• Главная
  • Блог
  • Пользователи
  • Форум
  • Литературное творчество
  • Музыкальное творчество
  • Научно-техническое творчество
  • Художественно-прикладное творчество

Презентация по теме "Пирамида"

Опубликовано Семенова Людмила Александровна вкл 07.05.2017 - 5:13
Семенова Людмила Александровна
Автор: 
Шапенкова Мария Помпиевна

Презентация по теме "Пирамида" для учителей, работающих по учебнику Л.С.Атанасяна, В.Ф.Бутузова, С.Б.Кадомцева и др.

Скачать:

ВложениеРазмер
Файл Презентация по теме "Пирамида"903.3 КБ
Предварительный просмотр:
Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

Подписи к слайдам:

Слайд 1

МКОУ СОШ с.Утманово Подосиновского района Кировской области Пирамида Автор: ученица 11 класса Шапенкова Мария. Учитель: Семенова Людмила Александровна

Слайд 2

Понятие «пирамида» Пирамида - это многогранник, который состоит из плоского многоугольника (основания пирамиды),точки, не лежащей в плоскости пирамиды (вершина пирамиды) и всех отрезков, соединяющих вершину пирамиды с точками основания.

Слайд 3

Пирамиды в повседневной жизни. Такая фигура, как пирамида очень часто встречается нам и в повседневной жизни: Например: в древней и современной архитектуре

Слайд 4

А также в совершенно привычных для нас вещах, которые становятся необычными, приобретая форму пирамиды…

Слайд 5

Пирамида в геометрии. Пирамида включает в себя такие основные части как: Вершина Основание Боковые грани Боковые ребра Так же в пирамиде можно провести высоту , т.е. перпендикуляр, проведенный из вершины пирамиды к плоскости её основания

Слайд 6

Правильная пирамида. Пирамида называется правильной , если в её основании лежит правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания, является её высотой. Все боковые ребра правильной пирамиды равны, а боковые грани являются равнобедренными треугольниками. Апофема – высота боковой грани правильной пирамиды, проведенная из ее основания.

Слайд 7

Площадь Полная площадь пирамиды находится путем сложения площадей всех ее граней. Площадь боковой поверхности пирамиды равняется сумме площадей всех ее боковых граней.

Слайд 8

Площадь правильной пирамиды. Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему. Полная площадь правильной пирамиды равна сумме площади основания и площади боковой поверхности

Слайд 9

Спасибо за внимание !!!

Поделиться:

Зимний лес в вашем доме

Волшебная фортепианная музыка

Приключения Тома Сойера и Гекельберри Финна

ГЛАВА ТРЕТЬЯ, в которой Пух и Пятачок отправились на охоту и чуть-чуть не поймали Буку

Глупый мальчишка