Кто хочет ограничиться настоящим, без знания прошлого, тот никогда его не поймет…
Г.В.Лейбниц
Все науки возникли из практики. Знания, которые лежат в основе разных наук, человек приобретал в борьбе с опасными для него явлениями природы, и конечная цель наук – создание условий, наиболее благоприятных для существования человека.«Все есть число», говорили мудрецы, подчеркивая необычайно важную роль чисел в жизни людей. Становление и развитие математики как науки, возникновение ее новых разделов тесно связано с развитием потребностей общества в измерениях, контроле в различных областях, с количественными характеристиками объектов окружающего мира (возраст, вес, рост человека, численность населения, запасы полезных ископаемых, площади и т.д.).
Число – одно из основных понятий, позволяющее выразить результаты счета или измерения. Понятие числа служит исходным для многих математических теорий. Числа находят широкое применение в физике, механике, астрономии, химии, информатике и многих других наук. Данная тема актуальна в современном обществе, так какчисло является одним из немногих понятий, которое развивается с развитием общества.
Объекты исследования: исторические процессы развития общества и математики.
Вложение | Размер |
---|---|
![]() | 726.38 КБ |
![]() | 2.47 МБ |
Министерство образования Саратовской области
Муниципальное автономное общеобразовательное
учреждение «Лицей № 37»
Фрунзенского района г. Саратова
«История чисел и систем счисления».
Творческая работа
ученицы МАОУ «Лицей № 37»
Агуреевой Екатерины
Сергеевны
Научный руководитель
Ручина Марина Юрьевна
Саратов, 2012 г.
ОГЛАВЛЕНИЕ
Введение………………………………………………………………………..4
1. Развитие представления о понятии «число»…………………………………6
2. Появление цифр………………………....……………………………………..8
3. Непозиционные системы счисления………………………………………....10
3.1. Обозначение чисел и счет в Древнем Египте…………………………..11
3.2. Римская система счисления……………………………………………...12
3.3. Алфавитные системы счисления……………………………………......14
4. Позиционные системы счисления…………………………………………..17
4.1. Вавилонская система счисления………………………………………..18
4.2. Древнекитайская десятеричная система счисления…………………...19
4.3. История «арабских» чисел……………………………………………....20
4.3.1 Двоичная система счисления………………………………………...21
4.3.2 Пятеричная система счисления ……………………………………..22
4.3.3 Десятичная система счисления……………………………………...23
4.3.4 Восьмеричная и двенадцатеричная системы счисления…………..24
Заключение……………………………………………………………………...25
Список использованной литературы…………………………………………...26
Приложение 1 …………………………………………………………………....27
Приложение 2…………………………………………………………………….28
Введение.
Кто хочет ограничиться настоящим,
без знания прошлого,
тот никогда его не поймет…
Г.В.Лейбниц
Можно ли представить себе мир без чисел? На протяжении всей своей жизни мы сталкиваемся с числами и выполняем над ними арифметические действия. Нас это не удивляет. Мы воспринимаем это, как факт, как само собой разумеющееся и даже не задумываясь об их происхождении. Без знания прошлого нельзя понять настоящее. Поэтому целью данной работы является исследование истории возникновения чисел, связанной с необходимостью выражения всех чисел знаками.
Пересчитывая предметы, мы даем этому множеству количественную характеристику, даже не задумываясь о том, что и в далекие времена наши предки могли считать или, во всяком случае, могли определить количество предметов. Мы живем среди чисел. Само возникновение понятия числа - одно из гениальных проявлений человеческого разума. При помощи чисел производятся измерения, сравнения, вычисления, рисование, проектирование, даже можно делать умозаключения, выводы. Число - важнейшее понятие математики. Понятие «число» является ключевым как для математики, так и для информатики. Потребовалось несколько тысячелетий, чтобы это понятие приобрело форму, которая в настоящий момент признается удовлетворительной подавляющим большинством математиков.
Так, первые области применения математики были связаны с созерцанием звезд и земледелием. Изучение звездного неба позволило проложить торговые морские пути, караванные дороги в новые районы и резко увеличить эффект торговли между государствами. Обмен товарами приводил к обмену культурными ценностями, к развитию толерантности как явления, лежащего в основе мирного сосуществования различных рас и народов.
Практически ежедневно мы сталкиваемся с необходимостью обработки числовой информации, что влечет за собой необходимость создания и усовершенствования вычислительных устройств, благодаря которым обрабатывается огромное количество данных за наименьшее время. Так, для электронного хранения данных в памяти компьютера удобны две цифры, поскольку они требуют только двух состояний электронной схемы – «включено» (это соответствует цифре 1) и «выключено» (это соответствует цифре 0). Такое представление информации называется двоичным или цифровым кодированием. Способы цифрового кодирования текстов, звуков, изображений, а также трехмерных объектов были придуманы в 80-х годах прошлого века.
Цифры, знаки обозначения арифметических действий и другие математические символы вырабатывались людьми постепенно на протяжении веков. Большинство их образовалось из рисунков, чертежей, букв и сокращённых слов.
Согласно учению Пифагора, числа являются мистической сущностью вещей, математические абстракции таинственно руководят миром, устанавливая в нем определенный порядок. Пифагорейцы высказывали предположение о том, что все закономерности мира можно выразить с помощью чисел. Числа признавались не просто выражениями закономерного порядка, но и основой материального мира.
1. Развитие представления о понятии "число".
Еще в глубокой древности числа относились к области тайного. Они зашифровывались символами, и считались символами гармонии мира. Существует много теорий о происхождении чисел.
Пифагорейцы считали, что числа принадлежат к миру принципов, лежащих в основе мира вещей. Пифагор говорил: «Все вещи можно представить в виде чисел».
Аристотель называл число «началом и сущностью вещей, их взаимодействием и состоянием».
Древние египтяне были убеждены, что постижение священной науки чисел составляет одну из высших ступеней герметического действия, без него не может быть посвящения.
У китайцев нечетные числа – это Ян (небо – благоприятность), четные числа – инь (земля, изменчивость и неблагоприятность). Нечетность символизирует незавершенность, непрекращающийся процесс, постоянное продолжение, то есть все то, что не имеет конца, относятся к области вечного. Поэтому в орнаментах, в укрощениях архитектурных или скульптурных сооружений используется обычно нечетное число черт или элементов. Числа – символ порядка. Реки, деревья и горы представляют собой материализованные числа.
Люди научились считать еще в каменном веке. На первых этапах существования человеческого общества числа, открытые в процессе практической деятельности, служили для примитивного счета предметов, дней, шагов и т.п. В первобытном обществе человек нуждался лишь в нескольких первых числах. Но с развитием цивилизации ему потребовалось изобретать все большие и большие числа. Этот процесс продолжался на протяжении многих столетий и потребовал напряженного интеллектуального труда.
С зарождением обмена продуктами труда у людей появилась необходимость сравнивать число предметов одного вида с числом предмета другого вида. На этом этапе возникли понятия «больше», «меньше», «столько же» или «равно». Знания постепенно росли, и чем дальше, тем больше увеличилась потребность в умении считать и мерить.
Прежде чем человек научился считать или придумал слова для обозначения чисел, он, несомненно, владел наглядным, интуитивным представлением о числе, позволявшим ему различать одного человека и двух людей или двух и многих людей. Любой предмет можно было увидеть и потрогать. Число потрогать нельзя, и вместе с тем числа реально существуют, поскольку все предметы можно посчитать. Эта странность заставила людей приписывать числам сверхъестественные свойства.
То, что первобытные люди сначала знали только «один», «два» и «много», подтверждается тем, что в некоторых языках, например в греческом, существуют три грамматические формы: единственного числа, двойственного числа и множественного числа. Позднее человек научился делать различия между двумя и тремя деревьями и между тремя и четырьмя людьми. Счет изначально был связан с вполне конкретным набором объектов. У некоторых племен Австралии и Полинезии до самого последнего времени было только два числительных: «один» и «два», а все числа больше двух, получали названия в виде сочетаний этих двух числительных: число 3 – это «два и один», 4 – «два и два», 5 – «два, два, один».
Жизнь заставляла племена учиться быстрее, поэтому у земледельческих народов математика из наборов отдельных простейших правил постепенно стала превращаться в науку.
2. Появление цифр.
Цифры – это знаки, с помощью которых записывают числа. Система счисления или нумерация – это способ записи чисел с помощью цифр.
Как только люди научились считать, у них появилась потребность в записи чисел. Приходилось сталкиваться с большими числами, запомнить которые было трудно или даже невозможно.
В древние времена, когда человек хотел показать, сколькими животными он владел, он клал в большой мешок столько камешков, сколько у него было животных. Чем больше животных, тем больше камешков. Отсюда впоследствии и произошло слово «калькулятор», «калькулюс» в переводе с латинского означает «камень».
Находки археологов свидетельствуют о том, что первоначально количество предметов отображали равным количеством каких-либо значков: зарубок, черточек, точек. Для того чтобы два человека могли точно сохранить некоторую числовую информацию, они брали деревянную бирку, делали на ней нужное число зарубок, а потом раскладывали бирку пополам. Каждый уносил свою половинку и хранил ее. Этот прием позволял избегать «подделки документов», так как при возникновении спорной ситуации половинки можно было сложить и сравнить совпадение и число зарубок.
Такая система записи чисел называется единичной (унарной), так как любое число в ней образуется путем повторения одного знака, символизирующего единицу. Отголоски единичной системы счисления встречаются и сегодня. Например, того не осознавая, этим кодом активно пользуются малыши, показывая на пальцах вой возраст. Именно унарная система является фундаментом арифметики и до сих пор вводит учащихся в мир счета.
Единичная система – не самый удобный способ записи чисел, так как их записывать утомительно и записи при этом получаются очень длинными.
Перуанские инки вели счет животных и урожая, завязывая узелки на ремешках или шнурках разной длины и цвета. Эти узелки назывались кипу. Когда накапливалось по несколько метров веревочной «счетной книги», достаточно сложно было вспомнить через год, что означают 4 узелочка. Людей, завязывающих узелки, называли вспоминателями.
Так же, в качестве вычислительного инструмента у человека были пальцы, поэтому и счет чаще всего вели группами по 5 или по 10 предметов.
Индейцы племени майя в Америке считали пятерками: одна пятерка – единица следующего разряда, пять пятерок – новый разряд и т.д., соответственно они пользовались пальцами только одной рукой.
Некоторые племена использовали только четыре пальца одной руки, однако при этом учитывали, что каждый палец состоит из трех фаланг, т.е. имели в распоряжении двенадцать объектов счета. Так возникла дюжина, которая была широко распространена и в Европе, и в России, но постепенно уступила свое место десятке. До сих пор в Европе дюжинами считают пуговицы, носовые платки, куриные яйца и многое другое, что продается поштучно.
С течением времени возникли иные, более экономичные системы счисления. Впоследствии, люди пришли к разумному решению: записывать числа по разрядам, а точнее, отдельно единицы, отдельно десятки, отдельно сотни. Так как многие народы в древности не общались друг другом, то у разных народов возникли разные системы счисления и представления чисел и цифр.
3. Непозиционные системы счисления.
Система счисления – это совокупность приемов и правил для обозначения и именования чисел.
Система счисления называется непозиционной, если в ней количественные значения символов, используемых для записи чисел, не зависят от их положения (места, позиции) в коде числа.
В непозиционных системах для представления числа используется сложение всех цифр, по-английски сложение – add. Поэтому другое название этих систем - аддитивные.
Непозиционные системы счисления имеют ряд существенных недостатков:
1. существует постоянная потребность введения новых знаков для записи больших чисел;
2. невозможно представлять дробные и отрицательные числа;
3. сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения. В частности, у всех народов наряду с системами счисления были способы пальцевого счета, а у греков была счетная доска - абак. Но мы до сих пор пользуемся элементами непозиционной системы счисления в обыденной речи, в частности, мы говорим сто, а не десять десятков, тысяча, миллион, миллиард, триллион.
3.1. Обозначение чисел и счет в Древнем Египте.
Система счисления Древнего Египта является непозиционной. Примерно в третьем тысячелетии до нашей эры египтяне придумали свою числовую систему, в которой для обозначения ключевых чисел 1, 10,100 и т.д. использовались специальные значки – иероглифы.
- 100. Это мерная веревка, которой измеряли земельные участки после разлива Нила;
- 1000 это изображение лотоса;
- 10 000 "в больших числах будь внимателен!" - говорит поднятый вверх указательный палец;
- 100 000 это головастик;
- 1 000 000 человек с поднятыми вверх руками;
- 10 000 000 египтяне поклонялись Амону Ра, богу Солнца, самое большое свое число они изобразили в виде восходящего солнца.
С течением времени эти знаки изменились и приобрели более простой вид. Для того чтобы изобразить, например, целое число 23145, достаточно записать в ряд два иероглифа, изображающие десять тысяч, затем три иероглифа для тысячи, один – для ста, четыре – для десяти и пять иероглифов для единицы:
Записывались цифры числа начиная с больших значений и заканчивая наименьшими. Если десятков, единиц, или какого-то другого разряда не было, то переходили к следующему разряду. Особую роль у египтян играло число 2 и его степени. Умножение и деление они проводили путем последовательного удвоения и сложения чисел и в результате расчеты выглядели довольно громоздко.
3.2. Римская система счисления.
Примером непозиционной системы счисления, которая сохранилась до наших дней, служит система счисления, применявшаяся более двух с половиной тысяч лет назад в Древнем Риме. Эти цифры встречаются на циферблатах часов, для наименования знаменательных дат, томов, разделов и глав в книгах и т.д.
В основе римской системы счисления лежат знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, X (две сложенные ладони) для 10, а также специальные знаки для обозначения чисел 50, 100, 500 и 1000.
С течением времени облик римских цифр видоизменился, неизменными остались I, V, Х . Ученые предполагают, что первоначально иероглиф для числа 100 имел вид пучка трёх черточек на подобие русской буквы Ж, а уже впоследствии 100 стали обозначать буквой С (от начальной буквы латинского слова centum – «сто») , а для числа 50 – вид верхней половинки этой буквы., которая в дальнейшем трансформировалась в знак L. Для обозначении чисел 500 и 1000 стали применяться первые буквы соответствующих латинских слов (demimille – «половина тысячи», «пятьсот», mille – «тысяча»).
ЕДИНИЦЫ | ДЕСЯТКИ | СОТНИ | ТЫСЯЧИ | ||||
1 | I | 10 | X | 100 | C | 1000 | M |
2 | II | 20 | XX | 200 | CC | 2000 | MM |
3 | III | 30 | XXX | 300 | CCC | 3000 | MMM |
4 | IV | 40 | XL | 400 | CD | ||
5 | V | 50 | L | 500 | D | ||
6 | VI | 60 | LX | 600 | DC | ||
7 | VII | 70 | LXX | 700 | DCC | ||
8 | VIII | 80 | LXXX | 800 | DCCC | ||
9 | IX | 90 | XC | 900 | CM |
Одно из правил записи римских чисел гласит: «Если большая цифра стоит перед меньшей, то они складываются, если же меньшая стоит перед большей (в этом случае меньшая цифра не может повторяться), то меньшая вычитается из большей». Например: VII=5+1+1=7; IX=10-1=9
Если проанализировать множество старинных и современных надписей римскими цифрами, то можно убедиться, что авторы придерживались каких-то негласных правил. Но единых и четких принципов записи римских чисел до сих пор так и не выработано.
Римская система нумерации десятичная, но непозиционная.
3.3. Алфавитные системы счисления.
Наряду с иероглифическими в древности широко применялись системы, в которых числа изображались буквами алфавита. Примером такой системы являлась греческая алфавитная нумерация, получившая название ионической. Так, в Древней Греции числа 1,2,….9 обозначали первыми девятью буквами греческого алфавита: ά (Альфа) = 1, β (Бета) = 2, γ (Гамма) = 3 и т.д.. Для обозначения десятков применялись следующие девять букв, для сотен последние 9 букв. Чтобы отличить цифры от букв, над буквами ставили черточку.
Алфавитной нумерацией пользовались также южные и восточные славянские народы. У одних числовые значения букв устанавливались в порядке славянского алфавита, у других (в том числе у русских) роль цифр играли не все буквы славянского алфавита, а только те из них, которые имелись в греческом алфавите. Над буквой, обозначавшей цифру, ставился специальный значок ~ («титло»). При этом, числовые значения букв возрастали в том же порядке, в каком следовали буквы в греческом алфавите (порядок букв славянского алфавита был несколько иным).
В России славянская нумерация сохранялась до конца XVII века.
При Петре I возобладала так называемая арабская нумерация, которой мы пользуемся и сейчас. Первые девять чисел записывались так:
Числа от 11 до 19 обозначались так:
Остальные числа записывались буквами слева направо, напри мер, числа 5044 или 1135 имели соответственно обозначение.
Тысячи обозначались теми же буквами с «титлами», что и первые девять цифр, но слева внизу у них ставился специальный знак.
- 1000 - 2000 - 7000
Десятки тысяч назывались «тьмами», их обозначали, обводя знаки единиц кружками:
- 10000
- 20000
- 50000
Сотни тысяч назывались «легионами», их обозначали, обводя знаки единиц кружочками из точек. Например, числа 100 000 и 200 00 обозначались так:
- 100000
- 200000
Миллионы назывались «леордами», их обозначали, обводя знаки единиц кружочками из лучей запятых.
или
- 1000000
Десятки миллионов назывались «воронами» или «вранами», их обозначали, обводя знаки единиц кружками из крестиков или ставя по обе стороны знака единиц букву «К». Например, числа 10 000 000 или 20 000 000 обозначались так:
- 10000000
Сотни миллионов назывались «колодами». Для их обозначения над и под буквой, обозначающей единицы, ставились квадратные скобки. Например, числа 100 000 000 записывались в виде:
При записи чисел больших, чем тысячи, в практической деятельно сти (счете, торговле и т.д.) часто вместо кружков ставили знаки «; Л» перед буквами, обозначавшими десятки и сотни тысяч, например, запись означает соответственно 500044 и 540004.
В приведенной системе обозначения чисел не шли дальше ты сяч миллионов. Такой счет назывался «малый счет». В некоторых рукописях авторами рассматривался и «великий счет», доходив ший до числа 1050.
4. Позиционные системы счисления.
Рассмотренные нами иероглифические и алфавитные системы счисления имели существенный недостаток – в них было очень трудно выполнять арифметические операции. Этого неудобства нет у позиционных систем.
Система счисления называется позиционной, если количественные значения символов, используемых для записи чисел, зависят от их положения (места, позиции) в коде числа.
Рассмотрим на примере, число 3333 – три тысячи триста тридцать три. Здесь каждая цифра «3» в зависимости от того, в каком месте находиться обозначает свое число. Первая тройка слева, это три тысячи, вторая, три сотни, третья – три десятка, четвертая – три единицы. Т.е. это позиционная система. В таких же системах значение каждой цифры, зависит от ее положения (места, позиции) в записи числа. Число 3333 можно представить в таком виде 3*1000 + 3*100 + 3*10 + 3. Т.е. для представления этого числа используется умножение (по-английски multiplication), отсюда название этой системы – мультипликативная.
Французский математик Пьер Симон Лаплас (1749-1827 г.г.) такими словами оценил «открытие» позиционной системы счисления: «Мысль – выражать все числа немногими знаками, придавая им значение по форме, еще значение по месту, настолько проста, что именно из-за этой простоты трудно оценить, насколько она удивительна…».
Основные достоинства любой позиционной системы счисления – простота выполнения арифметических операций и ограниченное количество символов, необходимых для записи любых чисел.
4.1. Вавилонская система счисления.
Идея приписывать цифрам разные величины в зависимости от того, какую позицию они занимают в записи числа, впервые появилась в III тысячелетии до нашей эры в Месопотамии (Междуречье) у древнего талантливого народа – шумеров. От них она перешла к вавилонянам – новым хозяевам Междуречья, почему и вошла в историю как вавилонская система счисления.
Они пользовались всего двумя цифрами. Вертикальная чёрточка обозначала одну единицу, а угол из двух лежачих чёрточек – десять. Эти чёрточки у них получались в виде клиньев, потому что они писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали.
До нас дошли сотни тысяч обожженных глиняных табличек с письменами древних вавилонян. Простейшими цифрами в их системе служили два знака: вертикальный клин для обозначения 1 и горизонтальный клин для 10. Числа от 1 до 59 записывались с помощью этих двух знаков, как в обычной иероглифической системе.
Эти народы использовали шестидесятеричную систему счисления, например число 23 изображали так: Число 60 снова обозначалось знаком , например число 92 записывали так:
Был у вавиловян и знак, игравший роль нуля, им обозначали отсутствие промежуточных разрядов, но при этом отсутствие младших разрядов не обозначалось никак. Так, число могло обозначать и 3 и 180 = 3*60 и 10 800 = 3*60*60. Различать такие числа можно было только по смыслу. Отголоски этой системы проявляются в обыкновении делить час на 60 мин, 1 мин на 60 секунд, полный угол на 360 градусов.
4.2. Древнекитайская десятеричная система счисления.
Эта система одна из старейших и самых прогрессивных, поскольку в нее заложены такие же принципы, как и в современную «арабскую», которой мы пользуемся. Возникла эта система около 4 000 тысяч лет тому назад в Китае.
Числа в этой системе, так же как и у нас записывались слева направо, от больших к меньшим. Если десятков, единиц, или какого-то другого разряда не было, то сначала ничего не ставили и переходили к следующему разряду. (Во времена династии Мин был введен знак для пустого разряда - кружок - аналог нашего нуля). Чтобы не перепутать разряды использовали несколько служебных иероглифов, писавшихся после основного иероглифа, и показывающих какое значение принимает иероглиф-цифра в данном разряде.
Например:
5 * 100 + 4 * 10 + 8 = 548
Эта мультипликативная запись, так как в ней используется умножение. Она десятичная, в ней есть знак нуля, кроме этого она позиционная. Т.е. она почти соответствует «арабской» системе счисления.
4.3. История «арабских» чисел.
История привычных «арабских» чисел запутана и возникла благодаря древним астрономам, их точным расчетам. Примерно во II веке до н.э. греческие астрономы познакомились с наблюдениями вавилонян, переняли их позиционную систему счисления. Целые числа они записывали не с помощью клиньев, а в своей алфавитной нумерации. Для обозначения нуля использовали первую букву греческого слова Ouden - ничто. Между II и VI веками н.э. индийские астрономы познакомились с греческой астрономией, переняв шестидесятеричную систему и круглый греческий нуль, соединили греческую нумерацию с десятичной мультипликативной системой взятой из Китая. Арабы, в свою очередь первыми оценили, усвоили и перенесли ее в Европу, упростили знаки, и они приобрели вид , получив название арабской. В XII веке нашей эры она распространилась по всей Европе, так как была удобнее и проще. Слово «цифра» перешло к нам от арабов по наследству нуль или «пусто», называли «сифра». Сейчас цифрами называются все десять знаков для записи чисел.
Позиционных систем счисления достаточно много: двоичная, пятеричная, восьмеричная, десятичная, двенадцатеричная, двадцатеричная, шестидесятеричная и т.д. и каждая имеет свою историю, рассмотрим некоторые из них.
Основание системы счисления – это число, на основе которого ведется счет.
Например, если основание системы счисления равно десяти, то минимальная счетная группа этой системы счисления равна 10, это значит, что, сосчитав какие-либо предметы до десяти, мы считаем снова с единицы, но при этом запоминаем число десятков. В нашей «арабской» системе основанием является число десять. Десятеричная и пятеричная система возникла от того факта, что на одной руке человека пять пальцев, на двух руках 10 пальцев. Происхождение двенадцатеричной системы тоже связано со счетом на пальцах. Считали большой палец руки и фаланги остальных четырех пальцев. Если двенадцать умножить на пять, то получим шестидесятеричную систему.
4.3.1 Двоичная система счисления.
Это основная система счисления, в которой осуществляются арифметические и логические преобразования информации в технических устройствах. Так, для электронного хранения данных в памяти компьютера удобны две цифры 1 и 0, так как они требуют только двух состояний электронной схемы – «включено» и «выключено».
Каждый символ представляется цепочкой из 8 нулей и единиц (всего существует 256 цепочек). Такое представление называется двоичным или цифровым кодированием.
Соответствие символов и кодов задается с помощью специальных кодовых таблиц.
Перевод целых чисел из двоичной системы счисления в десятичную:
Каждая последующая цифра в 2 раза больше предыдущей:
1 2 4 8 16 32 64 и т.д.
Пусть имеется число 1111012, его можно представить так:
1111012 =1*1 + 0*2 + 1*4 + 1*8 + 1*16 + 1*32 = 6110 , или каждый символ этого числа умножить на основание системы счисления, возвести в степень соответствующую положению символа в записи числа и все произведения сложить.
Перевод целых десятичных чисел в двоичный код:
Данный способ основан на записи остатков от деления исходного числа и получаемых частных на 2, продолжаемого до тех пор, пока очередное частное не окажется равным 0.
7510 = 10010112
4.3.2 Пятеричная система счисления.
В качестве вычислительного инструмента у человека были пальцы, поэтому и счет чаще всего вели группами по 5 или по 10 предметов.
Индейцы племени майя в Америке считали пятерками: одна пятерка – единица следующего разряда, пять пятерок – новый разряд и т.д., соответственно они пользовались пальцами одной руки.
Рассмотрим пятеричную систему счисления:
0 1 2 3 4 10 11 12 13 14 20 21 22 23 24 30 31 32 33 34 40 41 42 43 44
Переведем число 34 из пятеричной систему счисления в десятичную: 345 = 3*51 + 4*50 = 15+4=1910 и, наоборот, из десятичной в пятеричную:
1910 = 345
4.3.3 Десятичная система счисления.
Система записи чисел, которой мы привыкли пользоваться в повседневной жизни, в которой производим все вычисления, на ней базируется метрическая система мер. Десятичной она называется, так как в ней используется десять различных знаков (цифры 0,1,2,3….9).
В десятичном числе 255 = 2*100+5*10+5*1 цифры «5», находящиеся на разных позициях, имеют различные количественные значения – 5 десятков и 5 единиц. При перемещении цифры на соседнюю позицию, ее «вес» изменится в 10 раз.
Арифметические действия над десятичными числами производятся с помощью достаточно простых операций, в основе которых лежат таблицы умножения и сложения, а также правило переноса: если в результате сложения двух цифр получается число, которое больше или равно 10, то оно записывается с помощью нескольких цифр, находящихся на соседних позициях.
Перевод чисел из одной системы в другую осуществляется по аналогии с предыдущими системами.
Позиционный принцип и цифровое обозначение могут быть приспособлены к системе счисления с любым основанием, кроме единицы.
4.3.4 Восьмеричная и двенадцатеричная системы счисления.
В восьмеричной системе счисления использовались цифры от 0 до 7. Шведский король Карл XII в 1717 г. увлекался восьмеричной системой, считал ее более удобной, чем десятичная, и намеревался королевским указом ввести ее как общегосударственную.
Широкое распространение имели элементы двенадцатеричной системы счисления и в Европе, и в России. Для счета использовались только четыре пальца одной руки, однако при этом учитывали, что каждый палец состоит из трех фаланг.
Число двенадцать (дюжина), также составляло конкуренцию десятке в борьбе за почетный пост основания общеупотребительной системы счисления, так как число 12 имеет больше делителей (2,3,4,6), чем 10 (2 и 5) , следовательно, в двенадцатеричной системе счисления более удобно производить расчеты, чем в десятичной. В XIX веке математики были за полный переход именно на эту систему, но перевес на сторону десятки возник из-за возможности счета по пальцам рук (десятками).
Дюжина прочно вошла в нашу жизнь. Например, в сутках две дюжины часов, час делится на пять дюжин минут, круг содержит тридцать дюжин градусов, фут делится на двенадцать дюймов, набор карандашей или фломастеров состоит из 6, 12 или 24 шт., столовые сервизы рассчитаны на 6 или 12 персон.
Заключение.
Изучая исторические процессы развития общества и математики, мы выяснили, что понятие числа прошло длинный исторический путь развития и наука о числах и действиях над ними необходима для прогрессивного развития человеческого общества. Числа составляют часть человеческого мышления и мы порой не отдаем себе отчета, насколько важны они в нашей жизни.
При исследовании истории возникновения чисел была установлена зависимость между возникновением чисел и необходимостью выражения всех чисел знаками. Эта зависимость повлияла на появление знаков-цифр, которые заменили другие не совсем удобные способы обозначения. Мы узнали о существовании различных теорий о происхождении чисел и пришли к выводу, что самым ценным вкладом в сокровищницу математических знаний человечества является употребляемый нами способ записи при помощи десяти знаков чисел: 1,2,3,4,5,6,7,8,9,0.
В процессе исследования и с целью выявления осведомленности одноклассников о многообразии чисел нами было проведено анкетирование (Приложение 1, Приложение 2).
Список литературы:
Приложение 1
Анкета для учеников 5 класса
Приложение 2
Проведя анкетирование в своем классе, после обработки данных, мы получили следующие результаты:
80 % - учащихся знают, что такое число;
100 % - что такое цифра;
40% - учащихся знают, что означало слово «цифра» и имеют представление об истории происхождения.
70 % - почему нами используется десятичная система счисления.
Одна беседа. Лев Кассиль
Два морехода
Притча о гвоздях
Прекрасное далёко
Рисуем весеннюю вербу гуашью