• Главная
  • Блог
  • Пользователи
  • Форум
  • Литературное творчество
  • Музыкальное творчество
  • Научно-техническое творчество
  • Художественно-прикладное творчество

Всероссийский дистанционный конкурс «Наглядная геометрия» Абросимов М

Опубликовано Гордеева Марина Евгеньевна вкл 03.09.2013 - 18:29
Гордеева Марина Евгеньевна
Автор: 
Абросимов Михаил ученик 7 класса

В работе рассказывается о геометрических фигурах (куб, икосаэдр), их свойствах, развёртках

Скачать:

ВложениеРазмер
Файл abrosimov_mikhail.docx80.32 КБ

Предварительный просмотр:


Куб или правильный гексаэдр — правильный многогранник, каждая грань которого представляет собой квадрат.


Частный случай параллелепипеда и призмы.


Свойства куба

  • Четыре сечения куба являются правильными шестиугольниками — эти сечения проходят через центр куба перпендикулярно четырём его главным диагоналям.
  • В куб можно вписать тетраэдр двумя способами. В обоих случаях четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба, и все шесть рёбер тетраэдра будут принадлежать граням куба. В первом случае все вершины тетраэдра принадлежат граням трехгранного угла, вершина которого совпадает с одной из вершин куба. Во втором случае попарно скрещивающиеся ребра тетраэдра принадлежат попарно противолежащим граням куба. Такой тетраэдр является правильным, а его объём составляет 1/3 от объёма куба.
  • В куб можно вписать октаэдр, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
  • Куб можно вписать в октаэдр, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра.
  • В куб можно вписать икосаэдр, при этом шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра — внутри куба. Все двенадцать вершин икосаэдра будут лежать на шести гранях куба.

Диагональю куба называют отрезок, соединяющий две вершины, симметричные относительно центра куба.

А вот он в развёрнутом виде






Икоса́эдр (от греческого - двадцать;  основание) — правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел.

Каждая из 20 граней представляет собой равносторонний треугольник.

Число ребер равно 30, число вершин — 12.


Свойства


  • Икосаэдр можно вписать в куб, при этом шесть взаимно перпендикулярных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба, все двенадцать вершин икосаэдра будут лежать на шести гранях куба
  • В икосаэдр может быть вписан тетраэдр, так что четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра.
  • Икосаэдр можно вписать в додекаэдр, при этом вершины икосаэдра будут совмещены с центрами граней додекаэдра.
  • В икосаэдр можно вписать додекаэдр с совмещением вершин додекаэдра и центров граней икосаэдра.
  • Усечённый икосаэдр может быть получен срезанием 12 вершин с образованием граней в виде правильных пятиугольников. При этом число вершин нового многогранника увеличивается в 5 раз (12×5=60), 20 треугольных граней превращаются в правильные шестиугольники (всего граней становится 20+12=32), а число рёбер возрастает до 30+12×5=90.
  • Собрать модель икосаэдра можно при помощи 20 правильных тетраэдров.


Усечённый икосаэдр


Молекула фуллерена C60 — усечённый икосаэдр

Усечённый икосаэдр — многогранник, состоящий из 12 правильных пятиугольников и 20 правильных шестиугольников. Имеет икосаэдрический тип симметрии. По сути футбольный мяч имеет форму не шара, а усечённого икосаэдра.

А вот это он в развернутом виде


Поделиться:

Лист Мёбиуса

И тут появился изобретатель

Каргопольская игрушка

Большое - маленькое

Осенняя паутина