Понятие симметрии проходит через всю многовековую историю человеческого творчества. Многие народы с древних времён владели представлением о симметрии в широком смысле - как эквиваленте уравновешенности и гармонии.
Формы восприятия и выражения во многих областях науки и искусства, в конечном счёте, опираются на симметрию, используемую и проявляющуюся в специфических понятиях и средствах, присущих отдельным областям науки и видам искусства.
Симметрия (от греческого symmetria - "соразмерность") - понятие, означающее сохраняемость, повторяемость, "инвариантность" каких-либо особенностей структуры изучаемого объекта при проведении с ним определенных преобразований.
Действительно симметричные объекты окружают нас буквально со всех сторон, мы имеем дело с симметрией везде, где наблюдается какая-либо упорядоченность. Симметрия противостоит хаосу, беспорядку. Получается, что симметрия – это уравновешенность, упорядоченность, красота, совершенство.
Весь мир можно рассмотреть как проявление единства симметрии и асимметрии. Асимметричное в целом сооружение может являть собой гармоничную композицию из симметричных элементов.
Симметрия многообразна, вездесуща. Она создает красоту и гармонию.
По геометрии тему «Симметрия», проходят за один урок, а у меня эта тема вызвала интерес и я решила взять ее для исследования. Приступив к исследованию, я заметила, что симметрия не только математическое понятие, она проявляется как нечто прекрасное в живой и неживой природе, а также в творениях человека. Поэтому я поставила перед собой такие проблемные вопросы:
Поэтому тему своего исследования я назвала «Симметрия — символ красоты, гармонии и совершенства».
Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: живой, неживой природы и общества. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке.
Законы природы, управляющие неисчерпаемой в своем многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.
Целью данной работы является определение роли симметрии в живой и неживой природе
Существует две группы симметрии. К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно видеть. Она может быть названа геометрической симметрией. Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией.
| Вложение | Размер |
|---|---|
| 707.5 КБ |
Творческий проект
«Симметрия — символ красоты, гармонии и совершенства».
Исполнитель: Щипанова Анастасия
ученица 8а класса МКОУ СОШ № 1
г. Михайловск
Руководитель: Матвеева Мария Павловна
учитель математики МКОУ СОШ № 1
г. Михайловск
г. Михайловск
2013 год
Содержание
Введение 3-4
Глава I. Симметрия в математике 5-7
1. 1. Центральная симметрия 5
1.2. Осевая симметрия 6
1.3. Зеркальная симметрия 6-7
Глава II. Симметрия в природе 7-11
2.1.Симметрия в кристаллах 7-8
2.2.Симметрия в мире живой природы 8-9
2.3. Человек - существо симметричное 9-11
Глава III. Симметрия в архитектуре 11-12
Глава IV. Симметрия в технике 12-13
Глава V.Симметрия слов и чисел 13-14
Заключение 15
Список литературы 16
Приложение 17- 26
Введение
Понятие симметрии проходит через всю многовековую историю человеческого творчества. Многие народы с древних времён владели представлением о симметрии в широком смысле - как эквиваленте уравновешенности и гармонии.
Формы восприятия и выражения во многих областях науки и искусства, в конечном счёте, опираются на симметрию, используемую и проявляющуюся в специфических понятиях и средствах, присущих отдельным областям науки и видам искусства.
Симметрия (от греческого symmetria - "соразмерность") - понятие, означающее сохраняемость, повторяемость, "инвариантность" каких-либо особенностей структуры изучаемого объекта при проведении с ним определенных преобразований.
Действительно симметричные объекты окружают нас буквально со всех сторон, мы имеем дело с симметрией везде, где наблюдается какая-либо упорядоченность. Симметрия противостоит хаосу, беспорядку. Получается, что симметрия – это уравновешенность, упорядоченность, красота, совершенство.
Весь мир можно рассмотреть как проявление единства симметрии и асимметрии. Асимметричное в целом сооружение может являть собой гармоничную композицию из симметричных элементов.
Симметрия многообразна, вездесуща. Она создает красоту и гармонию.
По геометрии тему «Симметрия», проходят за один урок, а у меня эта тема вызвала интерес и я решила взять ее для исследования. Приступив к исследованию, я заметила, что симметрия не только математическое понятие, она проявляется как нечто прекрасное в живой и неживой природе, а также в творениях человека. Поэтому я поставила перед собой такие проблемные вопросы:
Поэтому тему своего исследования я назвала «Симметрия — символ красоты, гармонии и совершенства».
Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: живой, неживой природы и общества. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке.
Законы природы, управляющие неисчерпаемой в своем многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.
Целью данной работы является определение роли симметрии в живой и неживой природе
Существует две группы симметрии. К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно видеть. Она может быть названа геометрической симметрией. Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией.
Глава I. Симметрия в математике
Идея симметрии часто является отправным пунктом в гипотезах и теориях учёных прошлых веков, веривших в математическую гармонию мироздания и видевших в этой гармонии проявление божественного начала. Древние греки считали, что Вселенная симметрична просто потому, что симметрия прекрасна. В своих размышлениях над картиной мироздания человек с давних времен активно использовал идею симметрии.
Рассмотрим виды симметрии в математике.
1. Центральная симметрия.
Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией (приложение 1).
Впервые понятие центра симметрии встречается в XVI в. В одной из теорем Клавиуса, гласящей: «если параллелепипед рассекается плоскостью, проходящей через центр, то он разбивается пополам и, наоборот, если параллелепипед рассекается пополам, то плоскость проходит через центр». Лежандр, который впервые ввёл в элементарную геометрию элементы учения о симметрии, показывает, что у прямого параллелепипеда имеются 3 плоскости симметрии, перпендикулярные к ребрам, а у куба 9 плоскостей симметрии, из которых 3 перпендикулярны к рёбрам, а другие 6 проходят через диагонали граней.
Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма – точка пересечения его диагоналей. Любая прямая также обладает центральной симметрией. Однако, в отличие от окружности и параллелограмма, которые имеют только один центр симметрии, у прямой их бесконечно много – любая точка прямой является её центром симметрии. Примером фигуры, не имеющей центра симметрии, является произвольный треугольник.
В алгебре при изучении чётных и нечётных функций рассматриваются их графики. График чётной функции при построении симметричен относительно оси ординат, а график нечётной функции – относительно начала координат, т.е. точки О. Значит, нечётная функция обладает центральной симметрией, а чётная функция – осевой.
2.Осевая симметрия.
Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а, также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры. Говорят также, что фигура обладает осевой симметрией.
В более узком смысле осью симметрии называют ось симметрии второго порядка и говорят об «осевой симметрии», которую можно определить так: фигура (или тело) обладает осевой симметрией относительно некоторой оси, если каждой её точке Е соответствует такая принадлежащая этой же фигуре точка F, что отрезок EF перпендикулярен к оси, пересекает её и в точке пересечения делится пополам.
Приведу примеры фигур, обладающих осевой симметрией. У неразвернутого угла одна ось симметрии — прямая, на которой расположена биссектриса угла. Равнобедренный (но не равносторонний) треугольник имеет также одну ось симметрии, а равносторонний треугольник— три оси симметрии. Прямоугольник и ромб, не являющиеся квадратами, имеют по две оси симметрии, а квадрат— четыре оси симметрии. У окружности их бесконечно много — любая прямая, проходящая через её центр, является осью симметрии (приложение 2).
Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник.
Зеркальной симметрией (симметрией относительно плоскости) называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей относительно этой плоскости точку М1.
Зеркальная симметрия хорошо знакома каждому человеку из повседневного наблюдения. Как показывает само название, зеркальная симметрия связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура (или тело) зеркально симметрично другой, если вместе они образуют зеркально симметричную фигуру (или тело) (приложение 3).
Игрокам в бильярд издавна знакомо действие отражения. Их «зеркала» — это борта игрового поля, а роль луча света исполняют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отразившись от неё, движется обратно параллельно направлению первого удара.
Следует отметить, что две симметричные фигуры или две симметричные части одной фигуры при всем их сходстве, равенстве объемов и площадей поверхностей, в общем случае, неравны, т.е. их нельзя совместить друг с другом. Это разные фигуры, их нельзя заменить друг другом, например, правая перчатка, ботинок и т.д. не годятся для левой руки, ноги. Предметы могут иметь одну, две, три и т.д. плоскостей симметрии. Например, прямая пирамида, основанием которой является равнобедренный треугольник, симметрична относительно одной плоскости Р. Призма с таким же основанием имеет две плоскости симметрии. У правильной шестиугольной призмы их семь. Тела вращения: шар, тор, цилиндр, конус и т.д. имеют бесконечное количество плоскостей симметрии.
Древние греки полагали, что Вселенная симметрична просто потому, что симметрия прекрасна. Исходя из соображений симметрии, они высказали ряд догадок. Так, Пифагор (5 век до н.э.), считая сферу наиболее симметричной и совершенной формой, делал вывод о сферичности Земли и о ее движении по сфере. При этом он полагал, что Земля движется по сфере некоего «центрального огня». Вокруг того же «огня», согласно Пифагору, должны были обращаться известные в те времена шесть планет, а также Луна, Солнце, звезды.
Глава II. Симметрия в природе
Ещё более ярко и систематически симметричность структуры материи обнаруживается в неживой природе, а именно в кристаллах. «Кристаллы
блещут симметрией», - писал Е. С. Федоров в своём «Курсе кристаллографии». При слове «кристалл» в воображении рисуется первый среди драгоценных камней – алмаз: «кристальная» чистота и прозрачность, чудесная, непередаваемая игра света, идеальная, правильная форма. Но теперь алмазы не только предмет роскоши. Сегодня они служат для обработки наиболее твёрдых металлов и сплавов. Без них не мыслится современная металлообрабатывающая промышленность (приложение 4).
Оказывается, не только алмаз кристалл. Обычный сахар и поваренная соль, лёд и песок состоят из множества кристалликов. Больше того, основная масса горных пород, образующих земную кору, состоит из кристаллов. Даже обыкновенная глина представляет собой нагромождение мельчайших кристалликов. Словом, большинство строительных материалов – металлы, камень, песок, глина – кристаллические вещества. Можно сказать, что мы живём в домах, построенных из кристаллов. Неудивительно, что кристаллы являются предметом тщательного изучения. Кристаллы – это твердые тела, имеющие естественную форму многогранника. Для каждого данного вещества существует своя, присущая только ему одному, идеальная форма его кристалла. Эта форма обладает свойством симметрии, т.е. свойством кристаллов совмещаться с собой в различных положениях путём поворотов, отражений, параллельных переносов. Характерная особенность того или иного вещества состоит в постоянстве углов между соответственными гранями и рёбрами для всех образцов кристаллов одного и того же вещества. Что же касается формы граней, числа граней и рёбер и величины кристалла, то для одного и того же вещества они могут значительно отличаться друг от друга.
Нам известны некоторые элементы симметрии: оси симметрии, плоскости симметрии, центр симметрии, зеркальные оси. Кристалл каждого вещества характеризуется определённым набором элементов симметрии – видом (классом) симметрии. Внутреннее устройство кристалла представляется в виде так называемой пространственной решетки, в одинаковых ячейках которой, имеющих форму параллелепипедов, размещены по законам симметрии одинаковые мельчайшие материальные частицы – молекулы, атомы, ионы или их группы. Сама правильность формы кристаллов, тесно связана с их решетчатым строением, т. е. в конечном счёте, определяется симметрией их структуры.
Следует признать, что значение симметрии в кристаллах, где она играет роль своеобразного закона формообразования, шире, чем в живой природе, в которой она выступает как некая очевидная, но недостаточно последовательно выраженная тенденция.
Законы природы, управляющие неисчерпаемой в своем многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.
Своим развитием учение о симметрии обязано в первую очередь естествоиспытателям, углубленно изучавшим кристаллические образования, это: И. Кеплер, Н. Стенон, П. Кюри.
Еще в доисторические времена люди находили природные кристаллы и собирали их. Их воображение поражало постоянство углов между гранями кристалла одного и того же типа.
Впервые закон постоянства углов между гранями кристалла для частного случая кристалликов льда - снежинок – установил
И. Кеплер (1571-1630г.г.).
Каждая снежинка- это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией. Простые на первый взгляд снежинки столь же уникальны как и человеческая личность — на свете не найти двух одинаковых. Не бывает пятиугольных или семиугольных снежинок. Все снежинки имеют строго шестиугольную форму (приложение 5).
Снежинки сохраняют сложную форму на протяжении всего пути, сохраняя при этом симметрию. Обращаясь к аналогиям в симметрии шестиугольных пчелиных сот и зерен граната, ученый открывает некоторые особенности этой формы. Например, из всех правильных геометрических фигур только треугольники, квадраты и шестиугольники могут заполнить плоскость, не оставляя пустот, причем правильный шестиугольник покрывает наибольшую площадь. Ученый делает вывод, что форма сот и зерен обусловлена не природой их вещества и не внешними обстоятельствами, а уже заложена в них.
Мир неживой природы — это прежде всего мир симметрии, придающей его творениям устойчивость и красоту.
2. Симметрия в живой природе
На явление симметрии в живой природе обратили внимание еще пифагорейцы в связи с развитием ими учения о гармонии. Установлено, что в природе наиболее распространены два вида симметрии - «зеркальная» и «лучевая» (или «радиальная») симметрии.
У цветковых растений в большинстве проявляется радиальная и зеркальная симметрия. Цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. К формам с лучевой симметрией относятся гриб, ромашка, сосновое дерево и часто такой вид симметрии называется «ромашко-грибной» симметрией. Для листьев характерна зеркальная симметрия (приложение 6).
Типы симметрии у животных: центральная; осевая; радиальная; билатеральная (зеркальная); поступательная и поступательно-вращательная; винтовая, а также спиральная симметрия. Примером винтовой симметрии может служить раковина улитки (правый винт). Зеркальная симметрия хорошо видна у бабочки; симметрия левого и правого проявляется здесь с почти математической строгостью.
Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических. Примером биологического закона сохранения может служить закон наследования. Молекула ДНК, являющаяся носителем наследственной информации в живом организме, имеет структуру двойной правой спирали.
На основании вышесказанного можно утверждать, симметрия в природе проявляется в самых различных объектах материального мира и отражает наиболее общие, наиболее фундаментальные его свойства. Поэтому исследование симметрии разнообразных природных объектов и сопоставление результатов является удобным и надежным инструментом познания основных закономерностей существования материи. Без принципа симметрии нельзя рассмотреть ни одной фундаментальной проблемы, будь то проблема жизни или проблема контактов с внеземными цивилизациями
С симметрией мы повсюду встречаемся в живой природе. Так, бабочка симметрична по отношению к отражению в воображаемом зеркале, разделяющем бабочку пополам вдоль ее туловища. Симметричны формы жука и др. (приложение 7).
Достаточно взглянуть на растения, и мы увидим строго симметричные цветы и листья, многие плоды и даже сами растения с их симметрично-винтовым расположением листьев на стержне ствола.
Переходя от одного поколения данного растения к другому, наблюдается сохранение определенных свойств. Так из семечка вырастает новый подсолнух (подсолнечник) с таким же огромным соцветием-корзинкой, также исправно поворачивающимся к Солнцу. Это тоже есть симметрия, ее обычно называют наследственностью.
Для растений характерна симметрия конуса, которая хорошо видна на примере фактически любого дерева.
3.Человек - существо симметричное
Не станем пока разбираться, существует ли на самом деле абсолютно симметричный человек. У каждого, разумеется, обнаружится родинка, прядь волос или какая-нибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта находятся на разной высоте, во всяком случае, у большинства людей. И всё же это лишь мелкие несоответствия. Никто не усомнится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы! НО! Здесь стоит остановиться. Если бы наши руки и в самом деле были совершенно одинаковы, мы могли бы в любой момент поменять их. Было бы возможно, скажем, путем трансплантации пересадить левую ладонь на правую руку, или, проще, левая перчатка подходила бы тогда к правой руке, но на самом деле это не так. Каждому известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале.
Многие художники обращали пристальное внимание на симметрию и пропорции человеческого тела, во всяком случае, до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе.
Известны каноны пропорций, составленные Альбрехтом Дюрером и Леонардо да Винчи (приложение 8). Согласно этим канонам, человеческое тело не только симметрично, но и пропорционально. Леонардо открыл, что тело вписывается в круг и в квадрат. Дюрер занимался поисками единой меры, которая находилась бы в определенном соотношении с длиной туловища или ноги (такой мерой он считал длину руки до локтя). В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С известным допущением можно считать, что длина туловища превосходит размер головы в восемь раз. На первый взгляд это кажется странным. Но нельзя забывать, что большинство высоких людей отличаются удлинённым черепом и, наоборот, редко можно встретить низкорослого толстяка с головой удлинённой формы. Размеру головы пропорциональна не только длина туловища, но и размеры других частей тела. По этому принципу построены все люди, оттого-то мы, в общем, похожи друг на друга. Однако наши пропорции согласуются лишь приблизительно, а потому люди лишь похожи, но не одинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчёркивают эту симметрию.
И в одежде человек тоже, как правило, старается поддерживать впечатление симметричности: правый рукав соответствует левому, правая штанина — левой. Пуговицы на куртке и на рубашке сидят ровно посередине, а если и отступают от нее, то на симметричные расстояния. Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например, расчесывая волосы на косой пробор — слева или справа или делая асимметричную стрижку. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или, надев кольцо на безымянный палец только одной руки. Лишь на одной стороне груди носятся ордена и значки (чаще на левой). Полная безукоризненная симметрия выглядела бы нестерпимо скучно. Именно небольшие отклонения от неё и придают характерные, индивидуальные черты.
И вместе с тем порой человек старается подчеркнуть, усилить различие между левым и правым. В средние века мужчины одно время щеголяли в панталонах со штанинами разных цветов (например, одной красной, а другой черной или белой). В не столь отдалённые дни были популярны джинсы с яркими заплатами или цветными разводами. Но подобная мода всегда недолговечна. Лишь тактичные, скромные отклонения от симметрии остаются на долгие времена.
Глава III. Симметрия в архитектуре
Принцип симметрии играет важную роль и в архитектуре. «Архитектура – по словам Н.В. Гоголя – это летопись мира». Она несет в себе уникальную информацию о жизни людей в давно прошедшие исторические эпохи.
Плоскость симметрии в произведениях архитектуры, как правило, вертикальна, так же как вертикальна плоскость симметрии тела человека. В горизонтальной проекции строго дисциплинируется расположение частей здания и его деталей, по вертикали развивается свободное и разнообразное чередование элементов и их частей.
На ортогональных чертежах — фасаде, плане, разрезе— плоскость симметрии изображается линией — ее часто называют поэтому осью симметрии. Однако собственно центрально-осевая симметрия — это симметрия относительно вертикальной оси, линии пересечения двух (или большего числа) вертикальных плоскостей симметрии. Сооружение при этом состоит из равных частей, которые могут совмещаться при повороте вокруг оси симметрии. Наивысшей степенью симметрии обладает шар, в центре которого пересекается бесконечное множество осей и плоскостей симметрии,— впрочем, шар или полная сфера используются в архитектуре лишь в случаях исключительных.
Наиболее распространена в архитектуре зеркальная симметрия. Ей подчинены постройки Древнего Египта и храмы античной Греции, амфитеатры, термы, базилики и триумфальные арки римлян, дворцы и церкви Ренессанса, равно как и многочисленные сооружения современной архитектуры.
Симметрия сооружения связывается с организацией его функций. Проекция плоскости симметрии — ось здания — определяет обычно размещение главного входа и начало основных потоков движения. Симметрия не может быть оправданной, если построению плана насильственно подчиняется несимметричная по своей природе система жизненных процессов. Не может быть оправданием симметрия и одинаковое по отношению к оси расположение неравноценных функций.
Симметрия объединяет композицию. Расположение главного элемента на оси подчеркивает его значимость, усиливая соподчиненность частей. Каждая деталь в симметричной системе существует как двойник своей обязательной паре, расположенной по другую сторону оси, и благодаря этому она может рассматриваться лишь как часть целого. Значение общего здесь снижает действенность отдельных элементов.
Главной оси, объединяющей всю композицию, могут сопутствовать подчиненные оси, определяющие симметрию частей. Характерный пример многоосевой симметрии — здание Главного адмиралтейства в Ленинграде
Центрально-осевая симметрия реже использовалась в истории архитектуры. Ей подчинены античные круглые храмы и построенные в подражание им парковые павильоны классицизма (один из прекраснейших — так называемый «Храм дружбы», созданный в Павловске по проекту Ч. Камерона в 1782 г.) (приложение 9).
К редко используемым зодчеством видам симметрии относится и винтообразная. Она издавна применялась для элементов здания — винтовых лестниц и пандусов, витых стволов колонн. Попытку использовать ее для организации крупной части здания сделал американский архитектор Ф. Л. Райт. Экспозиционный корпус построенного по его проекту музея Гуггенхейма сформирован несколькими витками железобетонной пологой спирали, образующей своеобразную галерею — пандус. Винтообразная симметрия использована при создании освещения залов Государственной Думы.
Симметрия — многообразная закономерность организации формы здания, эффективное средство приведения ее к единству. Однако применение симметрии в архитектуре должно быть поставлено в зависимость от целесообразной организации жизненных процессов и логики конструкций. Симметричные формы могут производить впечатление волевой организованности, величественности. Но вместе с тем симметрия сковывает, жестко регламентирует не только здание, но и самого пользующегося им человека.
Симметрия как средство организации формы не имеет смысла, если она не воспринимается хотя бы с одного направления.
Глава IV. Симметрия в технике
Симметрию можно наблюдать и в технике. Технические объекты - самолеты, мосты, автомашины, ракеты, молотки, гайки - практически все они от мала до велика обладают той или иной симметрией.
В технике красота, соразмерность механизмов часто бывает связана с их надежностью, устойчивостью в работе. Симметричная форма дирижабля, самолета, подводной лодки, автомобиля и т.д. обеспечивает хорошую обтекаемость воздухом или водой, а значит, и минимальное сопротивление движению (приложение 10).
В технике существует своего рода постулат: наиболее целесообразные и функционально совершенные изделия являются наиболее красивыми. В подтверждение этого постулата приведем слова генерального авиаконструктора О.К. Антонова: "Мы прекрасно знаем, что красивый самолет летает хорошо, а некрасивый плохо, а то и вообще не будет летать. Это не суеверие, а совершенно материалистическое положение... конструктор может идти часто от красоты к технике, от решений эстетических к решениям техническим".
Глава V.Симметрия слов и чисел
Все мы читали сказку А.Толстого «Золотой ключик» и смотрели фильм или мультфильм. Там Мальвина диктовала Буратино всем известную «волшебную» фразу: «А роза упала на лапу Азора». Она читается и слева направо и справа налево одинаково. Автором этой фразы считается русский поэт XIX века А.А.Фет.
Это и есть так называемый «палиндром». Палиндромом (от гр. Palindromos – бегущий обратно) можно назвать некоторый объект, имеющий линейную или циклическую форму организации, в которой задана симметрия составляющих от начала к концу и от конца к началу; текст, или, шире, некоторое словесное построение, которое одинаково (или приблизительно одинаково, с некоторыми допущениями) читается по буквам слева направо и справа налево. В зависимости от числа и вариации места словоразделов, а также меры совпадения прямого и обратного чтения палиндромы классифицируются по степени сложности и точности. Прямой текст палиндрома, читающийся в соответствии с нормальным направлением чтения в данной письменности (во всех видах кириллической и латинской письменности – слева направо), называется прямоходом, обратный – ракоходом или реверсом (справа налево).
Классический пример палиндрома:
Я – арка края (В.Брюсов).
Существует несколько разновидностей палиндромов: буквопалиндромы – читаются туда и обратно точно по буквам; словодромы (читаются уже не по буквам, а по словам и в ту, и в другую сторону); слогодромы и др. Также распространены и оборотни, читаемые справа налево иначе, чем слева направо. Причем, при их обратном прочтении текст, обычно имеет противоположный, замаскированный смысл. Например, на Ритке снег (С.Федин). А обратно получается нечто оригинальное: Генсек - тиран.
История палиндрома уходит в далекую древность. Отдельные палиндромические словосочетания и фразы известны с глубокой древности, когда им зачастую придавался магически-сакральный смысл (не лишена этого оттенка, например, фраза На в лоб, болван, использовавшаяся русскими скоморохами в качестве высказывания). Палиндромические стихи были известны еще в древнем Китае. Многими исследователями отмечаются и заговорно-молитвенные свойства палиндромов, которые позволяли использовать их в качестве заклятий. Так, считалось, что при произнесении «оборачиваемой» фразы «уведи у вора корову и деву» должна была восторжествовать справедливость. Народные пословичные построения также нередко имели палиндромическую структуру, например, «Аки лев и та мати велика». Авторское творчество в области палиндрома начинается, по-видимому, в Средние века. В русской литературе достоверно известно об авторском палиндромном стихе Державина «Я иду съ мечемъ судия».
Приведу примеры некоторых палиндромов:
А Вера - рева
А к порту тропка
Аргентина манит негра
Бел хлеб
Вор в лесу сел в ров
Голод долог
Диван нежен на вид
Ешь немытого ты меньше!
Ишаку казак сено нес, казаку - каши
Кит на море - романтик
Колька нес сена клок
Конус и рисунок
Лепил и пел
Леша на полке клопа нашел
Мокнет Оксана с котенком
Мороз узором
Тропа налево повела, на порт
Туши рано фонари, шут!
Встречаются иногда отрывки из стихотворений. Например,
Весна мутила дали... Туман, сев.
И гул поля, радуя, ударял о плуги.
Некоторые слова и числа также обладают симметрией, например, поп, кок, шалаш, наган и числа 101, 404, 1991, 2002 и др. Можно составить огромное количество симметричных чисел, используя только цифры от 0 до 9.
Заключение
Изучив и исследовав тему «Симметрии» я узнала, что помимо осевой, зеркальной и центральной видов симметрии, которые мы изучаем в школьном курсе, существуют и другие виды симметрии, например в природе – поворотная, винтовая, в кристаллографии вообще - 32 вида.
Рассматривая архитектуру зданий, предметы украшения и быта, технические изобретения, мы видим в них присутствие центральной, поворотной, переносной, осевой и зеркальной видов симметрии, которые дают ощущение спокойной уверенности и эстетической привлекательности.
Симметрия, проявляясь в самых различных объектах природного мира, несомненно, отражает наиболее общие ее свойства. Поэтому изучение симметрии разнообразных природных объектах и сопоставление его (изучения) результатов удобным и надежным инструментом познания гармонии мира.
Симметрия буквально пронизывает весь окружающий нас мир
Знание геометрических законов природы имеют огромное практическое значение. Мы должны не только научиться понимать эти законы, но и заставлять служить нам на пользу.
О симметрия! Гимн тебе пою!
Тебя повсюду в мире узнаю
Ты в Эйфелевой башне, в малой мошке,
Ты в елочке, что у лесной дорожки.
С тобою в дружбе и тюльпан и роза
И снежный рай – творение мороза.
Библиографический список
10. Шубников А.В. Симметрия (законы симметрии и их применение в науке, технике, прикладном искусстве). М., 1978.
Приложение 1.
Приложение 2 .
Приложение 3
Приложение 4
Приложение 5
Приложение 6
Приложение 7
Приложение 8
Приложение 9
Приложение 10

Колумбово яйцо

Без сердца что поймём?

Именинный пирог

Кто должен измениться?

Серебряное копытце