• Главная
  • Блог
  • Пользователи
  • Форум
  • Литературное творчество
  • Музыкальное творчество
  • Научно-техническое творчество
  • Художественно-прикладное творчество

Теория вероятности

Опубликовано Кустова Людмила Анатольевна вкл 07.02.2013 - 13:07
Автор: 
Савчук Арина

В данной презентации рассматривается теория вероятности

Скачать:

ВложениеРазмер
Package icon teoriya_veroyatnosti.zip1.65 МБ

Подписи к слайдам:

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка).
Самые ранние работы учёных в области теории вероятностей относятся к XVII веку. Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей. Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс.
Свойства10. 20. Для достоверного события m=n и P(a)=1.30. Для невозможного события m=0 и P(a)=0.
Определение :
(классическое определение вероятности)Вероятностью события А называется отношение числа m элементарных исходов, благоприятствующих этому событию, к общему числу элементарных исходов испытания n.
Обозначение:
Определение2:
Достоверным называют событие которое обязательно произойдет при выполнении определенного количества условий.
Определение3:
Невозможным называют событие которое не происходит при выполнении определенного количества условий.
1. В урне 3 белых и 9 черных шаров. Из урны наугад вынимается 1 шар. Какова вероятность того, что вынутый шар окажется черным?
Решение:Количество всех возможных результатов n=3+9=12.Опытов, в результате которых может быть вынут черный шар m=3.
Ответ: 0, 25
4. Монета брошена 2 раза. Какова вероятность события: А- выпадет одновременно два герба?
Решение:Сколько всего возможно результатов опыта?
Таким образом, всего возможно результатов n=4, нас интересующий результат возможен только один раз m=1, поэтому
ГГ,
ГР,
РГ,
РР
Ответ: 0,25
5. Набирая номер телефона вы забыли последнюю цифру и набрали её наугад. Какова вероятность того, что набрана нужная вам цифра?
Решение:
n=10
Сколько всего цифр?
Вы забыли только последнюю цифру, значит m=?
Тогда,
Ответ: 0,1
6. Из слова «математика» выбирается наугад одна буква. Какова вероятность того, что это будет буква «м»?
Решение:
n – количество букв в слове, а m - количество нужной нам буквы «м».
Ответ: 0,2
7. В коробке имеется 3 кубика: чёрный, красный и белый. Вытаскивая кубики наугад, мы ставим их последовательно друг за другом. Какова вероятность того, что в результате получится последовательность: красный, чёрный, белый?
Сколько всего возможно результатов опыта?Пусть Ч – черный кубик, К – красный кубик, Б – белый кубик, тогда
ЧКБ, ЧБК, БЧК, БКЧ, КЧБ, КБЧ.
Решение:
n=6
Ответ:
8. В мешке 50 деталей, из них 5 окрашено. Наугад вынимают одну деталь. Найти вероятность того, что данная деталь окрашена.
Решение:Сколько всего возможно результатов опыта? Сколько можно вынуть деталей и окрашенных, и неокрашенных?
n=50
Из них можно вынуть только 5 окрашенных деталей, поэтому
m=5
Таким образом, получаем:
Ответ: 0,1
11. Цифры 1,2,3,…, 9, выписанные на отдельные карточки, складывают в ящик и тщательно перемешивают. Наугад вынимают одну карточку. Найти вероятность того, что число, написанное на этой карточке: а) чётное; б) нечётное; в) однозначное; г) двухзначное.
Решение:Общее количество опытов – это количество карточек, которые будут сделаны по условию задачи:
n=9
а) Чётные числа от 1 до 9 – 2, 4, 6, 8
 m=4
Тогда,
б) Нечётные числа − 1, 3, 5, 7, 9,
m=5
Тогда,
в) Все числа от1 до 9 однозначные, т.к. состоят из одного знака
m=9,
тогда,
г) Соответственно, двухзначных чисел среди них нет и m=0 и
Ответ:
Поделиться:

Рисуем зимние домики

Смекалка против Змея-Горыныча

Украшаем стену пушистыми кисточками и помпончиками

Швейня

Привередница