• Главная
  • Блог
  • Пользователи
  • Форум

Вход на сайт

  • Регистрация
  • Забыли пароль?
  • Литературное творчество
  • Музыкальное творчество
  • Научно-техническое творчество
  • Художественно-прикладное творчество

Роль простых чисел в математике

Опубликовано Дорофеева Мария Александровна вкл 28.03.2018 - 11:03
Дорофеева Мария Александровна
Автор: 
Пашкова Ева

Реферат Пашковой Евы отличается глубиной и полнотой раскрытия темы, логичностью, связностью. Работа структурно упорядочена, оптимально соотношение введения, основной части и заключения.

Тема, связанная с простыми числами, является достаточно важной, поскольку проблема отсутствия закономерностей распределения простых чисел занимает умы человечества еще со времен древнегреческих математиков. К тому же, они широко применяется в криптографии (шифровании).

При работе над теоретической частью работы проведена большая работа с литературой.  Ева  показала умение логически излагать материал на основе научных и научно-популярных текстов.

На основе проведенного анализа научной  литературы по данной тематике Ева показывает значение простых чисел в развитии математики, осуществляет обзор математиков, занимавшихся поиском простых чисел.

Скачать:

ВложениеРазмер
Файл pashkova_eva.rar874.55 КБ

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

Гимназия №1 города Липецка

Реферат по математике

Роль простых чисел в математике

Выполнила: ученица 6А класса

Пашкова Ева

Руководитель: Левшина М.А.

Липецк 2014

Введение

Простые числа - это ключ к разрешению многих математических проблем, они также играют большую роль в криптографии (шифровании), благодаря чему интересуют не только математиков, но и военных, разведку и контрразведку. С тех пор ученые постепенно продвигались вперед, а в последние десятилетия им на помощь в проверке делимости огромных чисел пришли компьютеры. Математики, а позже и специалисты по компьютерному программированию разработали много способов решения этой проблемы, однако все они несут небольшую потенциальную возможность ошибки.

В данной работе поставленная цель: доказать, что простые числа играют большую роль в математике.

Объектом исследования являются сами простые числа

Задачи для этой работы следующие:

1.  Показать способы нахождения простых чисел.

2.  Назвать имена математиков, связанных с историей открытия простых чисел.

3.  Рассмотреть задачи с использованием простых чисел.

Простые числа. Решето Эратосфена

Простые числа с давних времен привлекают внимание математиков. Простые числа следует одно за другим по закону, который еще не найден. Но простые числа в математике играют важную роль. Среди натурального ряда выделяют простые числа.

Как и пространство, множество простых чисел бесконечно. Бесконечный ряд чисел, который мы в результате счета предметов, называется НАТУРАЛЬНЫМ РЯДОМ ЧИСЕЛ: 1,2,3,4,5,… . Среди натурального ряда чисел мы выделяем простые числа. Простыми числами называются такие, которые делятся на 1 и на самих себя. Наименьшее простое число 2.

Если ни на какое другое натуральное число оно на целое не делится, то называется простым, а если у него имеются ещё какие- то целые делители, то составным. Не о всяком числе можно сразу сказать, простое оно или составное. Возьмем, например, число 1999. Если нет под рукой специальных справочных таблиц или помощника компьютера, то придется вспомнить о старом, но надежном решете Эратосфена. Старинный способ, придуманный еще в 3 в. До н. э. Эратосфеном Киренским, хранителем знаменитой Александрийской библиотеки.

Первым проблему определения простых чисел поставил древнегреческий ученый Эратосфен примерно в 220 году до нашей эры, предложив один из путей определения простых чисел.

Способ Эратосфена составления таблиц простых чисел чрезвычайно прост и не требует проверки чисел на делимость. Он воспользовался особым методом, который был назван в честь ученого <<Решето Эратосфена>>. Чтобы очистить зерно, мы его просеиваем. Подобно этому Эратосфен <<просеивал>> числа натурального ряда, пользуясь особым приёмом.

Выпишем несколько подряд идущих чисел, начиная с 2. Двойку отберем в свою коллекцию, а остальные числа, кратные 2, зачеркнем. Ближайшим не зачеркнутым числом будет 3. Возьмем в коллекцию и его, а все остальные числа, кратные 3,зачеркнем. При этом окажется, что некоторые числа уже были вычеркнуты раньше, как, например, 6, 12 и другие. Следующее наименьшее не зачеркнутое число-это 5. Берем пятерку, а остальные числа, кратные 5, зачеркиваем. Повторяя эту процедуру снова и снова, мы в конце концов добьемся того, что не зачеркнутыми останутся одни лишь простые числа - они словно просеялись сквозь решето. Поэтому такой способ и получил название РЕШЕТО ЭРАТОСФЕНА.

        Можно ли, повторять поэту, сказать, что простых чисел столько, “ сколько звезд на небе, сколько рыб в воде”? Ответ находим в девятой книге знаменитого сочинения Евклида” Начала”- нетленного памятника Древнего мира. Двадцатая теорема в этой книге утверждает: ”Первых (простых) чисел существует больше любого указанного числа их”.

Вот доказательство этой теоремы. Предположим, что существует некое наибольшее простое число P. Тогда перемножим все простые числа, начиная с 2 и кончая P, и увеличим полученное произведение на единицу: 2 3 5 7*… P + 1 = M. Если число М составное, то оно должно иметь по крайней мере один простой делитель. Но этим делителем не может быть ни одно из простых чисел 2, 3, 5, …, Р, поскольку при делении М на каждое из них получаем в остатке 1. Следовательно, число М либо само простое, либо делится на простое число, большее Р. Значит, предположение, что существует наибольшее простое число Р, наверно и множество простых чисел бесконечно.

Однако способ Эратосфена не смог удовлетворить ученых, и они пытались найти формулу простых чисел. На протяжении многих столетий это сделать не удавалось. В ряду простых чисел были найдены многие интересные закономерности, но поставленная задача оставалась без ответа.

Из опыта вычисления люди знали, что каждое число является либо простым, либо произведением нескольких простых чисел. Но они не умели этого доказывать. Пифагор или кто-то из его последователей нашел доказательство этого утверждения.

Теперь легко объяснить роль простых чисел в математике: они являются теми кирпичиками, из которых с помощью умножения строят все остальные числа. Хорошо было бы, если все простые числа можно было сосчитать! Пусть их было бы хоть миллион – все равно мы знали бы, что, перемножая эти простые числа, можем получить все остальные. Но это оказалось не так. Через два столетия после Пифагора греческий геометр Евклид написал книгу <<Начала>>. И одними из утверждений этой книги было следующее: самого большого простого числа не существует.

Простые числа в натуральном ряде чисел, расположены очень причудливо. Иногда между ними есть только одно четное число (все простые числа, кроме числа 2, нечетные). Такими близнецами так их зовут в науке, являются: 11 и 13, 17 и 19, 29 и 31. До сих пор не известно, есть ли самые большие близнецы или нет. А иногда между соседними простыми числами лежит пропасть в миллионы и миллиарды чисел. Первым глубокие результаты о том, как разбросаны простые числа среди остальных натуральных чисел, получил великий русский математик Пафнутий Львович Чебышев, основатель и руководитель русских математических исследований в прошлом веке.

Первую известную нам таблицу простых чисел составил итальянский математик Пьетро Антонио Катальди в 1603 г. Она захватывала все простые числа от 2 до 743

В 1770 г. Немецкий математик Иоганн Генрих Ламберт опубликовал таблицу наименьших делителей всех чисел, не превосходящих 102000 и не делящихся на 2, 3, 5. Вложив в этот труд поистине колоссальные усилия, Ламберт гарантировал бессмертие тому, кто доведет таблицу делителей до миллиона. На его призыв откликнулись многие вычислители.

К середине 19 века уже были составлены таблицы наименьших делителей не только первого миллиона, но и следующих, вплоть до 9. В это же время в прессе появились сообщения, которые представлялись абсолютно фантастическими: в Венскую академию поступило 7 больших томов рукописных таблиц “Великий канон делителей всех чисел, которые не делятся на 2, 3 и 5, и простых чисел между ними до 100330201”. Автором этого труда был Якуб Филипп Кулик, профессор высшей математики Пражского университета.

В дальнейшем поиске простых чисел уже не носили характера массовой охоты, с которой можно сравнить составление таблиц, а превратились в целенаправленный отбор отдельных представителей. У охотников за числами больше всего популярны простые числа Мерсенна. Они названы в честь французского ученого Марена Мерсенна, Сыгравшего в 18в. видную роль в становлении европейской науки.

Некоторые представления о распределения простых чисел имели уже древние греки. Из доказательства Евклида следует, например, что они не собраны вместе, а разбросаны по всей числовой оси. Но как часто?

В 1845 г французский математик Жозеф Бертан, исследуя таблицу простых чисел в промежутке от 1 до 6000000, обнаружил, что между числами n и n2 – 2, где n > 3, содержится по крайней мере одно простое число. В последствии это свойство получило название постулата Бертрана, хотя самому Бертану обосновать его так и не удалось. Доказал его в 1852 г русский математик Пафнутий Львович Чебышев. Из результата Чебышева следовала и более точная оценка. Таким образом, даже среди очень больших чисел простые числа не так уж редки.

С другой стороны, существуют промежутки, включающие тысячи, миллионы, миллиарды и вообще какое угодно большое количество подряд стоящих натуральных чисел, среди которых нельзя найти ни одного простого! В самом деле, задавшись произвольным большим натуральным числом к, построим ряд чисел к! +2, к! +3,…, к! + к (здесь к! = 1*2*3*…*к). Каждое из этих чисел составное. Например, число к! + м делится на м, поскольку к! делится на м и само м делится на м.

Числа – близнецы

Два простых числа, которые отличаются на 2, как 5 и 7, 11 и 13, 17 и 19, получили название "близнецы". В натуральном ряду имеется даже "тройня" - это числа 3, 5, 7. Ну а, сколько всего существует близнецов - современной науке неизвестно.

В пределах первой сотни близнецы – это следующие пары чисел: (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71,73). По мере удаления от нуля близнецов становится все меньше и меньше. Близнецы могут собираться в скопления, образуя четверки, например, (5, 7, 11, 13) или (11, 13, 17, 19). Как много таких скоплений – тоже пока неизвестно.

Простые числа, история возникновения чисел позволяет заметить, что люди довольно давно обнаружили разницу между нечетной и четной цифрой, а также различные взаимосвязи внутри самих числовых выражений. Немалый вклад в подобные исследования внесли древние греки. Например, греческий ученый Эратосфен создал довольно легкий способ поиска простых чисел.

Этот метод был назван «решето Эратосфена» из-за того, что греки не вычеркивали, а выкалывали ненужные числа на табличках, покрытых воском. Таким образом, история возникновения чисел – явление древнее и глубинное. По оценкам ученых, оно началось еще около 30 тысяч лет назад. За это время в жизни человека успело поменяться многое.

Гении по наследству

Маре́н Мерсе́нн 

Маре́н Мерсе́нн (устаревшая транслитерация Мари́н Мерсе́нн; фр. Marin Mersenne; 8 сентября 1588 — 1 сентября 1648) — французский математик, 

физик, философ и богослов, теоретик музыки.

На протяжении первой половины XVII века был по существу координатором научной жизни Европы, ведя активную переписку практически со всеми видными учёными того времени. Эта переписка имеет огромную научную и историческую ценность. Имеет также серьёзные личные научные заслуги в области математики, акустики и теории музыки.

Мерсенн вёл чрезвычайно оживлённую переписку (на латинском языке), представляющую громадный исторический интерес. В числе его 78 корреспондентов, кроме Декарта, были Галилей, Кавальери, Бекман, Паскаль, 

Роберваль, Торричелли, Ферма, Гюйгенс, Гассенди,  Дж. Б. Дони и многие

другие. Научная периодика тогда не существовала, и деятельность Мерсенна значительно способствовала быстрому прогрессу физико-математических наук. 17-томное собрание переписки Мерсенна было издано в Париже в 1932—1988 годах.

Особенно важным общение с Мерсенном было для Декарта и Ферма. Мерсенн не только сообщал Декарту о новейших научных идеях и достижениях, но также защищал его от клерикальных нападок и помогал в издании трудов. А об открытиях Ферма мы знаем практически только из его переписки с Мерсенном, изданной посмертно.

В наши дни Мерсенн известен более всего как исследователь «чисел Мерсенна», играющих важную роль в теории чисел, криптографии и генераторах псевдослучайных чисел. Однако Мерсенн принимал самое непосредственное и компетентное участие во многих исследованиях и научных дискуссиях XVII века. Произведенными им многочисленными опытами над сопротивлением твердых тел, над истечением жидкостей, над колебанием упругих тел и проч. он содействовал прояснению их свойств и открытию новых законов природы. Мерсенн, один из первых, оценил скорость звука. Он описал две схемы зеркального телескопа (рефлектора), соответствующие схемам Кассегрена и Грегори. Основываясь на его исследованиях по теории музыки, французский математик  Жозеф Совёр объяснил феномен обертонов.

Мерсенн также издал перевод на французский язык «Механики» Галилея (1634), редактировал издания Евклида, Архимеда и других античных классиков.

Пьер де Ферма́

Пьер де Ферма́ (фр. Pierre de Fermat, 17 августа 1601 — 12 января 1665)

 — французский математик, один из создателей аналитической геометрии,

 математического анализа, теории вероятностей и теории чисел. По профессии

 юрист, с 1631 года — советник парламента в Тулузе. Блестящий полиглот.

 Наиболее известен формулировкой Великой теоремы Ферма.

Работа советника в парламенте города Тулузы не мешала Ферма заниматься математикой. Постепенно он приобрёл славу одного из первых математиков Франции, хотя и не писал книг (научных журналов ещё не было), ограничиваясь лишь письмами к коллегам. Среди его корреспондентов были Р. Декарт, Б. Паскаль, Ж. Дезарг, Ж. Роберваль и другие.

Открытия Ферма дошли до нас благодаря сборнику его обширной переписки (в основном через Мерсенна), изданной посмертно сыном Ферма.

В отличие от Галилея, Декарта и Ньютона, Ферма был чистым математиком — первым великим математиком новой Европы. Независимо от Декарта он создал аналитическую геометрию. Раньше Ньютона умел использовать дифференциальные методы для проведения касательных, нахождения максимумов и вычисления площадей. Правда, Ферма, в отличие от Ньютона, не свёл эти методы в систему, однако Ньютон позже признавался, что именно работы Ферма подтолкнули его к созданию анализа.

Главная же заслуга Пьера Ферма — создание теории чисел.

Математики Древней Греции со времён Пифагора собирали и доказывали разнообразные утверждения, относящиеся к натуральным числам (например, методы построения всех пифагоровых троек, метод построения совершенных чисел и т. п.). Диофант Александрийский (III век н. э.) в своей «Арифметике» рассматривал многочисленные задачи о решении в рациональных числах алгебраических уравнений с несколькими неизвестными (ныне диофантовыми принято называть уравнения, которые требуется решить в целых числах). Эта книга (не полностью) стала известна в Европе в XVI веке, а в 1621 году она была издана во Франции и стала настольной книгой Ферма.

Ферма постоянно интересовался арифметическими задачами, обменивался сложными задачами с современниками. Например, в своём письме, получившем название «Второго вызова математикам» (февраль 1657), он предложил найти общее правило решения уравнения Пелля ax^2+1=y^2 в целых числах. В письме он предлагал найти решения при a=149, 109, 433. Полное решение задачи Ферма было найдено лишь в 1759 году Эйлером.

Начал Ферма с задач про магические квадраты и кубы, но постепенно переключился на закономерности натуральных чисел — арифметические теоремы. Несомненно, влияние Диофанта на Ферма, и символично, что он записывает свои удивительные открытия на полях «Арифметики».

Ферма обнаружил, что если a не делится на простое число p, то число a^{p-1} - 1 всегда делится на p. Позднее Эйлер дал доказательство и обобщение этого важного результата.

Обнаружив, что число 2^{2^k}+1 простое при k ≤ 4, Ферма решил, что эти числа простые при всех k, но Эйлер впоследствии показал, что при k=5 имеется делитель 641. До сих пор неизвестно, конечно или бесконечно множество простых чисел Ферма.

Эйлер доказал (1749) ещё одну гипотезу Ферма (сам Ферма редко приводил доказательства своих утверждений): простые числа вида 4k+1 представляются в виде суммы квадратов (5=4+1; 13=9+4), причём единственным способом, а для чисел, содержащих в своём разложении на простые множители простые числа вида 4k+3 в нечётной степени, такое представление невозможно. Эйлеру это доказательство стоило 7 лет трудов; сам Ферма доказывал эту теорему косвенно, изобретённым им индуктивным «методом бесконечного спуска». Этот метод был опубликован только в 1879 году; впрочем, Эйлер восстановил суть метода по нескольким замечаниям в письмах Ферма и неоднократно успешно его применял. Позже усовершенствованную версию метода применяли Пуанкаре и Андре Вейль.

Ферма разработал способ систематического нахождения всех делителей числа, сформулировал теорему о возможности представления произвольного числа суммой не более четырёх квадратов (теорема Лагранжа о сумме четырёх квадратов). Самое знаменитое его утверждение — «Великая теорема Ферма».

Многие арифметические открытия Ферма опередили время и были забыты на 70 лет, пока ими не заинтересовался Эйлер, опубликовавший систематическую теорию чисел. Одна из причин этого — интересы большинства математиков переключились на математический анализ.

Леона́рд Э́йлер

Леона́рд Э́йлер (нем. Leonhard Euler; 15 апреля 1707, Базель, Швейцария

7 (18) сентября 1783, Санкт-Петербург, Российская империя) — швейцарский, немецкий и российский математик и механик, внёсший фундаментальный вклад в развитие этих наук (а также физики, астрономии и ряда прикладных наук). Эйлер — автор более чем 850 работ (включая два десятка фундаментальных

 монографий) по математическому анализу, приближённым вычислениям, небесной механике, математической физике, оптике, баллистике, 

кораблестроению, теории музыки и другим областям. Академик  Петербургской, Берлинской, Туринской, Лиссабонской и Базельской академий наук, иностранный член Парижской академии наук.

Почти полжизни провёл в России, где внёс существенный вклад в становление российской науки. В 1726 году он был приглашён работать в Санкт-Петербург, куда переехал годом позже. С 1726 по 1741, а также с 1766 года был академиком Петербургской академии наук(будучи сначала адъюнктом, а с 1731 года — профессором); в 1741—1766 годах работал в Берлине (оставаясь одновременно почётным членом Петербургской академии)[1]. Хорошо знал русский язык и часть своих сочинений (особенно учебники) публиковал на русском. Первые русские академики-математики (С. К. Котельников) и астрономы (С. Я. Румовский) были учениками Эйлера. Некоторые из его потомков до сих пор живут в России.

Эйлер оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук. Познания Эйлера были энциклопедичны; кроме математики, он глубоко изучал ботанику, медицину, химию, теорию музыки, множество европейских и древних языков.

П. Л. Чебышёв писал: «Эйлером было положено начало всех изысканий, составляющих общую теорию чисел». Большинство математиков XVIII века занимались развитием анализа, но Эйлер пронёс увлечение древней арифметикой через всю свою жизнь. Благодаря его трудам интерес к теории чисел к концу века возродился.

Эйлер продолжил исследования Ферма, ранее высказавшего (под влиянием Диофанта) ряд разрозненных гипотез о натуральных числах. Эйлер строго доказал эти гипотезы, значительно обобщил их и объединил в содержательную теорию чисел. Он ввёл в математику исключительно важную «функцию Эйлера» и сформулировал с её помощью «теорему Эйлера». Он опроверг гипотезу Ферма о том, что все числа вида F_n = 2^{2^n}+1 — простые; оказалось, что F_5 делится на 641. Доказал утверждение Ферма о представлении нечётного простого числа в виде суммы двух квадратов. Дал одно из решений задачи о четырёх кубах. Доказал, что число Мерсенна 2^{31}-1 = 2147483647 — простое число; в течение почти ста лет (до 1867 года) оно оставалось наибольшим известным простым числом.

Задачи с простыми числами

  • В некотором царстве, в некотором государстве жила принцесса. И однажды ей захотелось узнать ответ на свой вопрос о соседнем королевстве. В соседнем королевстве было 12 фей. За ночь всем феям надо было выполнить одинаковое количество желаний. Всего им надо было выполнить 144 желания. И принцессе захотелось узнать, сколько желаний должна выполнить одна фея за ночь. Но чтобы узнать ответ на вопрос, принцессе надо было слетать в соседнее королевство и спросить у фей. Долететь до королевства принцесса поручила дракону и дала ему на всю дорогу 6 часов. Расстояние до королевства 448,8 км. С какой скоростью должен лететь дракон, чтобы успеть слетать и туда, и обратно?

Решение:

 1) 6:2=3 (часа)- за такое время дракон должен слетать туда или обратно.

2) 448,8:3=149,6 (км/ч)- с такой скоростью должен лететь дракон, что бы прилететь в своё королевство вовремя.

  • Дракону надо лететь со скоростью 149,6 км/ч, что прилететь в своё королевство вовремя. Тем времен дракон прилетел в соседнее королевство. Решение вопроса принцессы оказалось очень простым:

Решение

  1. 144:12=12(желаний)- должна выполнить 1 фея за ночь.
  • 1 фея должна выполнить 12 желаний за ночь. Дракон прилетел обратно и получил за ответ на вопрос принцессы вознаграждение: 1,2 кг мороженого. Он решил поделиться мороженым с друзьями. Друзей у него было 7. Сколько мороженого досталось каждому другу и самому дракону?

 Решение 1) 7+1=8- друзья и сам дракон. 2) 1,2:8=0,15(кг)- досталось каждому другу и самому дракону.

  • 0,15 кг мороженого досталось каждому другу и самому дракону. Принцесса решила позвать к себе на работу 7 гномов, чтобы они искали изумруды. И сказала им, что за неделю они должны найти 147 изумрудов. А сама принцесса решила узнать: сколько 7 гномов должны найти изумрудов за 1 день? Сколько 1 гном должен найти изумрудов за 1 день? Сколько 1 гном должен найти изумрудов за неделю?

Решение

1) 147:7=21(изумруд)- должны найти 7 гномов за 1 день.

2) 21:7=3(изумруда)- должен найти 1 гном за 1 день.

3) 3*7=21(изумруд)- должен найти 1 гном за неделю.

  • 21 изумруд должны найти 7 гномов за 1 день, 3 изумруда должен найти 1 гном за 1 день, 21 изумруд должен найти 1 гном за неделю. Гномам надо было где-то жить. Принцесса решила отдать им подвал. В подвале было 476м2. Сколько каждому гному должно достаться м2, чтобы каждому гному досталось одинаковое количество м2?

Решение

  1. 476:7=68(м2)- достанется каждому гному.
  • Каждому гному достанется по 68м2. Как-то раз к принцессе пришла Красная шапочка и сказала, что не умеет делить. Она приготовила 381 пирожок и должна раздать его 3 своим бабушкам. Но она не знает, сколько пирожков должно достаться каждой бабушке. Принцесса стала считать:

Решение

  1. 381:3=127 (пирожков)- достанется каждой бабушке.

Заключение

Проблема отсутствия закономерностей распределения простых чисел занимает умы человечества еще со времен древнегреческих математиков. Благодаря Евклиду мы знаем, что простых чисел бесконечно много. Эратосфен,  Сунтарам предложили первые алгоритмы тестирования чисел на простоту. Эйлер, Ферма, Лежандр и многие другие известные математики пытались и пытаются по сей день разгадать загадку простых чисел. На сегодняшний момент найдено и предложено множество изящных алгоритмов, закономерностей, но все они применимы лишь для конечного ряда простых чисел или простых чисел специального вида. Передним же краем науки в исследованиях простых чисел на бесконечности считается доказательство гипотезы Римана. Она входит в семерку неразрешенных проблем тысячелетия, за доказательство или опровержение которой математическим институтом Клэя предложена премия в 1.000.000 $.

Список используемой литературы

1. Шейнина О.С., Соловьева Г.М. Математика. Занятия школьного кружка 5 6 кл. М.: изд во нц энас, 2009, 208с (портфель учителя)

2. Агеева И.Д. Занимательные материалы по информатике и математике. Методическое пособие. М.: Ту. Сфера, 2009, 240с (игровые методы обучения).

3. Математика: Учеб. Для 5 кл. общеобразовательное учреждений / Г.В. Дорофеев, И.Ф. Шарыгин. С.Б. Суворова и др.; Под редакцией Г.В. дорофеева, И.Ф. Шарыгина. М.: Просвещения, 2011. 368с.: ил. ISBN 5 09 008059 3

4. Занимательные дидактические материалы по математике. Сборник заданий. Выпуск 2 В.В. Трошин М.: Глобус, 2009 282с. (учение с увлечением).


Поделиться:

Растрёпанный воробей

Эта весёлая планета

Рисуем зимние домики

Зимовье зверей

За чашкой чая