В 5 классе на уроках математики мы познакомились с новыми числами, которые стали называть обыкновенными дробями. Мне захотелось узнать:
- откуда появилось название этих чисел;
- почему дроби записывают так, а не по-другому;
- кто придумал эти числа;
- что было бы, если бы не было дробей?
- что будет если дроби исчезнут?
Объект исследования: история возникновения обыкновенных дробей. Предмет исследования: обыкновенные дроби.
Гипотеза: если бы не было дробей – могла бы развиваться математика?
Цель работы :расширение знаний о происхождении дробей; изучение последовательности усовершенствования записи обыкновенных дробей
| Вложение | Размер |
|---|---|
| 1.2 МБ | |
| 417.08 КБ |
Слайд 1
МБОУ «Пригородная средняя общеобразовательная школа №1 Оренбургского района» Из истории обыкновенных дробей Работа учащегося 6 класса Какурина Даниила Руководитель: Рожко И.А.Слайд 2
Есть такая дробь у нас, Про неё пойдет весь сказ, Она из чисел состоит, А между ними, как мосточек , Дробная черта лежит, Над чертою числитель, Знайте, Под чертою – знаменатель, Дробь такую непременно Надо звать обыкновенной.
Слайд 3
Объект исследования: История возникновения обыкновенных дробей Предмет исследования: Обыкновенные дроби Гипотеза: Если бы не было дробей – могла бы развиваться математика? Методы исследования: - работа с литературой - поиск информации во всемирной сети Интернет - работа с дробями в игровой форме Цель работы: -расширение знаний о происхождении дробей -изучение последовательности усовершенствования записи обыкновенных дробей Задачи: сделать анализ: -почему дроби записывают таким образом? -кто придумал такие записи? -есть ли их дальнейшее развитие?
Слайд 4
На протяжении многих веков на языках народов ломаным числом именовали дробь. Необходимость в дробях возникла на ранней ступени развития человечества. Так, по-видимому, дележ десятка плодов между большим числом участников охоты заставлял людей обращаться к дробям. Первой дробью была половина. Для того, чтобы из одного получить половину, надо разделить единицу, или «разломить» ее на два. От сюда и пошло название ломаные числа. Теперь их называют дробями. Различают три вида дробей: Единичные ( аликвоты ) или доли (например, 1/2, 1/3, 1/4, и т.д.). Систематические, т.е дроби, у которых знаменатель выражается степенью числа (например, степенью числа 10 или 60 и т.д.). Общего вида, у которых числителем и знаменателем может быть любое число. Существуют дроби «ложные» – неправильные и «реальные» – правильные.
Слайд 5
Первым европейским учёным, который стал использовать и распространять современную запись дробей, был итальянский купец и путешественник Фибоначчи (Леонардо Пизанский). В 1202 году он ввел слово дробь.
Слайд 6
Дроби в Древнем Египте. Первой дробью была половина. За ней последовали 1/4,1/8,1/16,…, затем 1/3,1/6, и т.д., т.е. самые простые дроби, доли целого, называемые единичные. Древние египтяне выражали любую дробь в виде суммы только основных дробей. Египтяне писали на папирусах, т.е на свитках, изготовленных из стебля крупных тропических растений, носивших то же название. Важнейшим по содержанию является папирус Ахмеса , названный так по имени одного из древнеегипетских писцов. Рукою которого он был написан. Его длина 544см, а ширина 33 см.
Слайд 7
Хранится он в Лондоне, в Британском музее. Он был приобретён в прошлом веке англичанином Риндом и поэтому называется иногда папирусом Ринда . Этот старинный математический документ озаглавлен так: «Способы, при помощи которых можно дойти до понимания всех тёмных вещей, всех тайн, заключающихся в вещах». Папирус представляет собой собрание решений 84 задач, имеющих прикладной характер; эти задачи относятся к действиям с дробями, определению площади прямоугольника, имеются также арифметические задачи на пропорциональное деление, определение соотношений между количеством зерна и получающегося из него хлеба или пива и т. д . Однако для решения этих задач не даётся никаких общих правил, не говоря уже о попытках каких-нибудь теоретических обобщений.
Слайд 8
В Папирусе Ахмеса есть такая задача— разделить семь хлебов между восемью людьми поровну. Современный школьник скорее всего решал бы задачу так: надо разрезать каждый хлеб на 8 равных частей и каждому человеку дать по одной части от каждого хлеба. А вот как эта задача решена на папирусе: Каждому человеку нужно дать по половине, четверти и восьмушке хлеба. Теперь ясно, что надо 4 хлеба разрезать пополам, 2 хлеба на 4 части и только один хлеб – на 8 частей. И если нашему школьнику пришлось бы сделать 49 разрезов, то Ахмесу – всего 17, т.е. египетский способ почти в 3 раза экономичнее.
Слайд 9
Для разложения неединичных дробей на сумму единичных существовали готовые таблицы, которыми и пользовались египетские писцы для необходимых вычислений. Эта таблица помогала производить сложные арифметические выкладки согласно принятым канонам. По-видимому, писцы заучивали ее наизусть, так же, как сейчас школьники запоминают таблицу умножения. С помощью этой таблицы выполняли и деление чисел. Умели египтяне также умножать и делить дроби. Но для умножения приходилось умножать доли на доли, а потом, быть может, снова использовать таблицу. Еще сложнее обстояло дело с делением.
Слайд 10
Вавилон. В древнем Вавилоне высокий уровень культуры был достигнут в третьем тысячелетии до нашей эры. Шумеры и аккадцы, населявшие Древний Вавилон, писали не на папирусе, который в их стране не рос, а на глине. Путем нажатия клиновидной палочкой на мягкие глиняные плитки наносились знаки, имевшие вид клиньев. Вот почему такое письмо называется клинописью.
Слайд 11
Вертикальный клин обозначался 1; 60; 60 2 ; 60 3 ,… Горизонтальный клин обозначал 10. Чтобы написать 62 поступали так : промежуток
Слайд 12
Дроби в Древнем Риме. Интересная система дробей была в Древнем Риме. Она основывалась на делении на 12 долей единицы веса, которая называлась асс. Двенадцатую долю асса называли унцией . А путь, время и другие величины сравнивали с наглядной вещью - весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь не шла о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия.
Слайд 13
Римская система дробей и мер была двенадцатеричной. Даже сейчас иногда говорят: "Он скрупулезно изучил этот вопрос". Это значит, что вопрос изучен до конца, что ни одной самой малой неясности не осталось. А происходит странное слово "скрупулезно" от римского названия 1/288 асса - " скрупулус ". В ходу были и такие названия: " семис " - половина асса, "секстане" - шестая его доля, " семиунция " - полунции , то есть 1/24 асса, и т. д. Всего применялось 18 различных названий дробей. Чтобы работать с дробями, надо было для этих дробей помнить и таблицу сложения, и таблицу умножения. Поэтому римские купцы твердо знали, что при сложении триенса (1/3 асса) и секстанса получается семис , а при умножении беса (2/3 асса) на сескунцию (3/2 унции, то есть 1/8 асса) получается унция. Для облегчения работы составлялись специальные таблицы, некоторые из них дошли до нас.
Слайд 14
Древняя Греция. В греческих сочинениях по математике дробей не встречалось. Греческие ученые считали, что математика должна заниматься только целыми числами. С дробями они предоставляли возиться купцам, ремесленникам, а также землемерам, астрономам и механикам. Но старая пословица говорит: « Гони природу в дверь, она влетит в окно». Поэтому и в строго научные сочинения греков дроби проникали, так сказать « с заднего хода». В Греции употреблялись наряду с единичными, «египетскими» дробями и общие, обыкновенные дроби. Среди разных записей употреблялась и такая: сверху знаменатель, под ним числитель дроби.
Слайд 15
Еще за 2-3 столетия до Евклида и Архимеда греки свободно владели арифметическими действия с дробями. В VI в. до н.э. жил знаменитый ученый Пифагор. Рассказывают , что на вопрос, сколько учеников посещают его школу, Пифагор ответил: «Половина изучает математику, четверть – музыку, седьмая часть пребывает в молчании, кроме этого, есть три женщины».
Слайд 16
Дроби на Руси. На Руси дроби называли долями, позднее «ломанными числами» Например, - эти дроби назывались родовые или основными. Половина, полтина – 1 2 Четь – 1 4 Полчеть – 1 8 Полполчеть – 1 16 Пятина – 1 5 Треть – 1 3 Полтреть – 1 6
Слайд 17
Из истории обозначения дробей. Современную систему записи дробей с числителем и знаменателем создали в Индии. Только там писали знаменатель сверху, а числитель – снизу и не писали дробной черты. Записывать дроби в точности, как сейчас, стали арабы . В Древнем Китае пользовались десятичной системой мер, обозначали дробь словами, используя меры длины чи : цуни , доли, порядковые, шерстинки, тончайшие, паутинки. Дробь вида 2,135436 выглядела так: 2 чи , 1 цунь , 3 доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. В XV веке, в Узбекистане математик и астроном Джемшид Гиясэддин ал –Каши записал дробь в одну строчку числами в десятичной системе и дал правила действия с ними. Он пользовался несколькими способами написания дроби: то он применял вертикальную черту, то чернила черного и красного цветов.
Слайд 18
Старинные задачи с дробями. В произведении знаменитого римского поэта I века до н. э. Горация так описана беседа учителях учеником в одной из римских школ этой эпохи: Учитель. Пусть скажет сын Альбина, сколько останется, если от пяти унций отнять одну унцию? Ученик. Одна треть. Учитель. Правильно. Ты сумеешь беречь свое имущество. Решение: 4 унции 4 унции 4 унции Ответ: 1/3
Слайд 19
Задача из "Папируса Ахмеса " (Египет, 1850 г. до н. э.) "Приходит пастух с 70 быками. Его спрашивают: - Сколько приводишь ты своего многочисленного стада? Пастух отвечает: - Я привожу две трети от трети скота. Сочти!" Решение: 1) 70:2·3=105 голов - это 1/3 от скота 2) 105·3=315 голов скота Ответ: 315 голов скота
Слайд 20
Спасибо за внимание!
Слайд 21
Литература 1.История арифметики. Депман,1965г. 2.История математики от Декарта до середины 19 столетия . Вилейтнер , 1960г. 3.Энциклопедия для детей Аванта+ математика. 4.Детская энциклопедия. М.,1965г.

Космический телескоп Хаббл изучает загадочную "тень летучей мыши"

Машенька - ветреные косы

Разлука

Любимое яичко

Плавает ли канцелярская скрепка?