольким признакам и получение гибридов)

Гибридологический метод имеет две особенности. Первая заключается в том, что для получения гибридов должны быть использованы только чистые линии, т.е. живые организмы, в которых не наблюдается расщепление по данному признаку. Как будет называться такой генотип? (гомозиготный) Как мы сможем его записать? (АА, аа). Вторая особенность гибридологического метода в том, что Г.Мендель наблюдал за наследованием альтернативных признаков. Как вы понимаете это слово? (взаимоисключающие, контрастные).

Фронтальная устная работа:

Задание: назвать альтернативные признаки к имеющимся.

Для растений

Низкий рост – высокий

Белые цветки – розовые

Гладкие семена – морщинистые

Для животных

Гладкая шерсть – мохнатая

Темная окраска - светлая

Для человека

Карие глаза – голубые

Темные волосы – светлые

Прямые волосы – кудрявые и т.д.

Работа в парах: приведите свои примеры альтернативных признаков.

Фронтальная письменная работа:

Задание: оформите полученные знания в тетради. (Приложение 4)

Работа по таблице:

Продолжаем рассматривать первый пункт нашего плана. Для иллюстрации первого закона Г.Менделя используем таблицу. Что показано на таблице? (Растения гороха, которые различаются по одному признаку) Какой это признак? (Цвет семян (желтые и зеленые))

Г. Мендель выбрал растения гороха, которые различаются только по одному признаку, т.е. какую особенность гибридологического метода он применил? (Скрещивание альтернативных признаков). Скрестил растение, имеющее желтую окраску семени с растением, имеющим зеленую окраску, причем эти растения гомозиготны. Значит, какую особенность гибридологического метода использовал Г.Мендель? (использование чистых линий) В результате все получившиеся растения оказались с желтыми семенами. Следовательно, у гибридов первого поколения проявился признак только одного родителя, который подавил действие другого признака. А как мы называем эти признак? (доминантный). А какой признак не проявился вообще? (зеленая окраска – рецессивный признак)

Раз все гибриды получились одинаковые Г. Мендель назвал, это правилом единообразия гибридов первого поколения, т.е. все гибриды имеют одинаковую окраску. И это правило впоследствии получило название 1 закона Менделя или закона доминирования. Сформулировать его можно следующим образом: при скрещивании двух организмов, относящихся к разным чистым линиям, отличающихся друг от друга по одной паре признаков, все первое поколении гибридов окажется одинаковым. Вид скрещивания, при котором особи отличаются только по одной паре признаков, называется моногибридным, где приставка моно обозначает один.

Рефлексия:

Какие задачи мы ставили вначале урока? (Узнать некоторые законы генетики, научиться решать генетические задачи на основе этих законов, доказать, возможность или невозможность рождение голубоглазого ребенка от кареглазых родителей)

  • Какие мы уже частично рассмотрели? (узнали первый закон генетики)
  • Что еще должны научиться делать? (решать генетические задачи)

Оформим закон в виде задачи. Для этого используют условные обозначения:

  • Р – родители,
  • Г – гаметы,
  • F1 – потомство,
  • А – желтые,
  • а – зеленые,
  •  http://festival.1september.ru/articles/510028/img2.gif - женский пол,
  • http://festival.1september.ru/articles/510028/img1.gif– мужской пол,
  • х – скрещивание.

Изначально Г. Мендель взял чистые линии. Как мы обозначаем генотип этих особей? (АА, аа) Сколько признаков взято? (один). Какой? (цвет (желтый и зеленый)). Какой из этих признаков будет доминантным, а какой рецессивным? (желтый – доминантный, зеленый – рецессивный). Значит, какой буквой мы обозначаем желтый цвет, а какой зеленый? (А – желтый, а – зеленый)

Обозначаем:

 http://festival.1september.ru/articles/510028/img3.gif

Письменная фронтальная работа:

Задание: запишите первый закон Г. Менделя в тетради. И если у вас возникли варианты формулировки темы, запишите их карандашом (моногибридное скрещивание, первый закон Г. Менделя и т.д.) Познакомьте друг друга с записями. (Приложение 4)

Далее Г. Мендель взял гибридные растения, полученные в первом скрещивании, вырастил эти растения, которые путем самоопыления дали второе поколение. Всего получилось 8023 растения, причем 6022 – желтые, а 2001 – зеленые. Подсчитайте, какую часть составляют желтые растения. (третью часть). Т.е. расщепление произошло 3 к 1 (три части желтых и одна часть зеленых). Основываясь на полученных результатах, Г. Мендель сформулировал второй закон. Может кто-то сможет сформулировать этот закон, опираясь на таблицу. (В потомстве, полученном от скрещивания гибридов первого поколения, наблюдается расщепление 3:1, проявляются особи с рецессивными признаками, которые составляют ? часть).

Письменная работа в парах:

Задание: оформите данный закон письменно и затем в буквенном выражении.

Оформление на доске (1 человек).

 http://festival.1september.ru/articles/510028/img4.gif

 Какие задачи мы уже рассмотрели? (мы рассмотрели 2 генетических закона и научились решать задачи). Осталось рассмотреть 3 задачу. Давайте вспомним, какую ситуацию мы озвучили в начале урока (ситуация с молодой семьей). Какой вопрос у нас возник? (возможно ли это?)

В начале урока у нас возникло три различных мнения. В течение урока мы с вами получили определенные знания, которые помогут нам теперь ответить на данный вопрос.

Проверка мнений

Самостоятельная работа в парах:

Задание: в виде задачи докажите и сделайте вывод, возможно ли это.

Проверка на доске.

  • А – карий цвет глаз (доминантный)
  • а – голубой цвет глаз (рецессивный)

Первый случай: если оба родителя кареглазые гетерозиготные:

http://festival.1september.ru/articles/510028/img5.gif

Вывод: При условии, если оба родителя кареглазые гетерозиготные, у них возможен голубоглазый ребенок.

Второй случай: если оба родителя кареглазые гомозиготные:

http://festival.1september.ru/articles/510028/img6.gif

Вывод: При условии, если оба родителя кареглазые гомозиготные, у них не может быть голубоглазого ребенка.

Третий случай: если оба родителя кареглазые, но один из них гомозиготен, а второй гетерозиготен:

 http://festival.1september.ru/articles/510028/img7.gif

Вывод: При условии, если оба родителя кареглазые, но один из них гомозиготен, а второй гетерозиготен, у них не может быть голубоглазого ребенка.

Следовательно, кто из нас был прав? (те, кто считали, что у двух кареглазых родителей могут быть голубоглазые дети, но только в том случае если оба родителя гетерозиготные) Каким образом, мы смогли это доказать? (мы изучили законы Г.Менделя и научились решать генетические задачи)

Закрепление

Групповая письменная работа:

Решить задачи (Приложение 5).

Проверка по группам.

Итог 

  1. На какой вид скрещивания мы решали задачи? (моногибридное скрещивание).
  2. Назовите тему урока (моногибридное скрещивание, законы Г.Менделя).
  3. Что такое моногибридное скрещивание? (скрещивание гибридов отличающихся по одному признаку)
  4. С какими новыми понятиями познакомились на уроке? (гибридологический метод, чистые линии, моногибридное скрещивание)
  5. Сделайте обобщение по теме урока?

Домашнее задание (по выбору) 

  • Составить родословную своей семьи (папа, мама, братья, сестры, бабушки, дедушки) по любому из внешних признаков.

Литература 

  1. Ю.И.Полянский, А.Д Браун и др. Общая биология 10-11 класс § 53-54, вопрос № 4 § 54
  2. Г.М. Муртазин. Задачи и упражнения по общей биологии. Задача № 392 стр. 150

Поделиться…



Предварительный просмотр:

Задачи по генетике с решением.

Моногибридное скрещивание

№1. Один ребёнок в семье родился здоровым, а второй имел тяжёлую наследственную болезнь и умер сразу после рождения.

Какова вероятность того, что следующий ребёнок в этой семье будет здоровым? Рассматривается одна пара аутосомных генов.

Решение. Анализируем генотипы родителей: оба родителя здоровы, они не могут иметь данную наследственную болезнь, т.к. она приводит к гибели организма сразу после рождения.

Если предположить, что данное заболевание проявляется по доминантному типу и здоровый признак является рецессивным, тогда оба родителя рецессивны. Тогда у них не может родиться больной ребёнок, что противоречит условию задачи.

Если данная болезнь является рецессивной, а ген здорового признака наследуется по доминантному типу, тогда оба родителя должны быть гетерозиготными и у них могут быть как здоровые дети, так и больные. Составляем схему скрещивания:

Ответ: Соотношение в потомстве 3:1, вероятность рождения здорового ребёнка в этой семье составляет 75%.

№2. Растение высокого роста подвергли опылению с гомозиготным организмом, имеющим нормальный рост стебля. В потомстве было получено 20 растений нормального роста и 10 растений высокого роста.

Какому расщеплению соответствует данное скрещивание – 3:1 или 1:1?

Решение: Гомозиготный организм может быть двух видов: доминантным (АА) или рецессивным (аа). Если предположить, что нормальный рост стебля определяется доминантным геном, тогда всё потомство будет “единообразным”, а это противоречит условию задачи.

Чтобы произошло “расщепление”, растение нормального роста должно иметь рецессивный генотип, а растение высокого роста должно быть гетерозиготным.

Ответ: Соотношение по фенотипу и генотипу в потомстве составляет 1:1.

№3. При скрещивании чёрных кроликов между собой в потомстве получили чёрных и белых крольчат.

Составить схему скрещивания, если известно, что за цвет шерсти отвечает одна пара аутосомных генов.

Решение: Родительские организмы имеют одинаковые фенотипы – чёрный цвет, а в потомстве произошло “расщепление”. Согласно второму закону Г. Менделя, ген, ответственный за развитие чёрного цвета, доминирует и скрещиванию подвергаются гетерозиготные организмы.

№4. У Саши и Паши глаза серые, а у их сестры Маши глаза зелёные. Мать этих детей сероглазая, хотя оба её родителя имели зелёные глаза. Ген, ответственный за цвет глаз расположен в неполовой хромосоме (аутосоме).

Определить генотипы родителей и детей. Составить схему скрещивания.

Решение: По материнскому организму и по её родителям определяем, что серый цвет глаз является рецессивным признаком (второй закон Г. Менделя).

Т.к. в потомстве наблюдается “расщепление”, то отцовский организм должен иметь зелёный цвет глаз и гетерозиготный генотип.

№5. Мать брюнетка; отец блондин, в его родословной брюнетов не было. Родились три ребёнка: две дочери блондинки и сын брюнет.

Ген данного признака расположен в аутосоме.

Проанализировать генотипы потомства и родителей.

Решение: Генотип отцовского организма должен быть гомозиготным, т.к. в его родословной наблюдается чистая линия по цвету волос. Гомозиготный генотип бывает доминантным (АА) или рецессивным (аа).

Если генотип отца гомозиготный доминантный, то в потомстве не будет детей с тёмными волосами – проявится “единообразие”, что противоречит условию задачи. Следовательно, генотип отца рецессивный. Материнский организм должен быть гетерозиготным.

Ответ: Соотношение по фенотипу и генотипу в потомстве составляет 1:1 или 50% 50%.

№6. У человека проявляется заболевание – серповидно-клеточная анемия. Эта болезнь выражается в том, что эритроциты крови имеют не круглую форму, а серповидную, в результате чего транспортируется меньше кислорода.

Серповидно-клеточная анемия наследуется как неполностью доминантный признак, причём гомозиготное состояние гена приводит к гибели организма в детском возрасте.

В семье оба супруга имеют признаки анемии.

Какова процентная вероятность рождения у них здорового ребёнка?

Решение: Составляем схему скрещивания:

Ответ: 25% здоровых детей в данной семье.

Дигибридное скрещивание независимое наследование генов

№1. Мутации генов, вызывающие укорочение конечностей (а) и длинношерстость (в) у овец, передаются в следующее поколение по рецессивному типу. Их доминантные аллели формируют нормальные конечности (А) и короткую шерсть (В). Гены не сцеплены.

В хозяйстве разводились бараны и овцы с доминантными признаками и было получено в потомстве 2336 ягнят. Из них 425 длинношерстых с нормальными конечностями и 143 длинношерстых с короткими конечностями.

Определить количество короткошерстых ягнят и сколько среди них с нормальными конечностями?

Решение. Определяем генотипы родителей по рецессивному потомству. Согласно правилу “чистоты гамет” в потомстве по каждому признаку один ген от отцовского организма, другой ген от материнского организма, следовательно, генотипы родителей дигетерозиготные.

1). Находим количество длинношерстных ягнят: 425 + 143 = 568.
2). Находим количество короткошерстных: 2336 – 568 = 1768.
3). Определяем количество короткошерстных с нормальными конечностями:

1768 ---------- 12 ч.
х ----------- 9 ч. х = 1326.

№2. У человека ген негритянской окраска кожи (В) полностью доминирует над геном европейской кожи (в), а заболевание серповидно-клеточная анемия проявляется неполностью доминантным геном (A), причём аллельные гены в гомозиготном состоянии (AA) приводят к разрушению эритроцитов, и данный организм становится нежизнеспособным.

Гены обоих признаков расположены в разных хромосомах.

Чистородная негроидная женщина от белого мужчины родила двух мулатов. Один ребёнок не имел признаков анемии, а второй умер от малокровия.

Какова вероятность рождения следующего ребёнка, не имеющего признаков анемии?

Решение. Составляем схему скрещивания:

Ответ: Вероятность рождения здорового ребёнка в данной семье составляет 1/4 = 25%

№3. Рецессивные гены (а) и (с) определяют проявление таких заболеваний у человека, как глухота и альбинизм. Их доминантные аллели контролируют наследование нормального слуха (А) и синтез пигмента меланина (С).

Гены не сцеплены.

Родители имеют нормальный слух; мать брюнетка, отец альбинос. Родились три однояйцовых близнеца больные по двум признакам.

Какова вероятность того, что следующий ребёнок в этой семье будет иметь оба заболевания?

Решение.

По правилу “чистоты гамет” определили, что родители дигетерозиготные:

Ответ: Вероятность рождения ребёнка имеющего оба заболевания составляет 1/8 = 12,5%

№4. Изучаются две пары аутосомных генов, проявляющих независимое наследование.

Петух с розовидным гребнем и оперёнными ногами скрещивается с двумя курицами, имеющих розовидный гребень и оперённые ноги.

От первой курицы были получены цыплята с оперёнными ногами, из них часть имела розовидный гребень, а другая часть – простой гребень.

Цыплята от второй курицы имели розовидный гребень, и часть из них с оперёнными ногами и часть с неоперёнными.

Определить генотипы петуха и двух куриц.

Решение.

По условию задачи оба родителя имеют одинаковые фенотипы, а в потомстве от двух скрещиваний произошло расщепление по каждому признаку. Согласно закону Г.Менделя, только гетерозиготные организмы могут дать “расщепление” в потомстве. Составляем две схемы скрещивания.

Взаимодействие неаллельных генов

№1. Изучаются две пары неаллельных несцепленных генов определяющих окраску меха у горностая.

Доминантный ген одной пары (А) определяет чёрный цвет, а его рецессивный аллель (а) – голубую окраску.

Доминантный ген другой пары (В) способствует проявлению пигментации организма, его рецессивный аллель (в) не синтезирует пигмент.

При скрещивании чёрных особей между собой в потомстве оказались особи с голубой окраской меха, чёрные и альбиносы.

Проанализировать генотипы родителей и теоретическое соотношение в потомстве.

Решение.

Ответ: 9 чёрных, 3 альбиноса, 4 голубой окраски.

№2. Наследование окраски оперения у кур определяется двумя парами неаллельных несцепленных генов, расположенных в аутосоме.

Доминантный ген одной пары (А) определяет синтез пигмента меланина, что обеспечивает наличие окраски. Рецессивный ген (а) не приводит к синтезу пигмента и куры оказываются белыми (перьевой альбинизм).

Доминантный ген другой пары (В) подавляет действие генов первой пары, в результате чего синтез пигмента не происходит, и куры также становятся альбиносами. Его рецессивный аллель (в) падавляющего действия не оказывает.

Скрещиваются два организма гетерозиготные по двум парам аллелей.

Определить в потомстве соотношение кур с окрашенным оперением и альбиносов.

Решение.

Ответ: 13 белых, 3 окрашенных.

№3. У овса цвет зёрен определяется двумя парами неаллельных несцепленных генов.
Один доминантный ген
(А) определяет чёрный цвет, другой доминантный ген (В) – серый цвет. Ген чёрного цвета подавляет ген серого цвета.

Оба рецессивных аллеля определяют белый цвет зёрен.

При опылении дигетерозиготных организмов в потомстве оказались растения с чёрными, серыми и белыми зёрнами.

Определить генотипы родительских организмов и фенотипическое соотношение в потомстве.

Решение.

Ответ: 12 чёрных, 3 серых, 1 белый.

Наследование генов, расположенных в половых хромосомах

№1. Ген нормальной свёртываемости крови (А) у человека наследуется по доминантному типу и сцеплен с Х-хромосомой. Рецессивная мутация этого гена (а) приводит к гемофилии – несвёртываемости крови.

У-хромосома аллельного гена не имеет.

Определить процентную вероятность рождения здоровых детей в молодой семье, если невеста имеет нормальную свёртываемость крови, хотя её родная сестра с признаками гемофилии. У жениха мать страдает этим заболеванием, а отец здоров.

Решение. 1) Определяем генотип невесты. По условию задачи сестра невесты имеет рецессивный генотип ХаХа, значит обе сестры получают ген гемофилии (от своего отца). Поэтому здоровая невеста гетерозиготна.

2) Определяем генотип жениха. Мать жениха с признаками гемофилии ХаХа, следовательно, по хромосомной теории пола, рецессивный ген она передаёт сыну ХаУ.

Ответ: соотношение по фенотипу 1:1, 50% детей здоровы.

№2. Изучается одна пара аллельных генов в Х-хромосоме, регулирующая цветовое зрение у человека.

Нормальное цветовое зрение является доминантным признаком, а дальтонизм проявляется по рецессивному типу.

Проанализировать генотип материнского организма.

Известно, что у матери два сына, у одного из них больная жена и здоровый ребёнок. В семье второго – дочь с признаками дальтонизма и сын, цветовое зрение которого в норме.

Решение. 1) Определяем генотип первого сына. По условию задачи у него больная жена и здоровый ребёнок – это может быть только дочь ХАХа. Рецессивный ген дочь получила от матери, а доминантный ген от отца, следовательно, генотип мужского организма доминантный АУ).

2) Определяем генотип второго сына. Его дочь больна ХаХа, значит, один из рецессивных аллелей она получила от отца, поэтому генотип мужского организма рецессивный аУ-).

3) Определяем генотип материнского организма по её сыновьям:

Ответ: генотип матери гетерозиготный ХАХа.

№3. Альбинизм у человека определяется рецессивным геном (а), расположенным в аутосоме, а одна из форм диабета определяется рецессивным геном (в), сцепленным с половой Х-хромосомой.

Доминантные гены отвечают за пигментацию (А) и нормальный обмен веществ (В).

У-хромосома генов не содержит.

Супруги имеют тёмный цвет волос. Матери обоих страдали диабетом, а отцы – здоровы.

Родился один ребёнок больной по двум признакам.

Определить процентную вероятность рождения в данной семье здоровых и больных детей.

Решение. Применяя правило “чистоты гамет” определяем генотипы родителей по цвету волос – генотипы гетерозиготные Аа.

По хромосомной теории пола определили, что отец болен диабетом ХвУ-, а мать здорова ХВХв.

Составляем решётку Пеннета – по горизонтали выписывают гаметы отцовского организма, по вертикали гаметы материнского организма.

Ответ: шесть организмов из шестнадцати доминантны по двум признакам – вероятность рождения составляет 6/16 = 37,5%. Десять больных: 10/16 = 62,5%, из них двое больных по двум признакам: 2/16 = 12,5%.

№4. Два рецессивных гена, расположенных в различных участках Х-хромосомы, вызывают у человека такие заболевания как гемофилия и мышечная дистрофия. Их доминантные аллели контролируют нормальную свёртываемость крови и мышечный тонус.

У-хромосома аллельных генов не содержит.

У невесты мать страдает дистрофией, но по родословной имеет нормальную свёртываемость крови, а отец был болен гемофилией, но без каких либо дистрофических признаков.

У жениха проявляются оба заболевания.

Проанализировать потомство в данной семье.

Решение.

Ответ: все дети имеют заболевание, 50% с гемофилией и 50% с дистрофией.

Наследование сцепленных генов. Явление кроссинговера.

№1. Ген роста у человека и ген, определяющий количество пальцев на конечностях, находятся в одной группе сцепления на расстоянии 8 морганид.

Нормальный рост и пять пальцев на кистях рук являются рецессивными признаками. Высокий рост и полидактилия (шестипалость) проявляются по аутосомно-доминантному типу.

Жена имеет нормальный рост и по пять пальцев на руке. Муж гетерозиготен по двум парам аллелей, причём ген высокого роста он унаследовал от отца, а ген шестипалости от матери.

Определить в потомстве процентное соотношение вероятных фенотипов.

Решение.

Ответ: 46% 46% 4% 4%

№2. Два гена, регулирующих реакции обмена веществ в организме человека, сцеплены с Х-хромосомой и расположены друг от друга на расстоянии 32 морганид. У-хромосома аллельных генов не содержит.

Доминантные гены контролируют нормальный обмен веществ.

Воздействия различных мутагенных факторов изменяют последовательностъ нуклеотидов в данных участках Х-хромосомы, что приводит к отклонениям в синтезе веществ и наследственным заболеваниям по рецессивному типу.

От здоровых родителей рождается больной ребёнок, имеющий два мутантных гена в генотипе.

Какова процентная вероятность рождения следующего ребёнка с нарушением обмена веществ?

Решение. По условию задачи в данной семье больной ребёнок – это сын вХаУ т.к. от здорового отца дочери больными быть не могут.

Сын получил рецессивные гены от матери, следовательно, генотип матери гетерозиготный

Составляем схему скрещивания:

Ответ: вероятность рождения больных детей составляет 33%, из них 17% больных по двум заболеваниям обмена веществ, 8% по одному заболеванию и 8% по другому.

Открытое занятие по биологии 10 класс
на тему: “ Решение генетических задач”

Конспект урока с использованием информационно- коммуникативных технологий (ИКТ).

 

Тема: «Решение генетических задач».

 

Продолжительность: 45 минут.

 

Класс:10.

 

Конспект занятия: «Решение генетических задач»

 Цель: Обобщить знания о материальных основах наследственности и изменчивости, закрепить знания по решению разных типов   генетических задач, отработать символику и терминологию, необходимые для решения задач, продолжать учиться работать в группах.

Задачи:

 

  • образовательная: обобщить ранее изученный материал по пройденной теме, определить степень усвоения категориального аппарата темы.Продолжить формирование умений и навыков по решению генетических задач, подготовку к ЕГЭ и поступлению в учебные заведения, связанные с биолого-химическим профилем.
  • развивающая: развивать умение сравнивать (на примере сравнения фенотипов и генотипов особей, гомозигот и гетерозигот, моногибридного, анализирующего скрещивания и промежуточного характера наследования) умение анализировать (умения планировать экспериментальную практическую деятельность, выдвигать гипотезу на основе мысленного эксперимента) умения обобщать и устанавливать закономерности при анализе обобщающих схем;
  • воспитательная: развивать внутреннюю мыслительную активность и самостоятельность при решении генетических задач разного уровня сложности; развивать коммуникативные способности учащихся на уроке при работе в группах, взаимопроверке, самоконтроле, воспитывать культуру умственного труда.Поддержать интерес к предмету.

Тип урока: обобщение и систематизация знаний и способов деятельности.

 

Вид урока: семинар – практикум.

 

Методы: репродуктивные, частично- поисковые.

 

Форма организации деятельности учащихся - групповая.

 

Оборудование и материалы: презентация, карточки- задания, компьютеры, подключенные к сети Интернет.

 

 

Структура урока: все задания подразделяются на четыре блока в соответствии с требованиями программы.

1. блок- решение задач на моногибридное скрещивание и анализирующее скрещивание.

2. блок – решение задач на дигибридное скрещивание.

3.блок – решение задач на сцепленное наследование.

4.блок – решение задач на сцепленное с полом наследование и группы крови.

1. Организационный момент.

1ый слайд – название темы: «Решение генетических задач»

2ой слайд – цели и задачи урока.

3ий слайд – высказывание Б. Васильева.

 

Мне необходимо разобраться самому, а чтобы разобраться самому, надо думать сообща

Б.Васильев.

Для каждого человека ценностью номер один является его здоровье. В третье тысячелетие мы вступили с новейшими компьютерными технологиями, но все также неизлечимы СПИД, рак, сахарный диабет, увеличивается количество наследственных заболеваний.

Статистика приводит печальные факты – сейчас в родильных домах практически исчезли абсолютно здоровые малыши, на каждую тысячу родившихся – 800-900 имеют какие-либо врожденные дефекты.

Каким же будет поколение через 20-30 лет? Никого не надо убеждать – полноценного ребенка могут родить только абсолютно здоровые молодые люди.

Это закон. Посейте незрелое семя в землю и посмотрите, какие всходы вы получите: нежизнеспособны и больные.

Итак, чтобы появился на свет здоровый ребенок, необходима здоровая наследственность его родителей.

Какая наука изучает наследственность и изменчивость? А как можно узнать какое потомство получится при скрещивании родителей?

Сможете сами сформулировать тему сегодняшнего занятия?

Итак, тема сегодняшнего занятия“Решение генетических задач”

Человеку всегда хотелось чуда. Одним из этих чудес остаётся жизнь, важными свойствами которой являются наследственность и изменчивость. Почему у потомства иногда появляются признаки не свойственные их родителям?Данное занятие даёт возможность “приоткрыть дверь” научного познания процессов, происходящих в живых организмах при размножении. Чтобы понять их, вспомним, как сложны процессы мейоза, лежащие в основе полового размножения, какие генетические закономерности проявляются при различных скрещиваниях.

Основная наша цель – это, конечно, отработка навыков решения задач.

Это занятие хочется начать словами Б.Васильева 

«Мне необходимо разобраться самому, а чтобы разобраться самому, надо думать сообща.»

2. Самостоятельная работа в группах:

Мы будем работать в группах. Для этого мы разделимся на 5 групп. Для этого нам надо рассчитаться с первого по пятый. В кабинете 5 столов, они пронумерованы. Вы видите на  столах таблички с номерами. Первые номера подойдите к столу №1, вторые номера к столу №2, третьи к столу №3,четвёртые к столу №4,пятые к столу №5.На столах лежат полоски цветной бумаги. Выберите себе любой цвет, какой вам нравится. Теперь каждый из вас является экспертом по определённой теме. На каждом столе стоит табличка определённого цвета.

Те, кто выбрал жёлтый цвет подойдите к столу с табличкой жёлтого цвета, кто выбрал синий – к столу с синей табличкой, кто выбрал красный - к столу с красной табличкой, у кого оранжевый – к столу с оранжевой табличкой, у кого зелёный-  к столу с зелёной  табличкой. Каждая группа будет работать по своей теме, но после выполнения работы вы вернётесь в свои первоначальные команды, поэтому запомните, кто в какой команде был. Каждая команда получает задания по определённой теме. Команда красных по теме: « Решение задач на моногибридное скрещивание и анализирующее скрещивание»,команда зелёных: «Решение задач на дигибридное скрещивание », команда синих по теме: «Решение задач на сцепленное наследование»,команда оранжевых: «Решение задач на сцепленное с полом наследование и группы крови».А команда жёлтых будет работать в сети Интернет, искать дополнительную информацию по теме: «Решение задач по генетике», выписывать адреса сайтов, где можно найти такую информацию. Выпишите на листе бумаги перечень найденной вами информации и адреса сайтов. Сохраните информацию на магнитных носителях для последующего многократного использования разными пользователями. Создайте на рабочем столе папку с задачами по генетике.

Напутственные слова на слайде.

Вот тебе два дела, - сделай хоть одно из них,
Или то, что сам ты знаешь, передай другим, 
Или то, чего не знаешь, от других возьми.  А. Анвари

 

Прежде чем приступить к работе, вспомните правила работы в группах.

4ый слайд – правила работы в группах:

Распределение ролей.

Умение слышать и слушать.

Активность.

Быть пунктуальным при выполнении заданий с временными рамками.

Конфиденциальность.

Право быть ведущим.

Каждый из вас делает записи по работе на тех же листочках, что у вас на столах, после каждого вопроса. После завершения работы возвращаетесь в свои первоначальные группы и обсуждаете все темы. После завершения обсуждения, будет проведен тест – контроль по теме.

Эксперты возвращаются в свои команды. Команда обсуждает все темы раздела совместно, каждый эксперт освещает группу по своей теме. Те, кто работал в сети Интернет сообщает команде на каких сайтах можно найти дополнительную информацию и поработать дома.

3.Тест – контроль

После совместного обсуждения тем, проводится тест- контроль по теме. В течение 10 минут команда выполняет тестовое задание. После выполнения заданий группы обмениваются листочками и проверяют тесты. Идёт взаимопроверка.

Слайд 5- ответы на тестовые вопросы и критерии оценки.

4.Самостоятельные выводы к уроку.

После выставления оценок учащиеся делают самостоятельные выводы по уроку:

1.Первые попытки экспериментального решения проблем, связанных передачей признаков из поколения в поколение, предпринимались в 18 веке. Открыл закономерности наследования признаков Чешский ботаник Грегор Мендель. Метод  получил название гибридиологический.Его законы применяются для решения генетических задач. Сегодня мы решали задачи на моногибридное скрещивание, дигибридное скрещивание. Научились применять его законы на практике при решении генетических задач.

2.Вспомнили применение закона Моргана при решении задач, как наследуются признаки сцепленные с полом, какие организмы являются гомогаметными и гетерогаметными.

 

3.Решение генетических задач позволяет нам не только лучше понять законы наследственности, но и постоянно тренировать мышление.

4.Можно рекомендовать следующую последовательность действий при решении простейших генетических задач:

1. Краткая запись условий задачи. Введение буквенных обзначений генов, обычно А и В (в задачах они частично уже даны). Определение типа наследования (доминантность, рецессивность), если это не указано.
2. Запись фенотипов и схемы скрещивания (словами для наглядности).
3. Определение генотипов в соответствии с условиями. Запись генотипов символами генов под фенотипами.
4. Определение гамет. Выяснение их числа и находящихся в них генов на основе установленных генотипов.
5. Составление решетки Пеннета.
6. Анализ решетки согласно поставленным вопросам.
7. Краткая запись ответа.

 

Общий вывод в виде Синту( слайд 6)

Синту:

1 строка (слово, обозначающее то, что описывается – объект, событие).Задача по генетике

2 строка (наблюдение за описываемым явлением)Трудная для ума

3 строка (мысль, чувства, оценочное суждение о том, что описывается)Интересная для решения

4 строка (ещё одно наблюдение, выраженное через другую модальность ощущения)Всё больше и больше увлекает

5 строка (смысловой признак предмета, выраженный одним словом) Генетическая

5.Заключение. Ребята, я вас благодарю за хорошую работу на уроке, желаю дальнейших успехов в учёбе. А теперь поблагодарим друг друга. Ребята начинают хлопать в ладоши, сначала начинает один к нему присоединяется третий и.т.д. в конце шквал аплодисментов.

Всем большое спасибо!

 

Здания и тесты к уроку прилагаются.

 

Задание №1 тема: «Моногибридное и анализирующее скрещивание»

Вы знаете что полидактилия доминантный признак?

1.Полидактилия у человека является доминантным признаком, а нормальное строение кистей рук признак- рецессивный. От брака гетерозиготного шестипалого мужчины с женщиной, имеющей нормальное строение кистей рук, родилось два ребёнка: пятипалый и шестипалый. Каков генотип этих детей?

Секрет волнистых волос.

2.У человека курчавые волосы- доминантный признак, а прямые- рецессивный признак. У гетерозигот волосы волнистые. Какой тип волос у детей может быть, и с  какой вероятностью, если оба родителя имеют волнистые волосы?

3.По родословной, представленной на рисунке, установите характер наследования признака, выделенного черным цветом (доминантный или рецессивный, сцеплен или не сцеплен с полом), генотипы детей в первом и во втором поколении. 

 

Задание №2 «Решение задач на дигибридное скрещивание»

Не рыжий, вовсе я не рыжий

1.Женщина с карими глазами и рыжими волосами вышла замуж за мужчину с не рыжими волосами и голубыми глазами. Известно, что у отца женщины глаза были карие, а у матери- голубые, у обоих - рыжие волосы. У отца мужчины были не рыжие волосы и голубые глаза, у матери карие глаза и рыжие волосы. Какими являются генотипы всех указанных людей. Какими могут быть глаза и волосы  у детей этих супругов?

 

Когда чистить зубы бесполезно?

2.Потемнение эмали зубов определяется двумя доминантными генами, один из которых находится в аутосоме, второй в Х хромосоме. В семье родителей, которые имеют тёмные зубы, родились девочка и мальчик с нормальным цветом зубов. Определить вероятность рождения следующего ребёнка без аномалии, если тёмные зубы матери определяем геном сцепленным с Х хромосомой, а тёмные зубы отца - аутосомным геном. Определить генотип здоровых детей.

 

Задание№3 Тема: «Решение задач на сцепленное наследование»

 

Классические лабораторные объекты.

1.Скрестили дигетерозиготных самцов мух дрозофил с серым телом и нормальными крыльями (признаки доминантные) с самками с черным телом и укороченными крыльями (рецессивные признаки). Составьте схему решения задачи. Определите генотипы родителей, а также возможные генотипы и фенотипы потомства F1, если доминантные и рецессивные гены данных признаков попарно сцеплены, а кроссинговер при образовании половых клеток не происходит. Объясните полученные результаты.

 

2.Что изменится, если  при образовании половых клеток кроссинговер происходит. Объясните полученные результаты.

 

 

Задание №4 «Решение задач на сцепленное с полом наследование и группы крови»

Как по оперению цыплят можно заранее знать их пол ?

1.У кур гены, влияющие на окраску оперения, локализованы в Х хромосоме. У одной из пород кур ген серебристого оперения (А) доминирует над геном золотистого оперения(а).С каким генотипом следует подбирать кур и петухов, чтобы определять пол цыплят по оперению?

2.Признаки, определяющие группу крови и резус-фактор, не сцеплены. Группа крови контролируется тремя аллелями одного гена – i0, IA, IB. Аллели IA и IB доминантны по отношению к аллели i0. Первую группу (0) определяют рецессивные гены i0, вторую группу (А) определяет доминантная аллель IA, третью группу (В) определяет доминантная аллель IB, а четвертую (АВ) – две доминантные аллели IAIB. Положительный резус-фактор R доминирует над отрицательным r.
У отца четвертая группа крови и отрицательный резус, у матери – первая группа и положительный резус (гомозигота). Составьте схему решения задачи. Определите генотипы родителей, возможные группы крови, резус-фактор и генотипы детей. Объясните полученные результаты. Какой закон наследственности проявится в этом случае?

 

Задание№5 Тема «Нахождение задач для последующего решения на занятиях».

  1. Найти дополнительную информацию по теме, выписывать адреса сайтов, где можно найти такую информацию. Сохранять  информацию на магнитных носителях для последующего многократного использования разными пользователями.  Создать папку на столах «Задачи по генетике».

Информацию раздать  всем группам для дальнейшей работы дома. Найти в сети Интернет виртуальне задачи по генетике, решить их и проверить.