• Главная
  • Блог
  • Пользователи
  • Форум
  • Литературное творчество
  • Музыкальное творчество
  • Научно-техническое творчество
  • Художественно-прикладное творчество

Понятие многогранника

Опубликовано Пехова Надежда Юрьевна вкл 16.09.2014 - 11:44
Пехова Надежда Юрьевна
Автор: 
Каплина Валентина

Презентация является дополнением к первым урокам по изучению темы "Многогранники"

Скачать:

ВложениеРазмер
Файл ponyatie_mnogogrannika_kaplina_p6-13.pptx1.35 МБ
Предварительный просмотр:
Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

Подписи к слайдам:

Слайд 1

многогранники Студентки группы п6-13 гау ко поо кст Каплиной Валентины

Слайд 2

1. Сумма углов треугольников равна 180 2. В равнобедренном треугольнике углы при основании равны. 3. Острые углы равнобедренного прямоугольного треугольника равны 45 . 4. Катет , лежащий против угла в 30 , равен половине гипотенузы. 5. Углом между прямой и плоскостью называется угол между прямой и ее проекцией на эту плоскость. Это важно знать

Слайд 3

Определение : поверхность, составленную из многоугольников и ограничивающую некоторое геометрическое тело, называют многогранной поверхностью или многогранником.

Слайд 4

Многоугольники, из которых состоит многогранник, называются гранями многогранника.

Слайд 5

Стороны граней называют ребрами , а концы ребер вершинами многогранника . Отрезок, соединяющий противоположные вершины грани называется диагональю грани многогранника, а отрезок, соединяющий две вершины, не принадлежащие одной грани называется диагональю многогранника.

Слайд 6

Правильная призма Прямая призма называется правильной , если её основания – правильные многоугольники У правильной призмы все боковые грани – равные прямоугольники

Слайд 7

Правильные призмы

Слайд 8

Понятие пирамиды • А 1 А 2 А 3 … А n - основание • А 1 S , А 2 S , А 3 S , … А n S – боковые ребра • S – вершина • боковые грани • SH – высота • S А 1 А 2 А 3 … А n – обозначение пирамиды

Слайд 9

правильная пирамида МАВС D Е F - правильная пирамида, если АВС D Е F – правильный многоугольник МО - высота пирамиды О - центр многоугольника АВС D Е F

Слайд 10

Треугольная правильная пирамида ABC – правильный; О – точка пересечения медиан (высот и биссектрис), центр вписанной и описанной окружностей.

Слайд 11

Четырехугольная правильная пирамида ABCD – квадрат ; О – точка пересечения диагоналей.

Слайд 12

Правильные многогранники Тетраэдр Гексаэдр Икосаэдр Октаэдр Додекаэдр Правильными многогранниками называют выпуклые многогранники, все грани и углы которых равны, причём грани – правильные многоугольники одного типа

Поделиться:

Л. Нечаев. Яма

Агния Барто. Сережа учит уроки

В какой день недели родился Юрий Гагарин?

Мальчик и колокольчики ландышей

Под парусами