Различные виды конических сечений и их использование на практике
Вложение | Размер |
---|---|
индивидуальный прект | 365 КБ |
презентация к проекту | 608.04 КБ |
КОМИТЕТ ОБРАЗОВАНИЯ И НАУКИ
ВОЛГОГРАДСКОЙ ОБЛАСТИ
ГБПОУ «Волгоградский техникум нефтяного и газового машиностроения им. Н. Сердюкова»
ИНДИВИДУАЛЬНЫЙ ПРОЕКТ
по учебной дисциплине
Математика: алгебра и начала анализа; геометрия
Тема: «Конические сечения и их применения в технике»
Выполнил студент
группа № 30
Кудинов Владислав
Руководитель проекта
преподаватель
Ченская Карина Романовна
2017
Содержание:
1. Введение…………………………………………………………………3
2. Понятие конических сечений……………………………………………5
3. Вид конических сечений……………………………………….............6
4. Исследование……………………………………………………………..7
5. Свойства конических сечений…. ……………………………………….8
6. Построение конических сечений……………………………………….9
7. Аналитических подход…………………………………………………11
8. Применение……………………………………………………………….13
9. Поперек конуса…………………………………………………………..14
10. Заключение……………………………………………………………..15
11. Список используемой литературы……………………………………..15
ВВЕДЕНИЕ
Конические сечения впервые предложил использовать древнегреческий геометр Менехм, живший в IV веке до нашей эры, при решении задачи об удвоении куба.
Для получения конических сечений Менехм пересекал конус - остроугольный, прямоугольный или тупоугольный — плоскостью, перпендикулярной одной из образующих. Для остроугольного конуса сечение плоскостью, перпендикулярной к его образующей, имеет форму эллипса. Тупоугольный конус при этом дает гиперболу, а прямоугольный – параболу.
Отсюда произошли и названия кривых, которые были введены Аполлонием Пергским, жившим в III веке до нашей эры: эллипс, что означает изъян, недостаток (угла конуса до прямого); гипербола — преувеличение, перевес (угла конуса над прямым); парабола — приближение, равенство (угла конуса прямому углу). Позже греки заметили, что все три кривые можно получить на одном конусе, изменяя наклон секущей плоскости. При этом следует брать конус, состоящий из двух полостей и мыслить, что они простираются в бесконечность (рис.1)
Если провести сечение кругового конуса, перпендикулярное его оси, а потом поворачивать секущую плоскость, оставляя одну точку её пересечения с конусом неподвижной, то увидим, как окружность будет сначала вытягиваться, превратившись в эллипс. Затем вторая вершина эллипса уйдет в бесконечность, и вместо эллипса получится парабола, а потом плоскость пресечет и вторую полость конуса и получится гипербола.
Актуальность
Долгое время конические сечения не находили применения, пока ими всерьёз не заинтересовались астрономы и физики. Выяснилось, что эти линии встречаются в природе (пример тому — траектории небесных тел) и графически описывают многие физические процессы (здесь лидирует гипербола: вспомним хотя бы закон Ома и закон Бойля-Мариотта), не говоря уже об их применении в механике и оптике. На практике, чаще всего в технике и строительстве, приходится иметь дело с эллипсом и параболой.
рис.1
Цель работы:
Исследовать различные виды конических сечений и их свойства.
Задачи:
1. Изучить теоретические сведения, используя Интернет-ресурсы по данной теме.
2. Познакомиться с применением конических сечений в технике.
Объекты исследования: конические сечения.
Предмет исследования: применение конических сечений в технике.
ПОНЯТИЕ КОНИЧЕСКИХ СЕЧЕНИЙ
Конические сечения - это плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину. С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка. За исключением вырожденных случаев, рассматриваемых в последнем разделе, коническими сечениями являются эллипсы, гиперболы или параболы (Рис. 2).
Рис.2
При вращении прямоугольного треугольника около одного из катетов, гипотенуза с ее продолжениями описывает коническую поверхность, называемую поверхностью прямого кругового конуса, которая может быть рассматриваема как непрерывный ряд прямых, проходящих через вершину и называемых образующими, причем все образующие опираются на одну и ту же окружность, называемую производящей. Каждая из образующих представляет собой гипотенузу вращающегося треугольника (в известном его положении), продолженную в обе стороны до бесконечности. Таким образом, каждая образующая простирается по обе стороны от вершины, вследствие чего и поверхность имеет две полости: они сходятся в одну точку в общей вершине. Если такую поверхность пересечь плоскостью, то в сечении получится кривая, которая и называется коническим сечением. Она может быть трех типов:
1) если плоскость пересекает коническую поверхность по всем образующим, то рассекается только одна полость и в сечении получается замкнутая кривая, называемая эллипсом;
2) если секущая плоскость пересекает обе полости, то получается кривая, имеющая две ветви и называемая гиперболой;
3) если секущая плоскость параллельна одной из образующих, то получается парабола.
Если секущая плоскость параллельна производящей окружности, то получается окружность, которая может быть рассматриваема как частный случай эллипса. Секущая плоскость может пересекать коническую поверхность только в одной вершине, тогда в сечении получается точка, как частный случай эллипса.
Если плоскостью, проходящей через вершину, пересекаются обе плоскости, то в сечении получается пара пересекающихся прямых, рассматриваемая как частный случай гиперболы.
Если вершина бесконечно удалена, то коническая поверхность обращается в цилиндрическую, и сечение ее плоскостью, параллельной образующим, дает пару параллельных прямых как частный случай параболы. Конические сечения выражаются уравнениями 2-го порядка, общий вид которых
Ax2 + Вху + C +Dx + Ey + F = 0 и называются кривыми 2-го порядка.
ВИДЫ КОНИЧЕСКИХ СЕЧЕНИЙ.
Конические сечения могут быть трёх типов:
1) секущая плоскость пересекает все образующие конуса в точках одной его полости; линия пересечения есть замкнутая овальная кривая — эллипс; окружность как частный случай эллипса получается, когда секущая плоскость перпендикулярна оси конуса.
2) Секущая плоскость параллельна одной из касательных плоскостей конуса; в сечении получается незамкнутая, уходящая в бесконечность кривая — парабола, целиком лежащая на одной полости.
3) Секущая плоскость пересекает обе полости конуса; линия пересечения — гипербола — состоит из двух одинаковых незамкнутых, простирающихся в бесконечность частей (ветвей гиперболы), лежащих на обеих полостях конуса.
( рис.1) парабола ( рис.2) эллипс ( рис.3) гипербола
ИССЛЕДОВАНИЕ
В тех случаях, когда конические сечение имеет центр симметрии (центр), т. е. является эллипсом или гиперболой, его уравнение может быть приведено (путём перенесения начала координат в центр) к виду:
a11x2+2xy + a22y2 = a33.
Дальнейшие исследования таких (называемых центральными) конические сечения показывают, что их уравнения могут быть приведены к ещё более простому виду:
Ах2 + Ву2 = С,
если за направления осей координат выбрать главные направления — направления главных осей (осей симметрии) конических сечений. Если А и В имеют одинаковые знаки (совпадающие со знаком С), то уравнение определяет эллипс; если А и В разного знака, то — гиперболу.
Уравнение параболы привести к виду (Ах2 + Ву2 = С) нельзя. При надлежащем выборе осей координат (одна ось координат — единственная ось симметрии параболы, другая — перпендикулярная к ней прямая, проходящая через вершину параболы) её уравнение можно привести к виду:
y2 = 2рх.
СВОЙСТВА КОНИЧЕСКИХ СЕЧЕНИЙ
Определения Паппа. Установление фокуса параболы навело Паппа на мысль дать альтернативное определение конических сечений в целом. Пусть F - заданная точка (фокус), а L - заданная прямая (директриса), не проходящая через F, и DF и DL - расстояния от подвижной точки P до фокуса F и директрисы L соответственно. Тогда, как показал Папп, конические сечения определяются как геометрические места точек P, для которых отношение DF:DL является неотрицательной постоянной. Это отношение называется эксцентриситетом e конического сечения. При e < 1 коническое сечение - эллипс; при e > 1 - гипербола; при e = 1 - парабола. Если F лежит на L, то геометрические места имеют вид прямых (действительных или мнимых), которые являются вырожденными коническими сечениями. Бросающаяся в глаза симметрия эллипса и гиперболы говорит о том, что у каждой из этих кривых есть по две директрисы и по два фокуса, и это обстоятельство навело Кеплера в 1604 на мысль, что и у параболы существует второй фокус и вторая директриса - бесконечно удаленные точка и прямая. Точно также и окружность можно рассматривать как эллипс, фокусы которого совпадают с центром, а директрисы находятся в бесконечности. Эксцентриситет e в этом случае равен нулю.
Свойства. Свойства конических сечений поистине неисчерпаемы, и любое из них можно принять за определяющее. Важное место в Математическом собрании Паппа, Геометрии Декарта (1637) и Началах Ньютона (1687) занимает задача о геометрическом месте точек относительно четырех прямых. Если на плоскости заданы четыре прямые L1, L2, L3 и L4 (две из которых могут совпадать) и точка P такова, что произведение расстояний от P до L1 и L2 пропорционально произведению расстояний от P до L3 и L4, то геометрическое место точек P является коническим сечением.
ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ
Изучая конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости. Было установлено, что эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу – как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу – как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.
Эти определения конических сечений как плоских кривых подсказывают и способ их построения с помощью натянутой нити.
Эллипс. Если концы нити заданной длины закреплены в точках F1 и F2 (рис. 3), то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F1 и F2 называются фокусами эллипса, а отрезки V1V2 и v1v2 между точками пересечения эллипса с осями координат – большой и малыми осями. Если точки F1 и F2 совпадают, то эллипс превращается в окружность (Рис. 3).
рис.3
Гипербола. При построении гиперболы точка P, острие карандаша, фиксируется на нити, которая свободно скользит по шпенькам, установленным в точках F1 и F2, как показано на рисунке 4, а, расстояния подобраны так, что отрезок PF2 превосходит по длине отрезок PF1 на фиксированную величину, меньшую расстояния F1F2. При этом один конец нити проходит под шпеньком F1, и оба конца нити проходят поверх шпенька F2. (Острие карандаша не должно скользить по нити, поэтому его нужно закрепить, сделав на нити маленькую петлю и продев в нее острие.) Одну ветвь гиперболы (PV1Q) мы вычерчиваем, следя за тем, чтобы нить оставалась все время натянутой, и, потягивая оба конца нити вниз за точку F2, а когда точка P окажется ниже отрезка F1F2, придерживая нить за оба конца и осторожно отпуская ее. Вторую ветвь гиперболы мы вычерчиваем, предварительно поменяв шпеньки F1 и F2 (Рис. 4).
рис.4
Ветви гиперболы приближаются к двум прямым, которые пересекаются между ветвями. Эти прямые, называемые асимптотами гиперболы. Угловые коэффициенты этих прямых равны где – отрезок биссектрисы угла между асимптотами, перпендикулярной отрезку F2F1; отрезок v1v2 называется сопряженной осью гиперболы, а отрезок V1V2 – ее поперечной осью. Таким образом, асимптоты являются диагоналями прямоугольника со сторонами, проходящими через четыре точки v1, v2, V1, V2 параллельно осям. Чтобы построить этот прямоугольник, необходимо указать местоположение точек v1 и v2. Они находятся на одинаковом расстоянии, равном от точки пересечения осей O. Эта формула предполагает построение прямоугольного треугольника с катетами Ov1 и V2O и гипотенузой F2O.
Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной. Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными.
Парабола. Фокусы эллипса и гиперболы были известны еще Аполлонию, но фокус параболы, по-видимому, впервые установил Папп (вторая пол. III в.), определивший эту кривую как геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой, которая называется директрисой. Построение параболы с помощью натянутой нити, основанное на определении Паппа, было предложено Исидором Милетским (VI в.) (Рис. 5).
Рис.5
АНАЛИТИЧЕСКИЙ ПОДХОД
Алгебраическая классификация. В алгебраических терминах конические сечения можно определить как плоские кривые, координаты которых в декартовой системе координат удовлетворяют уравнению второй степени. Иначе говоря, уравнение всех конических сечений можно записать в общем, виде как где не все коэффициенты A, B и C равны нулю. С помощью параллельного переноса и поворота осей уравнение (1) можно привести к виду
ax2 + by2 + c = 0
или
px2 + qy = 0.
Первое уравнение получается из уравнения (1) при B2 > AC, второе - при B2 = AC. Конические сечения, уравнения которых приводятся к первому виду, называются центральными. Конические сечения, заданные уравнениями второго вида с q > 0, называются нецентральными. В рамках этих двух категорий существуют девять различных типов конических сечений в зависимости от знаков коэффициентов.
1) Если коэффициенты a, b и c имеют один и тот же знак, то не существует вещественных точек, координаты которых удовлетворяли бы уравнению. Такое коническое сечение называется мнимым эллипсом (или мнимой окружностью, если a = b).
2) Если a и b имеют один знак, а c - противоположный, то коническое сечение - эллипс; при a = b - окружность.
3) Если a и b имеют разные знаки, то коническое сечение - гипербола .
4) Если a и b имеют разные знаки и c = 0, то коническое сечение состоит из двух пересекающихся прямых.
5) Если a и b имеют один знак и c = 0, то существует только одна действительная точка на кривой, удовлетворяющая уравнению, и коническое сечение - две мнимые пересекающиеся прямые. В этом случае также говорят о стянутом в точку эллипсе или, если a = b, стянутой в точку окружности.
6) Если либо a, либо b равно нулю, а остальные коэффициенты имеют разные знаки, то коническое сечение состоит из двух параллельных прямых.
7) Если либо a, либо b равно нулю, а остальные коэффициенты имеют один знак, то не существует ни одной действительной точки, удовлетворяющей уравнению. В этом случае говорят, что коническое сечение состоит из двух мнимых параллельных прямых.
8) Если c = 0, и либо a, либо b также равно нулю, то коническое сечение состоит из двух действительных совпадающих прямых. (Уравнение не определяет никакого конического сечения при a = b = 0, поскольку в этом случае исходное уравнение (1) не второй степени.)
9) Уравнения второго типа определяют параболы, если p и q отличны от нуля. Если p > 0, а q = 0, мы получаем кривую из п. 8. Если же p = 0, то уравнение не определяет никакого конического сечения, поскольку исходное уравнение (1) не второй степени.
ПРИМИНЕНИЕ
Конические сечения часто встречаются в природе и технике. Например, орбиты планет, обращающихся вокруг Солнца, имеют форму эллипсов. Окружность представляет собой частный случай эллипса, у которого большая ось равна малой. Параболическое зеркало обладает тем свойством, что все падающие лучи, параллельные его оси, сходятся в одной точке (фокусе). Это используется в большинстве телескопов-рефлекторов, где применяются параболические зеркала, а также в антеннах радаров и специальных микрофонах с параболическими отражателями. От источника света, помещенного в фокусе параболического отражателя, исходит пучок параллельных лучей. Поэтому в мощных прожекторах и автомобильных фарах используются параболические зеркала. Гипербола является графиком многих важных физических соотношений, например, закона Бойля (связывающего давление и объем идеального газа) и закона Ома, задающего электрический ток как функцию сопротивления при постоянном напряжении.
Все тела Солнечной системы движутся вокруг Солнца по эллипсам. Небесные тела, попадающие в Солнечную систему из других звездных систем, движутся вокруг Солнца по гиперболической орбите и, если на их движение не оказывают существенного влияния планеты Солнечной системы, покидают се по этой же орбите. По эллипсам движутся вокруг Земли ее искусственные спутники и естественный спутник – Луна, а космические корабли, запущенные к другим планетам, движутся по окончании работы двигателей по параболам или гиперболам (в зависимости от скорости) до тех пор, пока притяжение других планет или Солнца не станет сравнимо с земным притяжением (рис. 3).
ПОПЕРЁК КОНУСА
Эллипс и его частный случай — окружность, параболу и гиперболу легко получить экспериментально. На роль конуса вполне подойдёт, например, вафельный рожок для мороженого. Мысленно проводим одну его образующую и разрезаем рожок под разными углами к ней. Задача — сделать всего четыре попытки и получить на срезах все возможные конические сечения. Ещё проще провести опыт с карманным фонариком: в зависимости от его положения в пространстве конус света даст на стене комнаты пятна разной формы. Граница каждого пятна — одно из конических сечений. Поворачивая фонарик в вертикальной плоскости, вы увидите, как одна кривая сменяет другую: окружность вытягивается в эллипс, затем он превращается в параболу, а она, в свою очередь, в гиперболу.
Математик решает ту же задачу теоретически, сравнивая два угла: α — между осью конуса и образующей и β — между секущей плоскостью и осью конуса. И вот результат: при α < β в сечении получится эллипс или окружность, при α = β — парабола, а при α > β — ветвь гиперболы. Если считать образующие прямыми, а не отрезками, то есть рассмотреть неограниченную симметричную фигуру из двух конусов с общей вершиной, станет понятно, что эллипс — замкнутая кривая, парабола состоит из одной бесконечной ветви, а гипербола — из двух.
Простейшее коническое сечение — окружность — можно начертить, воспользовавшись ниткой и гвоздиком. Достаточно привязать один конец нитки к гвоздику, воткнутому в бумагу, а другой — к карандашу и натянуть. Сделав полный оборот, карандаш очертит окружность. А можно воспользоваться циркулем: меняя его раствор, легко нарисовать целое семейство окружностей.
ЗАКЛЮЧЕНИЕ
В ходе написания работы в научных разделах Интернета я познакомился с различными видами конических сечений, научился их распознавать, находить их прототипы в окружающих нас предметах. Проведя анализ природных и технических явлений, я пришел к выводу, что конические сечения являются основами для создания различных технических приборов и моделей, а также широко применимы в астрономии.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1.Верещагин Н.К., А.Шень. Лекции по математической логике и теории алгоритмов. 1999
2. Прасолов В.В.. Геометрия Лобачевского 2004
3. http://www.0zd.ru/matematika/konicheskie_secheniya.html
4. Прасолов В.В.. Геометрия Лобачевского 2004
Слайд 1
Тема: «Конические сечения и их применения в технике» выполнил студент группы № 30 Кудинов Владислав Руководитель проекта преподаватель Ченская К.Р. ИНДИВИДУАЛЬНЫЙ ПРОЕКТ п о учебной дисциплине Математика: алгебра и начала анализа; геометрияСлайд 2
Введение: Цель работы: Исследовать различные виды конических сечений и их свойства. Задачи: 1. Изучить теоретические сведения, используя Интернет-ресурсы по данной теме. 2. Познакомиться с применением конических сечений в технике. Объекты исследования: конические сечения. Предмет исследования: применение конических сечений в технике.
Слайд 3
Актуальность Конические сечения встречаются в природе и графически описывают многие физические процессы (закон Ома и закон Бойля-Мариотта), не говоря уже об их применении в механике и оптике. На практике, чаще всего в технике и строительстве, приходится иметь дело с эллипсом и параболой.
Слайд 4
Виды конических сечений: 1)если секущая плоскость параллельна одной из образующих, то получается парабола; 2)если плоскость пересекает коническую поверхность по всем образующим, то рассекается только одна полость и в сечении получается замкнутая кривая, называемая эллипсом; 3)Если секущая плоскость пересекает обе полости, то получается кривая, имеющая две ветви и называемая гиперболой;
Слайд 5
Способы построения конических сечений
Слайд 6
применение
Слайд 7
применение
Слайд 8
Заключение В ходе написания работы в научных разделах Интернета я познакомился с различными видами конических сечений, научился их распознавать, находить их прототипы в окружающих нас предметах. Проводя анализ природных и технических явлений, я пришел к выводу, что конические сечения являются основами для создания различных технических приборов и моделей, а также широко применимы в астрономии.
Слайд 9
Список использованной литературы 1 . Верещагин Н.К., А.Шень . Лекции по математической логике и теории алгоритмов. 1999 2 . Прасолов В.В., геометрия Лобачевского 2004 3 . http : //www.0zd.ru/matematika/konicheskie_secheniya.html 4 . Комацу М. Многообразие геометрии. - М.; Знание,1981г 5. Кордемский Б.А. Великие жизни в математике. – М;Просвящение,1995г. ru.wikipedia.org/wiki/ Геометрия 6. http : //www.coolreferat.com/ История_Геометрия 7. http//www.shevkin.ru/ ? action= Page&ID =232
Слайд 10
Спасибо за внимание!
Барсучья кладовая. Александр Барков
Разноцветное дерево
Груз обид
Плавает ли канцелярская скрепка?
Огонь фламенко