• Главная
  • Блог
  • Пользователи
  • Форум

Вход на сайт

  • Регистрация
  • Забыли пароль?
  • Литературное творчество
  • Музыкальное творчество
  • Научно-техническое творчество
  • Художественно-прикладное творчество

исследовательская работа "Преобразование многоугольников Наполеоном"

Опубликовано Курбатова Светлана Валентиновна вкл 18.03.2012 - 13:55
Автор: 
Темнова Я., Лобанова А. 9 кл.

В работе представлены мало изучаемые в школьном курсе геометрии свойства многоугольников.

Скачать:

ВложениеРазмер
Microsoft Office document icon issledovatelskaya.doc740.5 КБ
Office presentation icon issledovatelskaya.ppt704.5 КБ

Предварительный просмотр:

«МБОУ Михневская средняя школа с углубленным изучением отдельных предметов»

«Преобразование Наполеоном многоугольников»

Авторы:  Лобанова А., Темнова Я.

Ученицы 9 «А» кл.

Руководитель:                Курбатова С.В

Михнево 2012г.

Содержание:

 1.  Введение

 2.  Преобразование Наполеона треугольников.

  а) Преобразование Наполеона вложенных фигур.

  б) Ядро линейного преобразования.

 3. Преобразование Наполеона четырехугольников.

4. Преобразование Наполеона шестиугольников.

5. Заключение. 

6. Список литературы.

Введение

Наполео́н I Бонапа́рт (15 августа 1769 - 5 мая 1821) — император Франции в 1804 – 1815 годах, великий французский полководец и государственный деятель, заложивший основы современного французского государства. Французский император Наполеон Бонапарт был любителем математики. Он находил время заниматься ею для собственного удовольствия, чувствовал в ней красоту и объект, достойный приложения остроумия и изобретательности. Одно из свидетельств этому – несколько составленных им задач. Данная работа  посвящена одной из них, которая перешла в геометрическое исследование, и работа приобрела более глубокий смысл.

Что же представляет собой преобразование Наполеона многоугольников? Преобразование Наполеона многоугольников сопоставляет многоугольнику новый многоугольник, вершины которого являются центрами правильных многоугольников, построенных на сторонах исходного. Возьмем, к примеру, произвольный n-угольник и построим внешним образом на его сторонах правильные n-угольники. Соединим центры правильных

n-угольников отрезками. В результате мы получим еще один n-угольник. Получившийся n-угольник и будет являться преобразованием исходной фигуры.

Преобразования некоторых n-угольников (например, 4-угольников, 6-угольников) обладают очень интересными свойствами. Некоторые из них будут представлены в данной работе.

Преобразование Наполеона треугольников

Теорема №1. Если на сторонах произвольного треугольника вне него поострить правильнее треугольники, то их центры образуют правильный треугольник.

Доказательство: Докажем, что преобразованием произвольного треугольника является правильный треугольник. Нам дан треугольник ABC, на сторонах которого построены правильные треугольники АМВ, BNC и ACK. M1, N1 и K1 – центры этих треугольников. Соединим центры с 2 ближайшими вершинами треугольника АВС.

По свойствам равностороннего (правильного) треугольника АМ1=М1В, ВN1=N1C, СК1=K1A; угол AM1B равен углу BN1C равен углу CK1A равен 120 градусам, а их сумма равна 360 градусам. Выделим шестиугольник AM1BN1CK1, а внешние к нему невыпуклые четырёхугольники отбросим.

Отбрасывая от шестиугольника AM1BN1CK1 треугольники M1AK1   и  N1CK1 получаем четырехугольник K1M1BN1. BK1 делит данный четырехугольник на 2 равных треугольника. Углы BM1K1 и N1CK1 равны 90 градусам, а углы BM1N1 и B N1 M1 30. Из этого следует, что углы K1M1N1 и M1N1K1 равны 60 градусам. Значит мы можем сделать вывод, что треугольник K1M1N1  равносторонний (правильный).

Преобразование Наполеона вложенных фигур.

Рассмотрим треугольники, лежащие в координатной плоскости. В этом случае треугольник будет задаваться координатами 3 вершин. Построим такой треугольник. Введем систему координат с началом отсчета в точке О (0;0).

Отметим 3 точки А, В и С, которые будут являться вершинами треугольника АВС. Теперь мы построим преобразование для данного треугольника. Для этого на его сторонах построим правильные треугольники и соединим их центры. Таким образом мы построили N(ABC) (преобразование треугольника АВС).

Теорема №2. Преобразование Наполеона вложенных треугольников линейно.

Доказательство: 

1)Докажем что N(АВС + А’B’C’) = N(ABC) + N(A’B’C’).

Построим произвольные треугольники АBC и А’B’C’.

Построим векторы, , . Точки А1, В1, С1 являются концами вышеназванных  векторов. Эти три точки образуют треугольник который является “суммой” треугольников АВС и A’B’C’. Теперь построим преобразования Наполеона треугольников А1В1С1, АВС и A’B’С’. Получили, что преобразование Наполеона треугольника А1В1С1 является «суммой» преобразований Наполеона треугольников АВС и A’B’C’. Значит,  N(АВС + А’B’C’) = N(ABC) + N(A’B’C’);

2)Докажем что N(nABC) = nN(ABC).

Построим треугольник АВС. Умножим координаты его вершин на число n. Например, если у точки А были координаты (х;у), то они станут равными (nх;nу), то есть точка А(х;у) переходит в точку А’(nх;nу); точно так же построим  точки В’ и C’. Так мы «умножили» треугольник АВС на число n. Построим N(A’B’C’). Теперь построим N(АВС) и «умножим» его на число n. В результате преобразования наложились.

Значит, N(nABC) = nN(ABC).

 

Ядро линейного преобразования.

Ядро линейного преобразования – это множество, переходящее в нуль.

Ядро преобразования Наполеона треугольников – это правильные треугольники с центром в (0;0) с обратным порядком вершин. При изменении порядка вершин треугольника, его преобразование стремится превратиться в точку, а если и дальше придвигать вершину треугольника к противоположной вершине правильного треугольника, построенного на противолежащей         стороне, то оно превратится в точку.

Теорема №3. Ядро линейного преобразования – линейное пространство.

        

Доказательство:

  1. Докажем что если АВС имеет ядро и А’В’С’ - ядро, то АВС+A’B’C’- ядро. Построим два треугольника АВС и A’B’C’ и их преобразования Наполеона. Превратим треугольники в ядра. Для этого поменяем порядок вершин, добьемся правильной формы. Перенесем точки, в которые превратились преобразования Наполеона (центры фигур), в начало координат. Получили два ядра. «Сложим» их. В результате  получили ядро.
  2. Докажем что если АВС - ядро, то nАВС - ядро. Построим треугольник ABC и его преобразование. Превратим ABC в ядро и «умножим» его на число n. В результате образовался правильный  треугольник A’B’C’ с центром в начале координат. Значит, A’B’C’- ядро.

Преобразование Наполеона четырехугольников.

Теорема №4. Если на сторонах произвольного четырехугольника построить квадраты, то их центры образуют другой четырехугольник, в котором диагонали равны и перпендикулярны. Так как этим же свойством обладают и диагонали квадрата, то образовавшийся четырехугольник можно назвать квадратоидом.

Теорема №5. Преобразованием параллелограмма является квадрат.

Доказательство: ABCD – параллелограмм, F, G, H, K – центры квадратов, построенных соответственно на сторонах AD, AB, BC, DC.

1) Рассмотрим треугольники FGA и HKC:

  1. AF=HC (т. к. радиусы окружностей, описанных возле равных квадратов).
  2. AG=CK (аналогично 1).
  3. Углы DAB и BCD равны (т. к. противолежащие углы в параллелограмме).

Следовательно, что треугольник FGA равен треугольнику HKC (по 2 признаку).

2) Рассмотрим треугольники FDK и GBH:

  1. FD=HB (т. к. радиусы окружностей, описанных возле равных квадратов).
  2. DK=BG (аналогично 1).
  3. 3. Углы ADC и ABC равны (т. к. противолежащие углы в параллелограмме).

Следовательно, что треугольник FGA равен треугольнику GBH (по 2 признаку).

  1. Рассмотрим треугольники FDK и FAG:
  1. AF=FD (т. к. радиусы окружности, описанной возле квадрата, построенного на AD).
  2. AG=DK (т. к. радиусы окружностей, описанных возле равных квадратов).
  3. AB параллельна DC (т. к. противолежащие стороны параллелограмма)

Угол MAT и угол ADC в сумме дают 180° (т. к. односторонние углы при AB параллельна DC и секущей AD).

Угол MAT равен разности 180° и угла ADC.

Угол ADC равен разности 360° и суммы 180° и угла LDN.

Из этого можно сделать вывод:

MAT=180° - ADC = 180° - (180° - LDN) = LDN

Следовательно, что треугольник FDK равен треугольнику FAG (по 2 признаку).

Из пунктов 1, 2 и 3 можно вывести, что треугольники FAG, GBH, HCK и KDF равны. Следовательно, FG=HG=KH=FK.

4) Угол AGB равен сумме углов AGF и FGB.

    Угол AGB равен 90° (т. к. диагонали квадрата перпендикулярны).

    Угол FGB равен разности углов AGB и AGF, что равно разности 90° и угла

    AGF

    Из равенства углов FGA и HGB, то HGF равен 90°.

    Также мы можем сказать, что углы KHG, KFG, HGF, HKF равны 90°.

 Из выше всего сказанного мы можем сказать, что FGHK – квадрат.

Теорема №6. Преобразованием ромба является квадрат.

Теорема №7. Преобразованием равнобедренной трапеции будет являться четырехугольник, диагонали которого равны и взаимно перпендикулярны, а смежные стороны равны, что называется дельтоид

Преобразование Наполеона шестиугольников

Шестиграмм – это шестиугольник, у которого противолежащие стороны равны и параллельны.

Построение шестиграммов.

Существует много способов построения шестиграммов. Рассмотрим один из них.

Отметим 4 точки, не лежащие на одной прямой (этими точками будем задавать шестиграмм) и соединим их отрезками. Найдем середину отрезка, соединяющего две крайние точки. Отметим его как центр поворота и повернем фигуру на –180°. В результате получили шестиграмм.

Преобразование шестиграмма.

Построим преобразование шестиграмма. По идее, нам надо построить на его сторонах правильные шестиугольники и их центры соединить отрезками, но можно упростить задачу. Построим правильные треугольники на сторонах шестиграмма, а затем отрезками соединим их вершины, ведь вершины правильных треугольников являются центрами правильных шестиугольников.

Вырожденные шестиграммы.

   

Вырожденным называют шестиграмм, превращенный в отрезок, причем вырожденный шстиграмм – выпуклая фигура, т. к. отрезок – выпуклая фигура.

Интересные свойства шестиграммов.

  1. Если ABCDEF – шестиграмм, то SBDF=SACE=SABCDEF
  2. Если ABCDEF – шестиграмм, то SBDF=SACE, PBDF=PACE
  3. Вокруг шестиграмма можно описать эллипс

     

 

  4.  Отрезки, соединяющие середины противоположных сторон шестиграмма, проходят через центр описанного вокруг него эллипса  

Заключение:

В результате своей работы мы познакомились с преобразованием  Наполеона многоугольников, выяснили некоторые свойства этих многоугольников, изучили новые фигуры: Дельтоид, квадратоид, шестиграм. Полученные в нашей работе знания можно использовать при замощении исходной плоскости плиткой различной формы, создавать витражи и мозаику.  

Список литературы:

1.  История математики в школе, Г. И. Глейзер, Москва, 1981г.

2. Математика после уроков, М. Б. Балк, Москва, 1971г.

3. Журнал «Математика в школе» №7, Москва, 1998г.

4. Интернет   ресурсы.


Предварительный просмотр:
Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

Подписи к слайдам:

Слайд 1

«МБОУ Михневская средняя школа с углубленным изучением отдельных предметов» Преобразование Наполеоном многоугольников Авторы: Лобанова А., Темнова Я., 9 кл. Руководитель: Курбатова С.В. 2012г.

Слайд 2

Содержание: 1. Введение. 2. Преобразование Наполеона треугольников. а) Преобразование Наполеона вложенных фигур. б) Ядро линейного преобразования. 3. Преобразование Наполеона четырехугольников. 4. Преобразование Наполеона шестиугольников. 5. Заключение.

Слайд 3

Преобразование Наполеона Теорема: если на сторонах произвольного треугольника вне него построить правильные треугольники, то их центры образуют правильный треугольник

Слайд 4

Доказательство А C K N M M1 N1 K1 B А C K N M M1 N1 K1 B

Слайд 5

Доказательство M1 M1 N1 B K1

Слайд 6

Преобразование Наполеона вложенных фигур О

Слайд 7

Теорема: Преобразование Наполеона вложенных треугольников линейно А2 А B C А1 B1 C1 C2 B2

Слайд 8

B1 A B C A1 C1

Слайд 9

Ядро линейного преобразования Ядро линейного преобразования – это множество, переходящее в нуль. Ядро преобразования Наполеона треугольников – это правильные треугольники с центром в (0;0) с обратным порядком вершин. A A B C

Слайд 10

Теорема: Ядро линейного преобразования – линейное пространство. A B C A1 B1 C1 O

Слайд 11

A B C A1 B1 C1

Слайд 12

Преобразование Наполеона четырехугольника Теорема: Преобразованием произвольного четырехугольника является квадратоид

Слайд 13

Теорема: Преобразованием параллелограмма является квадрат А C D F G H K M T B

Слайд 14

Теорема: Преобразованием ромба является квадрат

Слайд 15

Теорема: Преобразованием равнобедренной трапеции является дельтоид.

Слайд 16

Преобразование Наполеона шестиугольников Шестиграмм – это шестиугольник, у которого противолежащие стороны равны и параллельны.

Слайд 17

Построение шестиграммов

Слайд 18

Преобразование шестиграммов

Слайд 19

Вырожденные шестиграммы

Слайд 20

Свойства шестиграммов A B C D F E S BDF = S ACE = 1/2S ABCDEF P BDF = P ACE

Поделиться:

Рисуем тыкву

Без сердца что поймём?

10 осенних мастер-классов для детей

Всему свой срок

Астрономический календарь. Ноябрь, 2018