Методический материал с тестовым контролем по теме: "Эндокринная система" (дисциплина "Анатомия и физиология человека")
учебно-методический материал

Методический материал с тестовым контролем по теме: "Эндокринная система" (дисциплина "Анатомия и физиология человека")

Скачать:

ВложениеРазмер
Microsoft Office document icon lektsiya_endokrinnaya_sistema_red.doc279 КБ

Предварительный просмотр:

ЭНДОКРИННАЯ СИСТЕМА

Эндокринную систему составляют так называемые железы внутренней секреции, выделяющие в организм физиологически активные вещества - гормоны - и не имеющие выводных протоков. Гормоны способны стимулировать или ослаблять функции клеток, тканей и органов, за счет чего эндокринные железы вместе с нервной системой и под ее контролем выполняют гуморальную регулирующую функцию, обеспечивая целостную работу всего организма.

Железы внутренней секреции подразделяются на эндокринные и смешанные.

Железы, вырабатывающие гормоны, называют железами внутренней секреции, эндокринными железами: у них нет выводных путей, и они выделяют свой секрет в межклеточное пространство, где его подхватывает кровь или лимфа  или цереброспинальная жидкость. И переносит в другие части организма.

Гормоны выполняют роль химических агентов, которые выделяются в кровь. К чисто эндокринным железам относятся шишковидное тело (эпифиз), нейросекреторные ядра гипоталамической области головного мозга, гипофиз, щитовидная и паращитовидная железы, надпочечные железы (надпочечники).

Железы смешанной секреции помимо выделения секретов непосредственно в кровоток имеют также выводные протоки в желудочно-кишечный тракт или во внешнюю среду, что делает их одновременно экзокринными железами. Смешанные железы, помимо вырабатывания гормонов, выполняют ряд других функций. К ним относятся семенники, яичники, плацента, поджелудочная железа и вилочковая железа. Плацента и интерстициальные клетки мужских (яички)  и женских (яичники) половых желез участвуют в регуляции функций половой системы.

Кроме того, клетки, продуцирующие гормоны, которые содержатся в стенке желудочно-кишечного тракта, мочеполовой системы, дыхательных путей и других органов, оказывают локальное действие, регулируя работу органов, в которых располагаются.

Помимо этого к смешанным железам относятся хромаффинные органы (параганглии), представляющие собой скопления клеточных элементов, генетически связанных с узлами вегетативной нервной системы. Они располагаются в различных отделах организма, образуя постоянные и непостоянные скопления хромаффинной ткани. К постоянным относятся межсонный параганглий, располагающийся в месте деления общей сонной артерии на внутреннюю и наружную, надсердечные параганглии, залегающие в области дуги аорты и у места выхода левой венечной артерии, поясничные параганглии, локализующиеся на переднебоковых поверхностях брюшной аорты. Непостоянными являются параганглии, располагающиеся по ходу отдельных кровеносных сосудов, в забрюшинной клетчатке и в области верхушки копчика.

Эндокринная система представляет собой ряд желёз, расположенных на различном отдалении от головного мозга. Гормональное воздействие осуществляется по принципу каскада: вышестоящие железы действуют на нижестоящие железы и системы активирующе, а нижестоящие — напротив, действуют на вышестоящие тормозяще. Таким образом, реализуется система естественной отрицательной обратной связи: если гипофиз активировал работу щитовидной железы, гормоны щитовидной железы будут выделяться до тех пор, пока их концентрация в кровотоке не превысит определённого порога. По достижении этого порога, гипофиз прекратит стимуляцию щитовидной железы. К этому моменту, по мнению эндокринной системы, концентрация гормона в теле будет достаточной для правильного протекания всех процессов.

Отсюда следует, что правильное взаимоотношение всех желёз между собой и их правильная регуляция нервной системой является необходимым условием для здоровой и счастливой жизни.

Нормальное функционирование органов нашего тела основано на том, что они должны потреблять одни вещества для выработки других, необходимых организму. Для решения этой задачи существует система внутреннего контроля и регулирования – гормональная, или эндокринная система.

Гормоны – это биологически высокоактивные вещества, синтезирующиеся и выделяющиеся во внутреннюю среду организма эндокринными железами, или железами внутренней секреции, и оказывающие регулирующее влияние на функции удаленных от места их секреции органов и систем организма.

Продукция биологически активных веществ - это функция не только желез внутренней секреции, но и других традиционно неэндокринных органов: почек, желудочно-кишечного тракта, сердца. Не все вещества, образующиеся специфическими клетками этих органов, удовлетворяют классическим критериям понятия «гормоны».

Поэтому наряду с термином «гормон» в последнее время используются также понятия гормоноподобные и биологически активные вещества (БАВ), гормоны местного действия.

Можно выделить следующую классификацию гормонов и БАВ по химической структуре:

- производные аминокислот: производные тирозина: тироксин, трийодтиронин, дофамин, адреналин, норадреналин; производные триптофана: мелатонин, серотонин; производные гистидина: гистамин;

- белково-пептидные гормоны: полипептиды (глюкагон, кортикотропин, меланотропин, вазопрессин, окситоцин, пептидные гормоны желудка и кишечника); простые белки – протеины (инсулин, соматотропин, пролактин, паратгормон, кальцитонин); сложные белки – гликопротеиды (тиреотропин, фоллитропин, лютропин);

- стероидные гормоны: кортикостероиды (альдостерон, кортизол, кортикостерон); половые гормоны: андрогены (тестостерон), эстрогены и прогестерон;

- производные жирных кислот: арахидоновая кислота и ее производные: простагландины, простациклины, тромбоксаны, лейкотриены.

Несмотря на то, что гормоны имеют разное химическое строение, для них характерны некоторые общие биологические свойства.

Общие свойства гормонов:

- строгая специфичность (тропность) физиологического действия;

- высокая биологическая активность: гормоны оказывают свое физиологическое действие в чрезвычайно малых дозах;

- дистантный характер действия: клетки-мишени располагаются обычно далеко от места образования гормона;

- многие гормоны (стероидные и производные аминокислот) не имеют видовой специфичности;

- генерализованность действия;

- пролонгированность действия.

Установлены четыре основных типа физиологического действия на организм:

кинетическое, или пусковое, вызывающее определенную деятельность исполнительных органов;

метаболическое (изменения обмена веществ);

морфогенетическое (дифференциация тканей и органов, действие на рост, стимуляция формообразовательного процесса);

корригирующее (изменение интенсивности функций органов и тканей).

Механизмы действия гормонов. 

Существует два основных механизма действия гормонов на уровне клетки: реализация эффекта с наружной поверхности клеточной мембраны и реализация эффекта после проникновения гормона внутрь клетки.

В первом случае рецепторы расположены на мембране клетки. В результате взаимодействия гормона с рецептором активируется мембранный фермент – аденилатциклаза. Этот фермент способствует образованию из аденозинтрифосфорной кислоты (АТФ) важнейшего внутриклеточного посредника реализации гормональных эффектов – циклического 3,5-аденозинмонофосфата (цАМФ), который активирует клеточный фермент протеинкиназы, реализующую действие гормона. Так действуют пептидные, белковые гормоны, производные тирозина - катехоламины. Характерной особенностью действия этих гормонов является относительная быстрота возникновения ответной реакции, что обусловлено активацией предшествующих уже синтезированных ферментов и других белков.

Во втором случае рецепторы для гормона находятся в цитоплазме клетки. Гормоны этого механизма действия в силу своей липофильности легко проникают через мембрану внутрь клетки-мишени и связываются в ее цитоплазме специфическими белками-рецепторами. Гормон-рецепторный комплекс входит в клеточное ядро. В ядре комплекс распадается, и гормон взаимодействует с определенными участками ядерной ДНК, следствием чего является образование особой матричной РНК. Матричная РНК выходит из ядра и способствует синтезу на рибосомах белка или белка-фермента. Так действуют стероидные гормоны и производные тирозина - гормоны щитовидной железы. Для их действия характерна глубокая и длительная перестройка клеточного метаболизма.

Инактивация гормонов происходит в эффекторных органах, в основном в печени, где гормоны претерпевают различные химические изменения путем связывания с глюкуроновой или серной кислотой либо в результате воздействия ферментов. Частично гормоны выделяются с мочой в неизмененном виде. Действие некоторых гормонов может блокироваться благодаря секреции гормонов, обладающих антагонистическим эффектом.

Гормоны выполняют в организме человека следующие важные функции:

- регуляция роста, развития и дифференцировки тканей и органов, что определяет физическое, половое и умственное развитие;

-  обеспечение адаптации организма к меняющимся условиям существования;

-  обеспечение поддержания гомеостаза.

Функциональная классификация гормонов:

- эффекторные гормоны – гормоны, которые оказывают влияние непосредственно на орган-мишень;

- тройные гормоны – гормоны, основной функцией которых является регуляция синтеза и выделения эффекторных гормонов они выделяются аденогипофизом;

- рилизинг-гормоны – гормоны, регулирующие синтез и выделение гормонов аденогипофиза, преимущественно тройных; выделяются нервными клетками гипоталамуса.

Виды взаимодействия гормонов. 

Каждый гормон не работает в одиночку. Поэтому необходимо учитывать возможные результаты их взаимодействия.

Синергизм – однонаправленное действие двух или нескольких гормонов, например, адреналин и глюкагон активируют распад гликогена печени до глюкозы и вызывают увеличение уровня сахара в крови.

Антагонизм всегда относителен, например, инсулин и адреналин оказывают противоположные действия на уровень глюкозы в крови. Инсулин вызывает гипогликемию, адреналин - гипергликемию. Биологическое же значение этих эффектов сводится к одному – улучшению углеводного питания тканей.

Пермиссивное действие гормонов заключается в том, что гормон, сам не вызывая физиологического эффекта, создает условия для ответной реакции клетки или органа на действие другого гормона. Например, глюкокортикоиды, не влияя на тонус мускулатуры сосудов и распад гликогена печени, создают условия, при которых даже небольшие концентрации адреналина увеличивают артериальное давление и вызывают гипергликемию в результате гликогенолиза в печени.

Регуляция деятельности желез внутренней секреции осуществляется нервными и гуморальными факторами. Нейроэндокринные зоны гипоталамуса, эпифиз, мозговое вещество надпочечников и другие участки хромаффинной ткани регулируются непосредственно нервными механизмами. В большинстве случаев нервные волокна, подходящие к железам внутренней секреции, регулируют не секреторные клетки, а тонус кровеносных сосудов, от которых зависит кровоснабжение и функциональная активность желез. Основную роль в физиологических механизмах регуляции играют нейрогормональные и гормональные механизмы, а также прямые влияния на эндокринные железы тех веществ, концентрацию которых регулирует данный гормон.

Гипофизу принадлежит особая роль в системе желез внутренней секреции. С помощью своих гормонов он регулирует деятельность других эндокринных желез.

Эпифиз

Эпифиз (верхний мозговой придаток, пинеальная железа, шишковидная железа) является железой нейроглиального происхождения.  Небольшая железа серо-красного цвета в среднем мозге. Расположена в области четверохолмия. Окружена соединительнотканной капсулой, от которой отходят трабекулы, разделяющие железу на дольки.

Он вырабатывает в первую очередь серотонин и мелатонин, а также норадреналин, гистамин.

Основной функцией эпифиза является регуляция циркадных (суточных) биологических ритмов, эндокринных функций и метаболизма и приспособление организма к меняющимся условиям освещенности. Избыток света тормозит превращение серотонина в мелатонин  и способствует. накоплению серотонина и его метаболитов. В темноте, напротив, усиливается синтез мелатонина. Этот процесс идет под влиянием ферментов, активность которых также зависит от освещенности. Учитывая, что эпифиз регулирует целый ряд важных реакций организма, а в связи со сменой освещенности эта регуляция циклична, можно считать его регулятором «биологических часов» в организме.

Влияние эпифиза на эндокринную систему носит в основном ингибиторный характер. Доказано действие его гормонов на систему гипоталамус-гипофиз-гонады. Мелатонин угнетает секрецию гонадотропинов как на уровне секреции либеринов гипоталамуса, так и на уровне аденогипофиза. Мелатонин определяет ритмичность гонадотропных эффектов, в том числе продолжительность менструального цикла у женщин. Гормоны эпифиза угнетают биоэлектрическую активность мозга и нервно-психическую деятельность, оказывая снотворный, анальгезирующий и седативный эффекты. В эксперименте экстракты эпифиза вызывают инсулиноподобный (гипогликемический), паратиреоподобный (гиперкальциемический) и диуретический эффекты.

Гормоны эпифиза:

  • Мелатонин участвует в регуляции цикла сна и бодрствования, кровяного давления. Также участвует в сезонной регуляции некоторых биоритмов. Замедляет процессы старения, тормозяще действует на нервную систему и секрецию половых гормонов.
  • Серотонин ещё называют гормоном счастья. Является основным нейромедиатором. Уровень серотонина в теле напрямую связан с болевым порогом. Чем выше уровень серотонина, тем выше болевой порог. Играет роль в регуляции гипофиза гипоталамусом. Повышает свёртываемость крови и проницаемость сосудов. Активирующе действует на процессы воспаления и аллергии. Усиливает перистальтику кишечника и пищеварение. Так же активирующе действует на некоторые виды микрофлоры кишечника. Участвует в регуляции сократительной функции матки и в процессе овуляции в яичнике.
  • Адреногломерулотропин участвует в работе надпочечников.
  • Диметилтриптамин вырабатывается во время фазы быстрого сна и пограничных состояний, вроде угрожающих жизни состояний, рождения или смерти.

В эпифизе обнаружены пептидные гормоны и биогенные амины, что позволяет отнести его клетки (пинеалоциты) к клеткам АПУД-системы. Так, например, в нем вырабатываются аргинин-вазотоцин (стимулирует секрецию пролактина); эпифиз-гормон; эпиталамин – суммарный пептидный комплекс и др.

Гипоталамус

Расположен в промежуточном мозге в виде группы клеток. Гипоталамус является центральным органом, регулирующим работу всех желёз через активацию секреции в гипофизе  или посредством собственной секреции гормонов.

Гормоны гипоталамуса:

Либерины- стимулируют определенные  зоны передней доли гипофиза (тиролиберин, гонадолиберин, кортиколиберин и др.)

Статины- оказывают угнетающее дествие на определенные  зоны передней доли гипофиза (соматостатин, гонадостатин, кортикостатин и др.)

Вазопрессин также называется «антидиуретический гормон», выделяется в гипоталамусе далее транспортируется в гипофиз и регулирует тонус кровеносных сосудов, а также фильтрацию в почках, изменяя таким образом объём выделяемой мочи.

Окситоцин выделяется в гипоталамусе, далее транспортируется в гипофиз. Там он накапливается и в дальнейшем секретируется. Окситоцин играет роль в работе молочных желёз, оказывает стимулирующие влияние на сокращение матки и на регенерацию за счёт стимуляции роста стволовых клеток. Также вызывает чувство удовлетворения, спокойствия и эмпатии.

Гипофиз

Расположен в гипофизарной ямке турецкого седла клиновидной кости. У взрослого человека гипофиз весит примерно 0,5 г. В момент рождения его масса не превышает 0,1 г, но уже к 10 годам она увеличивается до 0,3 г и в подростковом возрасте достигает уровня взрослого. Разделяется на переднюю, промежуточную и заднюю доли.  Передняя доля занимает 75 % от размеров всего гипофиза, задняя составляет около 18—23 %. У детей выделяют также промежуточную долю гипофиза, но у взрослых она практически отсутствует (составляет всего 1—2 %).

Переднюю и промежуточную долю называют аденогипофизом, а заднюю нейрогипофизом.

Гормоны передней доли гипофиза:

Соматотропный гормон (СТГ), или соматотропин или гормон роста. Действует в основном в подростковом возрасте, стимулируя зоны роста в костях, и вызывает рост в длину. Принимает участие в регуляции процессов роста и физического развития. Стимуляция процессов роста обусловлена способностью соматотропина усиливать образование белка в организме, повышать синтез РНК, усиливать транспорт аминокислот из крови в клетки. Наиболее ярко влияние гормона выражено на костную и хрящевую ткани. Действие соматотропина происходит посредством «соматомединов», которые образуются в печени под влиянием соматотропина. Обнаружено, что у пигмеев на фоне нормального содержания соматотропина не образуется соматомедин С, что, по мнению исследователей, служит причиной их маленького роста. Соматотропин влияет на углеводный обмен, оказывая инсулиноподобное действие. Увеличивает  сжигание жира. Увеличивает уровень глюкозы в крови за счёт угнетения инсулина. Гормон усиливает мобилизацию жира из депо и использование его в энергетическом обмене.

Продукция соматотропина регулируется соматолиберином и соматостатином гипоталамуса. Снижение содержания глюкозы и жирных кислот, избыток аминокислот в плазме крови также приводят к увеличению секреции соматотропина. Вазопрессин, эндорфин стимулируют продукцию соматотропина.

Если гиперфункция передней доли гипофиза проявляется в детском возрасте, то это приводит к усиленному пропорциональному росту в длину детей, вызывая  гормональный гигантизм. Если гиперфункция возникает после полового созревания  или у взрослого человека, когда рост тела в целом уже завершен, наблюдается увеличение лишь тех частей тела, которые еще способны расти. Это пальцы рук и ног, кисти и стопы, кости лицевой части черепа (нижняя челюсть нос), губы, язык, уши, органы грудной и брюшной полостей (увеличивается объем сердца, печени, желудочно-кишечного тракта). Это заболевание называется акромегалией. Причиной являются доброкачественные опухоли гипофиза. Гипофункция передней доли гипофиза в детстве выражается в задержке роста - карликовости («гипофизарный нанизм»). Умственное развитие при этом сохраняется на нормальном уровне.

Гонадотропные гормоны гипофиза (фолликулостимлирующий гормон - ФСГ, лютеинизирующий гормон - ЛГ, пролактин) регулируют развитие и функции половых желез, поэтому усиление их секреции вызывает ускорение полового созревания детей и подростков, а гипофункция гипофиза — задержку полового развития. В частности ФСГ у женщин - регулирует созревание в яичниках яйцеклеток, а у мужчин -сперматогенез. ЛГ стимулирует развитие яичников и семенников и образование в них половых гормонов. Пролактин имеет важное значение в регуляции процессов лактации у кормящих женщин.

Лактотропный гормон – пролактин  регулирует работу молочных желёз и их рост. Стимулирует рост молочных желез и способствует образованию молока. Гормон стимулирует синтез белка - лактальбумина, жиров и углеводов молока. Пролактин стимулирует также образование желтого тела и выработку им прогестерона. Влияет на водно-солевой обмен организма, задерживая воду и натрий в организме, усиливает эффекты альдостерона и вазопрессина, повышает образование жира из углеводов. Также пролактин принимает участие в формировании клеток центральной и периферической нервной системы, ангиогенезе. Ученые предполагают, что гормон активирует работу системы иммунитета у взрослых, что подтверждается увеличением его количества при воспалительных реакциях. Почти все известные эффекты этого гормона так или иначе связаны с размножением. За что отвечает гормон пролактин у женщин: выработка грудного молока (не только его продукция, но и выведение), тормозит овуляцию и наступление новой беременности в период лактации, оказывает анестезирующее действие, положительно влияет на функционирование системы иммунитета плода во время его вынашивания. Основным органом-мишенью пролактина являются молочные железы. Пролактин необходим для осуществления лактации, он повышает секрецию молозива, способствует созреванию молозива, превращению молозива в зрелое молоко. Он также стимулирует рост и развитие молочных желез и увеличение числа долек и протоков в них. Кроме молочных желез, рецепторы пролактина обнаружены почти во всех остальных органах тела, но действие этого гормона на них пока не известно. Когда новорождённого прикладывают к груди, он начинает сосать сосок, тем самым раздражая механорецепторы, находящиеся на соске. Механорецепторы посылают сигнал к гипоталамусу, запускается рефлекс молокоотделения. Раздражение механорецепторов сосков передается через спинной мозг по афферентным волокнам в гипоталамус, который тормозит выделение дофамина, что способствует увеличению концентрации пролактина в крови. Во время беременности лактация не начинается, несмотря на высокое содержание пролактина. Это связано с тем, что выделение молока тормозит гормон прогестерон, концентрация которого падает при рождении плаценты, которое следует за рождением ребёнка, тогда лактация становится возможной. При нормальном гормональном балансе, повышение концентрации пролактина у женщин вызывает и поддерживает образование молока в молочных железах. Во время беременности высокий уровень пролактина поддерживает высокое содержание эстрогенов. Но после рождения ребёнка уровень эстрогенов материнского организма резко падает, тогда поддержание уровня пролактина обеспечивают механорецепторы соска. Сосание также вызывает активацию гормона задней доли гипофиза - окситоцина, который обеспечивает выведение молока из груди. Пролактин обеспечивает образование молока (лактогенез), заполнение груди молоком до следующего кормления, но не его выделение (рефлекс выброса молока). Пролактин отвечает за торможение овуляционного цикла, ингибируя секрецию фолликулостимулирующего гормона (ФСГ) и гонадотропного-рилизинг фактора (ГнТФ). У женщин пролактин способствует продлению существования жёлтого тела яичников (удлинению лютеиновой фазы цикла), тормозит овуляцию и наступление новой беременности, снижает секрецию эстрогенов фолликулами яичников и секрецию прогестерона жёлтым телом. В норме этот физиологический механизм предотвращает беременность следующим ребёнком в период кормления грудью предыдущего и может предотвращать менструации в период кормления.

Образование пролактина регулируется пролактолиберином и пролактостатином гипоталамуса. Установлено также, что стимуляцию секреции пролактина вызывают и другие пептиды, выделяющиеся гипоталамусом: тиреолиберин, вазоактивный интестинальный полипептид (ВИП), ангиотензин II, вероятно, эндогенный опиоидный пептид В-эндорфин. Секреция пролактина усиливается после родов и рефлекторно стимулируется при кормлении грудью. Эстрогены стимулируют синтез и секрецию пролактина. Угнетает продукцию пролактина дофамин гипоталамуса, который, вероятно, также тормозит клетки гипоталамуса, секретирующие гонадолиберин, что приводит к нарушению менструального цикла - лактогенной аменорее. Чаще диагностируется гиперпролактинемия.

При долговременном повышении пролактина, не связанном с грудным вскармливанием, может наблюдаться нарушение менструального цикла. Причина этого кроется в том, что уровень гормона повышается при стрессовых ситуациях и физических нагрузках. Избыток пролактина наблюдается при доброкачественной аденоме гипофиза (гиперпролактинемическая аменорея), при менингитах, энцефалитах, травмах мозга, избытке эстрогенов, при применении некоторых противозачаточных средств. Секреция пролактина также увеличивается при злоупотреблении алкоголем и наркотиками (опиатами, амфетамином, кокаином, каннабисом), при приёме некоторых психотропных препаратов, особенно антипсихотиков, в меньшей степени антидепрессантов, транквилизаторов, нормотимиков. К его проявлениям относится выделение молока у некормящих женщин (галакторея) и аменорея.

У здоровых мужчин в организме находится меньше пролактина, чем у женщин. Исключением является период новорожденности, когда в крови циркулирует гормон, полученный от матери. Основные процессы, на которые влияет пролактин у мужчин, относятся к половой функции и нарушениям обмена. Поскольку тестостерон и пролактин зависят друг от друга, чем больше в организме пролактина, тем меньше тестостерона. Соответственно, чем ниже уровень мужского гормона, тем больше различных проблем: снижение потенции, сексуального желания; отсутствие удовлетворенности от секса; бесплодие; снижение переносимости физических нагрузок; мышечная и общая слабость; повышенный аппетит; отечность; накопление жира и отложение его в области бедер; увеличение грудных  желез (гинекомастия);  может возникнуть галакторея (выделение из  грудных желез молокоподобной жидкости).

Фолликулостимулирующий гормон, или ФСГ, стимулирует развитие фолликулов в яичниках и секрецию эстрогенов. В мужском организме участвует в развитии семенников и усиливает сперматогенез и выработку тестостерона. Фолликулостимулирующий гормон (ФСГ), или фоллитропин, вызывает рост и созревание фолликулов яичников и их подготовку к овуляции. У мужчин под влиянием ФСГ происходит образование сперматозоидов.

Лютеинезирующий гормон работает в тандеме с ФСГ. В мужском теле стимулирует выработку тестостерона. В женском — секрецию яичниками эстрогенов и овуляцию на пике цикла. Лютеинизирующий гормон (ЛГ), или лютропин, способствует разрыву оболочки созревшего фолликула, т.е. овуляции и образованию желтого тела. ЛГ стимулирует образование женских половых гормонов - эстрогенов. У мужчин этот гормон способствует образованию мужских половых гормонов - андрогенов.

Секреция ФСГ и ЛС регулируется гонадолиберином гипоталамуса. Образование гонадолиберина, ФСГ и ЛГ зависит от уровня эстрогенов и андрогенов и регулируется по механизму обратной связи. Гормон аденогипофиза пролактин угнетает продукцию гонадотропных гормонов. Тормозное действие на выделение ЛГ оказывают глюкокортикоиды.

Адренокортикотропный гормон, или АКТГ. Регулирует работу коры надпочечников, а именно - секрецию глюкокортикоидов (кортизол, кортизон, кортикостерон) и половых гормонов (андрогены, эстрогены, прогестерон). Глюкокортикоиды особенно важны в условиях стрессовых реакций и при шоковых состояниях, тормозят чувствительность тканей ко многим вышестоящим гормонам, таким образом, концентрируя внимание тела на процессе выхода из стрессовой ситуации. Когда ситуация угрожает жизни, пищеварение, рост и половая функция отходят на второй план. Адренокортикотропный гормон (АКТГ), или кортикотропин, оказывает стимулирующее действие на кору надпочечников. В большей степени его влияние выражено на пучковую зону, что приводит к увеличению образования глюкокортикоидов, в меньшей - на клубочковую и сетчатую зоны, поэтому на продукцию минералокортикоидов и половых гормонов он не оказывает значительного воздействия. За счет повышения синтеза белка (цАМФ-зависимая активация) происходит гиперплазия коркового вещества надпочечников. АКТГ усиливает синтез холестерина и скорость образования прегненолона из холестерина. Вненадпочечниковые эффекты АКТГ заключаются в стимуляции липолиза (мобилизует жиры из жировых депо и способствует окислению жиров), увеличении секреции инсулина и соматотропина, накоплении гликогена в клетках мышечной ткани, гипогликемии, что связано с повышенной секрецией инсулина, усилении пигментации за счет действия на пигментные клетки меланофоры.

Продукция АКТГ подвержена суточной периодичности, что связано с ритмичностью выделения кортиколиберина. Максимальные концентрации АКТГ отмечаются утром в 6-8 часов, минимальные - с 18 до 23 часов. Образование АКТГ регулируется кортиколиберином гипоталамуса. Секреция АКТГ усиливается при стрессе, а также под влиянием факторов, вызывающих стрессогенные состояния: холод, боль, физические нагрузки, эмоции. Гипогликемия способствует увеличению продукции АКТГ. Торможение продукции АКТГ происходит под влиянием самих глюкокортикоидов по механизму обратной связи.

Избыток АКТГ приводит к гиперкортицизму, т.е. увеличенной продукции кортикостероидов, преимущественно глюкокортикоидов. Это заболевание развивается при аденоме гипофиза и носит название болезни Иценко-Кушинга. Основные проявления ее: гипертония, ожирение, имеющее локальный характер (лицо и туловище), гипергликемия, снижение иммунной защиты организма.

Недостаток гормона ведет к уменьшению продукции глюкокортикоидов, что проявляется нарушением метаболизма и снижением устойчивости организма к различным влияниямсреды.

Тиреотропный гормон является пусковым фактором для синтеза тироксина в щитовидной железе. Также косвенно влияет и на синтез трийодтиронина и тироксина там же. Эти гормоны щитовидной железы являются важнейшими регуляторами процессов роста и развития тела. Тиреотропный гормон (ТТГ), или тиреотропин, активирует функцию щитовидной железы, вызывает гиперплазию ее железистой ткани, стимулирует выработку тироксина и трийодтиронина. Образование тиреотропина стимулируется тиреолиберином гипоталамуса, а угнетается соматостатином. Секреция тиреолиберина и тиреотропина регулируется йодсодержащими гормонами щитовидной железы по механизму обратной связи. Секреция тиреотропина усиливается также при охлаждении организма, что приводит к повышению выработки гормонов щитовидной железы и повышению тепла. Глюкокортикоиды тормозят продукцию тиреотропина. Секреция тиреотропина угнетается также при травме, боли, наркозе.Избыток тиреотропина проявляется гиперфункцией щитовидной железы, клинической картиной тиреотоксикоза.

Гормоны промежуточной доли гипофиза

В промежуточной доле гипофиза синтезируется меланотропин или меланофорный гормон. Этот гормон влияет на клетки кожи, содержащие зернышки пигмента. При гипофункции кожа бледнеет, а при гиперфункции усиливается пигментация кожи.

Гормоны задней доли гипофиза

Образуются в гипоталамусе. В нейрогипофизе происходит их накопление. В клетках супраоптического и паравентрикулярного ядер гипоталамуса осуществляется синтез окситоцина и антидиуретического гормона. Синтезированные гормоны путем аксонального транспорта с помощью белка – переносчика нейрофизина по гипоталамо-гипофизарному тракту – транспортируются в заднюю долю гипофиза. Здесь происходит депонирование гормонов и в дальнейшем выделение в кровь.

Антидиуретический гормон (АДГ), или вазопрессин, осуществляет в организме две основные функции. Первая функция заключается в его антидиуретическом действии, которое выражается в стимуляции реабсорбции воды в дистальном отделе нефрона. Это действие осуществляется благодаря взаимодействию гормона с вазопрессиновыми рецепторами типа V-2, что приводит к повышению проницаемости стенки канальцев и собирательных трубочек для воды, ее реабсорбции и концентрированию мочи. В клетках канальцев происходит также активация гиалуронидазы, что приводит к усилению деполимеризации гиалуроновой кислоты, в результате чего повышается реабсорбция воды и увеличивается объем циркулирующей жидкости.

В больших дозах (фармакологических) АДГ суживает артериолы, в результате чего повышается артериальное давление. Поэтому его также называют вазопрессином. В обычных условиях при его физиологических концентрациях в крови это действие не имеет существенного значения. Однако при кровопотере, болевом шоке происходит увеличение выброса АДГ. Сужение сосудов в этих случаях может иметь адаптивное значение.

Образование АДГ усиливается при повышении осмотического давления крови, уменьшении объема внеклеточной и внутриклеточной жидкости, снижении артериального давления, при активации ренин-ангиотензиновой системы и симпатической нервной системы.

При недостаточности образования АДГ развивается несахарный диабет, или несахарное мочеизнурение, который проявляется выделением больших количеств мочи (до 25 л в сутки) низкой плотности, повышенной жаждой. Причинами несахарного диабета могут быть острые и хронические инфекции, при которых поражается гипоталамус (грипп, корь, малярия), черепно-мозговые травмы, опухоль гипоталамуса.

Избыточная секреция АДГ ведет, напротив, к задержке воды в организме.

ОкситоцинМизбирательно действует на гладкую мускулатуру матки, вызывая ее сокращения при родах. На поверхностной мембране клеток существуют специальные окситоциновые рецепторы. Во время беременности окситоцин не повышает сократительную активность матки, но перед родами под влиянием высоких концентраций эстрогенов резко возрастает чувствительность матки к окситоцину. Окситоцин участвует в процессе лактации. Усиливая сокращения миоэпителиальных клеток в молочных железах, он способствует выделению молока. Увеличение секреции окситоцина происходит под влиянием импульсов от рецепторов шейки матки, а также механорецепторов сосков грудной железы при кормлении грудью. Эстрогены усиливают секрецию окситоцина. Функции окситоцина в мужском организме изучены не достаточно. Считают, что он является антагонистом АДГ.

Недостаток продукции окситоцина вызывает слабость родовой деятельности.

Щитовидная железа

Железа расположена на передней поверхности шеи, позади неё проходят пищевод и трахея, спереди прикрыта щитовидным хрящом. Щитовидный хрящ у мужчин развит несколько сильнее и формирует характерный бугорок — кадык, также известный как Адамово яблоко. Железа состоит из двух долек и перешейка.

Щитовидная железа состоит из двух долей, соединенных перешейком и расположенных на шее по обеим сторонам трахеи ниже щитовидного хряща. Она имеет дольчатое строение. Ткань железы состоит из фолликулов, заполненных коллоидом, в котором имеются йодсодержащие гормоны тироксин (тетрайодтиронин) и трийодтиронин в связанном состоянии с белком тиреоглобулином. В межфолликулярном пространстве расположены парафолликулярные клетки, которые вырабатывают гормон тиреокальцитонин. Содержание тироксина в крови больше, чем трийодтиронина. Однако активность трийодтиронина выше, чем тироксина. Эти гормоны образуются из аминокислоты тирозина путем ее йодирования. Инактивация происходит в печени посредством образования парных соединений с глюкуроновой кислотой.

Гормоны щитовидной железы:

  • Тироксин не имеет специфичности и действует абсолютно на все клетки тела. Функцией его является активация процессов метаболизма, а именно, синтеза РНК и белков. Влияет на частоту сердцебиения и рост слизистой оболочки матки у женщин.
  • Трийодтиронин — это биологически активная форма вышеобозначенного тироксина.
  • Кальцитонин регулирует обмен фосфора и кальция в костях.

Йодсодержащие гормоны выполняют в организме следующие функции:

1) усиление всех видов обмена (белкового, липидного, углеводного), повышение основного обмена и усиление энергообразования в организме;

2) влияние на процессы роста, физическое и умственное развитие;

3) увеличение частоты сердечных сокращений;

4) стимуляция деятельности пищеварительного тракта: повышение аппетита, усиление перистальтики кишечника, увеличение секреции пищеварительных соков;

 5) повышение температуры тела за счет усиления теплопродукции;

6) повышение возбудимости симпатической нервной системы.

Секреция гормонов щитовидной железы регулируется тиреотропным гормоном аденогипофиза, тиреолиберином гипоталамуса, содержанием йода в крови. При недостатке йода в крови, а также йодсодержащих гормонов по механизму положительной обратной связи усиливается выработка тиреолиберина, который стимулирует синтез тиреотропного гормона, что, в свою очередь, приводит к увеличению продукции гормонов щитовидной железы. При избыточном количестве йода в крови и гормонов щитовидной железы работает механизм отрицательной обратной связи. Возбуждение симпатического отдела вегетативной нервной системы стимулирует гормонообразовательную функцию щитовидной железы, а возбуждение парасимпатического отдела тормозит ее.

Нарушения функции щитовидной железы проявляются ее гипофункцией и гиперфункцией. Если недостаточность функции развивается в детском возрасте, то это приводит к задержке роста, нарушению пропорций тела, полового и умственного развития. Такое патологическое состояние называется кретинизмом. У взрослых гипофункция щитовидной железы приводит к развитию патологического состояния микседемы. При этом заболевании наблюдается торможение нервно-психической активности, что проявляется в вялости, сонливости, апатии, снижении интеллекта, уменьшении возбудимости симпатического отдела вегетативной нервной системы, нарушении половых функций, угнетении всех видов обмена веществ и снижении основного обмена. У таких больных увеличена масса тела за счет повышения количества тканевой жидкости и отмечается одутловатость лица. Отсюда и название этого заболевания: микседема – слизистый отек.

Гипофункция щитовидной железы может развиться у людей, проживающих в местностях, где в воде и почве отмечается недостаток йода. Это так называемый эндемический зоб. Щитовидная железа при этом заболевании увеличена (зоб), возрастает количество фолликулов, однако из-за недостатка йода гормонов o6разуется мало, что приводит к соответствующим нарушениям в организме, проявляющимся в виде гипотиреоза.

При гиперфункции щитовидной железы развивается заболевание тиреотоксикоз (диффузный токсический зоб, Базедова болезнь, болезнь Грейвса). Характерными признаками этого заболевания являются увеличение щитовидной железы (зоб) экзофтальм, тахикардия, повышение обмена веществ, особенно основного, потеря массы тела, увеличение аппетита, нарушение теплового баланса организма, повышение возбудимости и раздражительности.

Кальцитонин, или тиреокальцитонин, вместе с паратгормоном околощитовидных желез участвует в регуляции кальциевого обмена. Под его влиянием снижается уровень кальция в крови (гипокальциемия). Это происходит в результате действия гормона на костную ткань, где он активирует функцию остеобластов и усиливает процессы минерализации. Функция остеокластов, разрушающих костную ткань, напротив, угнетается. В почках и кишечнике кальцитонин угнетает реабсорбцию кальция и усиливает обратное всасывание фосфатов. Продукция тиреокальцитонина регулируется уровнем кальция в плазме крови по типу обратной связи. При снижении содержания кальция тормозится выработка тиреокальцитонина, и наоборот.

Околощитовидные (паращитовидные) железы.

Человек имеет две пары околощитовидных желез, расположенных на задней поверхности или погруженных внутри щитовидной железы. Главные, или оксифильные, клетки этих желез вырабатывают паратгормон, или паратирин, или паратиреоидный гормон (ПТГ).

Паратгормон регулирует обмен кальция в организме и поддерживает его уровень в крови. В костной ткани паратгормон усиливает функцию остеокластов, что приводит к деминерализации кости и повышению содержания кальция в плазме крови (гиперкальциемия). В почках паратгормон усиливает реабсорбцию кальция. В кишечнике повышение реабсорбции кальция происходит благодаря стимулирующему действию паратгормона на синтез кальцитриола - активного метаболита витамина D3. Витамин D3 образуется в неактивном состоянии в коже под воздействием ультрафиолетового излучения. Под влиянием паратгормона происходит его активация в печени и почках. Кальцитриол повышает образование кальцийсвязывающего белка в стенке кишечника, что способствует обратному всасыванию кальция. Влияя на обмен кальция, паратгормон одновременно воздействует и на обмен фосфора в организме: он угнетает обратное всасывание фосфатов и усиливает их выведение с мочой (фосфатурия).

Активность околощитовидных желез определяется содержанием кальция в плазме крови. Если в крови концентрация кальция возрастает, то это приводит к снижению секреции паратгормона. Уменьшение уровня кальция в крови вызывает усиление выработки паратгормона.

Удаление околощитовидных желез у животных или их гипофункция у человека приводит к усилению нервно-мышечной возбудимости, что проявляется фибриллярными подергиваниями одиночных мышц, переходящих в спастические сокращения групп мышц, преимущественно конечностей, лица и затылка. Животное погибает от тетанических судорог.

Гиперфункция околощитовидных желез приводит к деминерализации костной ткани и развитию остеопороза. Гиперкальциемия усиливает склонность к камнеобразованию в почках, способствует развитию нарушений электрической активности сердца, возникновению язв в желудочно-кишечном тракте в результате повышенных количеств гастрина и НСl в желудке, образование которых стимулируют ионы кальция.

Надпочечники

Парные органы пирамидообразной формы, прилежат к верхнему полюсу каждой почки, связаны с почками общими кровеносными сосудами. В надпочечниках выделяют два слоя - корковый и мозговой. Корковый слой имеет мезодермальное происхождение, мозговой слой развивается из зачатка симпатического ганглия. Это эндокринный орган, который имеет жизненно важное значение. В общем, выполняют важную роль в процессе адаптации к стрессовым для организма условиям

Корковое вещество надпочечников производит гормоны, повышающие устойчивость организма, а также гормоны, регулирующие водно-солевой обмен. Эти гормоны получили название кортикостероиды (кортекс — кора). По химическому строению гормоны коры надпочечников являются стероидами. Механизм действия всех стероидных гормонов заключается в прямом влиянии на генетический аппарат ядра клеток, стимуляции синтеза соответствующих РНК, активации синтеза транспортирующих катионы белков и ферментов, а также повышении проницаемости мембран для аминокислот.

В коре надпочечников выделяют три зоны: наружную - клубочковую, среднюю – пучковую и внутреннюю – сетчатую.

В клубочковой зоне продуцируются в основном минералокортикоиды.

В пучковой глюкокортикоиды.

В сетчатой – половые гормоны, преимущественно андрогены.

Гормоны клубочковой зоны, минералкортикоиды:

  • Альдостерон регулирует содержание в кровотоке и тканях ионов K+ и Na+, влияя, таким образом, на количество воды в организме и соотношение количества воды между тканями и сосудами.
  • Кортикостерон, так же как и альдостерон, работает в сфере солевого обмена, но в человеческом теле роль его небольшая. К примеру, у мышей кортикостерон является основным минералкортикоидом.
  • Дезоксикортикостерон также малоактивен и схож по действию с вышеперечисленными.

        Гормоны пучковой зоны, глюкокортикоиды:

  • Кортизол секретируется по приказу гипофиза. Регулирует углеводный обмен и участвует в стрессовых реакциях. Интересно, что секреция кортизола чётко привязана к суточному ритму: максимальный уровень — утром, минимальный — вечером. Также наблюдается зависимость от стадии менструального цикла у женщин. Действует в основном на печень, вызывая там усиление образования глюкозы и запасание её в виде гликогена. Этот процесс призван сохранить энергетический ресурс и запасти его впрок.

Кортизон стимулирует синтез углеводов из белков и повышает устойчивость к стрессам.

Гормоны сетчатой зоны, половые гормоны:

  • Андрогены, мужские половые гормоны, являются предшественниками
  • Эстрогенов, женских гормонов. В отличие от половых гормонов из половых желез, половые гормоны надпочечников активны в период до полового созревания и после созревания половых желёз. Принимают участие в развитии вторичных половых признаков (растительность на лице и огрубевание тембра у мужчин, рост молочных желёз и формирование особого силуэта у женщин). Недостаток этих половых гормонов ведёт к выпадению волос, избыток — к появлению признаков противоположного пола.

Мозговое вещество надпочечников производит гормоны:

  • Адреналин, которые увеличивает силу и частоту сердцебиения, повышает давление, участвует в углеводном обмене, усиливая расщепление гликогена до глюкозы, расширяет зрачок.
  • Норадреналин — предшественник адреналина, действие схоже с адреналином.

Так как патология надпочечников встречается не так уж редко то будет не бесполезна  нижеследующая информация..

Минералокортикоиды. К этой группе относятся альдостерон, дезоксикортикостерон, 18-оксикортикостерон, 18-оксидезоксикортикостерон. Эти гормоны участвуют в регуляции минерального обмена. Основным представителем минералокортикоидов является альдостерон, который усиливает реабсорбцию ионов натрия и хлора в дистальных почечных канальцах и уменьшает обратное всасывание ионов калия. В результате этого уменьшается выделение натрия с мочой и увеличивается
выведение калия. В процессе реабсорбции натрия пассивно возрастает и реабсорбция воды. За счет задержки воды в организме увеличивается объем циркулирующей крови, повышается уровень артериального давления, уменьшается диурез. Аналогичное влияние на обмен натрия и калия альдостерон оказывает в слюнных и потовых железах.

Альдостерон способствует развитию воспалительной реакции. Его противовоспалительное действие связано с усилением экссудации жидкости из просвета сосудов в ткани и отечности тканей. При повышенной продукции альдостерона усиливается также секреция водородных ионов и аммония в почечных канальцах, что может привести к изменению кислотно-основного состояния – алкалозу.

В регуляции уровня альдостерона в крови имеют место несколько механизмов, основной из них – это ренин-ангиотензин-альдостероновая система. В небольшой степени продукцию альдостерона стимулирует АКТГ аденогипофиза. Гипонатриемия или гиперкалиемия по механизму обратной связи стимулирует выработку альдостерона. Антагонистом альдостерона является натрийуретический гормон предсердий.

Глюкокортикоиды. К глюкокортикоидным гормонам относятся кортизол, кортизон, кортикостерон, 11-дезоксикортизол, 11-дегидрокортикостерон. У человека наиболее важным глюкокортикоидом является кортизол. Эти гормоны оказывают влияние на обмен углеводов, белков и жиров.

Функции глюкокортикоидов:

1. Глюкокортикоиды вызывают повышение содержания глюкозы в плазме крови (гипергликемия). Этот эффект обусловлен стимулированием процессов глюконеогенеза в печени, т.е. образования глюкозы из аминокислот и жирных кислот. Глюкокортикоиды угнетают активность фермента гексокиназы, что ведет к уменьшению утилизации глюкозы тканями. Глюкокортикоиды являются антагонистами инсулина в регуляции углеводного обмена.

2. Глюкокортикоиды оказывают катаболическое влияние на белковый обмен. Вместе с тем они обладают и выраженным антианаболическим действием, что проявляется снижением синтеза особенно мышечных белков, так как глюкокортикоиды угнетают транспорт аминокислот из плазмы крови в мышечные клетки. В результате снижается мышечная масса, может развиться остеопороз, уменьшается скорость заживления ран.

3. Действие глюкокортикоидов на жировой обмен заключается в активации липолиза, что приводит к увеличению концентрации жирных кислот в плазме крови.

4. Глюкокортикоиды угнетают все компоненты воспалительной реакции: уменьшают проницаемость капилляров, тормозят экссудацию и снижают отечность тканей, стабилизируют мембраны лизосом, что предотвращает выброс протеолитических ферментов, способствующих развитию воспалительной реакции, угнетают фагоцитоз в очаге воспаления. Глюкокортикоиды уменьшают лихорадку. Это действие связано со снижением выброса интерлейкина из лейкоцитов, который стимулирует центр теплопродукции в гипоталамусе.

5. Глюкокортикоиды оказывают противоаллергическое действие, которое обусловлено эффектами, лежащими в основе противовоспалительного действия: угнетение образования факторов, усиливающих аллергическую реакцию, снижение экссудации, стабилизация лизосом. Повышение содержания глюкокортикоидов в крови приводит к уменьшению числа эозинофилов, концентрация которых обычно увеличена при аллергических реакциях.

6. Глюкокортикоиды угнетают как клеточный, так и гуморальный иммунитет. Они снижают продукцию Т- и В-лимфоцитов, уменьшают образование антител, снижают иммунологический надзор. При длительном приеме глюкокортикоидов может возникнуть инволюция тимуса и лимфоидной ткани. Ослабление защитных иммунных реакций организма является серьезным побочным эффектом при длительном лечении глюкокортикоидами, так как возрастает вероятность присоединения вторичной инфекции. Кроме того, усиливается и опасность развития опухолевого процесса из-за депрессии иммунологического надзора. С другой стороны, эти эффекты глюкокортикоидов позволяют рассматривать их как активных иммунодепрессантов.

7. Глюкокортикоиды повышают чувствительность гладких мышц сосудов к катехоламинам, что может привести к возрастанию артериального давления. Этому способствует и их небольшое минералокортикоидное действие: задержка натрия и воды в организме.

8. Глюкокортикоиды стимулируют секрецию соляной кислоты.

Образование глюкокортикоидов корой надпочечников стимулируется АКТГ аденогипофиза. Избыточное содержание глюкокортикоидов в крови приводит к торможению синтеза АКТГ и кортиколиберина гипоталамусом.

Таким образом, гипоталамус, аденогипофиз и кора надпочечников объединены функционально и поэтому выделяют единую гипоталамо-гипофизарно-надпочечниковую систему. При острых стрессовых ситуациях резко повышается уровень глюкокортикоидов в крови. В связи с метаболическими эффектами они быстро обеспечивают организм энергетическим материалом.

Содержание глюкокортикоидов в крови самое высокое в
6-8 часов утра.

Гипофункция коры надпочечников проявляется снижением содержания кортикоидных гормонов и носит название аддисоновой (бронзовой) болезни. Главными симптомами этого заболевания являются: адинамия, снижение объема циркулирующей крови, артериальная гипотония, гипогликемия, усиленная пигментация кожи, головокружение, неопределенные боли в области живота, диарея.

При опухолях надпочечников может развиться гиперфункция коры надпочечников с избыточным образованием глюкокортикоидов. Это так называемый первичный гиперкортицизм, или синдром Иценко-Кушинга. Клинические проявления этого синдрома такие же, как и при болезни Иценко-Кушинга.

Половые гормоны играют определенную роль только в детском возрасте, когда внутрисекреторная функция половых желез еще слабо развита. Половые гормоны коры надпочечников способствуют развитию вторичных половых признаков. Они также стимулируют синтез белка в организме. АКТГ стимулирует синтез и секрецию андрогенов. При избыточной выработке половых гормонов корой надпочечников развивается адреногенитальный синдром. Если происходит избыточное образование гормонов одноименного пола, то ускоряется процесс полового развития, если противоположного пола, то появляются вторичные половые признаки, присущие другому полу. В обоих случаях угнетаются половые железы , что приводит к бесплодию.

Гормоны мозгового слоя надпочечников. Мозговой слой надпочечников вырабатывает катехоламины; адреналин и норадреналин. На долю адреналина приходится около 80%, на долю норадреналина - около 20% гормональной секреции. Секреция адреналина и норадреналина осуществляется хромаффинными клетками из аминокислоты тирозина (тирозин-ДОФА-дофамин-норадреналин-адреналин).

Инактивация осуществляется моноаминоксидазой и катехолометилтрансферазой.

Физиологические эффекты адреналина и норадреналина аналогичны активации симпатической нервной системы, но гормональный эффект является более длительным. В то же время продукция этих гормонов усиливается при возбуждении симпатического отдела вегетативной нервной системы. Адреналин стимулирует деятельность сердца, суживает сосуды, кроме коронарных, сосудов легких, головного мозга, работающих мышц, на которые он оказывает сосудорасширяющее действие. Адреналин расслабляет мышцы бронхов, тормозит перистальтику и секрецию кишечника и повышает тонус сфинктеров, расширяет зрачок, уменьшает потоотделение, усиливает процессы катаболизма и образования энергии. Адреналин влияет на углеводный обмен, усиливая расщепление гликогена в печени и мышцах, в результате чего повышается содержание глюкозы в плазме крови. Адреналин активирует липолиз. Катехоламины участвуют в активации термогенеза.

Действия адреналина и норадреналина опосредованы их взаимодействием с α- и β-адренорецепторами. Адреналин имеет большее сродство к β-адренорецепторам, норадреналин - к α-адренорецепторам. В клинической практике широко используются вещества, избирательно возбуждающие или блокирующие эти рецепторы.

Избыточная секреция катехоламинов отмечается при опухоли хромаффинного вещества надпочечников – феохромоцитоме. К основным ее проявлениям относятся: пароксизмальные повышения артериального давления, приступы тахикардии, одышка.

При воздействии на организм различных по своей природе чрезвычайных или патологических факторов (травма, гипоксия, охлаждение, бактериальная интоксикация и т.д.) наступают однотипные неспецифические изменения в организме, направленные на повышение его неспецифической резистентности, названные общим адаптационным синдромом (Г. Селье). В развитии адаптационного синдрома основную роль играет гипофизарно-надпочечниковая система.

Поджелудочная железа

Железа располагается позади желудка, отделена сальниковой сумкой от желудка. Позади железы проходит нижняя полая вена, аорта и левая почечная вена. Анатомически выделяют головку железы, тело и хвост. Петля двенадцатиперстной кишки огибает головку железы спереди. В области контакта железы с кишкой проходит вирсунгов проток, через который осуществляется выделение поджелудочной железы, то есть её экзокринная функция. Часто существует ещё и добавочный проток в качестве запасного варианта.

Относится к железам со смешанной функцией. Основной объем железы выполняет экзокринную функцию и представлен системой разветвлённых собирательных трубочек. Эндокринная же  функция осуществляется за счет продукции гормонов панкреатическими островками (островками Лангерганса). Островки расположены преимущественно в хвостовой части железы, и небольшое их количество находится в головном отделе. В островках имеется несколько типов клеток: a, b, d, G и ПП. a-Клетки вырабатывают глюкагон, b-клетки продуцируют инсулин, d-клетки синтезируют соматостатин, который угнетает секрецию инсулина и глюкагона, G-клетки вырабатывают гастрин, в ПП-клетках происходит выработка небольшого количества панкреатического полипептида, являющегося антагонистом холецистокинина. Основную массу составляют
b-клетки, вырабатывающие инсулин.

Гормоны поджелудочной железы:

  • Глюкагон ускоряет распад гликогена в печени, при этом, не затрагивая гликоген в скелетных мышцах. За счёт этого механизма уровень глюкозы в крови поддерживается на должном уровне. Также увеличивает и синтез инсулина, необходимого для метаболизма глюкозы. Увеличивает частоту и силу сердечных сокращений. Является важным компонентом системы «бей или беги», увеличивая количество ресурсов и их доступность для органов и тканей.
  • Инсулин выполняет целый ряд функций, основной из которых является расщепление глюкозы с выделением энергии, а также запасание избыточной глюкозы в виде гликогена в печени и мышцах. Также инсулин подавляет расщепление гликогена и жиров. В случае нарушения синтеза инсулина возможно развитие заболевания сахарный диабет.
  • Соматостатин оказывает выраженное тормозящее действие на гипоталамус и гипофиз, угнетая выработку соматотропного и тиреотропного гормонов. Также понижает секрецию многих других веществ и гормонов, например, инсулина, глюкагона, инсулиноподобного фактора роста (ИФР-1).
  • Панкреатический полипептид снижает внешнюю секрецию поджелудочной железы и увеличивает секрецию желудочного сока.
  • Грелин связан с чувством голода и насыщения. С этой регуляцией напрямую связано количество жира в теле.

Инсулин влияет на все виды обмена веществ, но прежде всего на углеводный. Под воздействием инсулина происходит уменьшение концентрации глюкозы в плазме крови (гипогликемия). Это связано с тем, что инсулин способствует превращению глюкозы в гликоген в печени и мышцах (гликогенез). Он активирует ферменты, участвующие в превращении глюкозы в гликоген печени, и ингибирует ферменты, расщепляющие гликоген. Инсулин также повышает проницаемость клеточной мембраны для глюкозы, что усиливает ее утилизацию. Кроме того, инсулин угнетает активность ферментов, обеспечивающих глюконеогенез, за счет чего тормозится образование глюкозы из аминокислот. Инсулин стимулирует синтез белка из аминокислот и уменьшает катаболизм белка. Инсулин регулирует жировой обмен, усиливая процессы липогенеза: способствует образованию жирных кислот из продуктов углеводного обмена, тормозит мобилизацию жира из жировой ткани и способствует отложению жира в жировых депо.

Образование инсулина регулируется уровнем глюкозы в плазме крови. Гипергликемия способствует увеличению выработки инсулина, гипогликемия уменьшает образование и поступление гормона в кровь. Некоторые гормоны желудочно-кишечного тракта, такие как желудочный ингибирующий пептид, холецистокинин, секретин, увеличивают выход инсулина. Блуждающий нерв и ацетилхолин усиливают продукцию инсулина, симпатические нервы и норадреналин подавляют секрецию инсулина.

Антагонистами инсулина по характеру действия на углеводный обмен являются глюкагон, АКТГ, соматотропин, глюкокортикоиды, адреналин, тироксин. Введение этих гормонов вызывает гипергликемию.

Недостаточная секреция инсулина приводит к заболеванию, которое получило название сахарного диабета. Основными симптомами этого заболевания являются гипергликемия, глюкозурия, полиурия, полидипсия. У больных сахарным диабетом нарушается не только углеводный, но и белковый и жировой обмен. Усиливается липолиз с образованием большого количества несвязанных жирных кислот, происходит синтез кетоновых тел. Катаболизм белка приводит к снижению массы тела. Интенсивное образование кислых продуктов расщепления жиров и дезаминирования аминокислот в печени могут вызвать сдвиг реакции крови в сторону ацидоза и развитие гипергликемической диабетической комы, которая проявляется потерей сознания, нарушениями дыхания и кровообращения.

Избыточное содержание инсулина в крови (например, при опухоли островковых клеток или при передозировке экзогенного инсулина) вызывает гипогликемию и может привести к нарушению энергетического обеспечения мозга и потере сознания (гипогликемической коме).

α-Клетки островков Лангерганса синтезируют глюкагон, который является антагонистом инсулина. Под влиянием глюкагона происходит распад гликогена в печени до глюкозы. В результате этого повышается содержание глюкозы в крови. Глюкагон способствует мобилизации жира из жировых депо. Секреция глюкагона также зависит от концентрации глюкозы в крови. Гипергликемия тормозит образование глюкагона, гипогликемия, напротив, увеличивает.

Половые железы

Парные железы, в которых происходит образование половых клеток, а также продукция половых гормонов. Мужские и женские гонады отличаются строением и расположением.

Мужские расположены в многослойной кожной складке, называемой мошонкой, расположенной в паховой области. Это расположение было выбрано неслучайно, так как нормальное созревание сперматозоидов требует температуры ниже 37 градусов. Яички имеют дольчатое строение, от периферии к центру проходят извитые семенные канатики, по мере продвижения от периферии к центру происходит созревание сперматозоидов.

В женском теле половые железы расположены в брюшной полости по бокам от матки. В них расположены фолликулы на разных стадиях развития. В течение примерно одного лунного месяца наиболее развитый фолликул выходит ближе к поверхности, прорывается, высвобождая яйцеклетку, после чего фолликул проходит обратное развитие, выделяя при этом гормоны. 

Половые железы, или гонады – семенники (яички) у мужчин и яичники у женщин относятся к числу желез со смешанной секрецией. Внешняя секреция связана с образованием мужских и женских половых клеток – сперматозоидов и яйцеклеток. Внутрисекреторная функция заключается в секреции мужских и женских половых гормонов и их выделении в кровь. Как семенники, так и яичники синтезируют и мужские и женские половые гормоны, но у мужчин значительно преобладают андрогены, а у женщин – эстрогены. Половые гормоны способствуют эмбриональной дифференцировке, в последующем развитию половых органов и появлению вторичных половых признаков, определяют половое созревание и поведение человека. В женском организме половые гормоны регулируют овариально-менструальный цикл, а также обеспечивают нормальное протекание беременности и подготовку молочных желез к секреции молока.

Мужские половые гормоны, андрогены, являются сильнейшими стероидными гормонами. Ускоряют распад глюкозы с высвобождением энергии. Увеличивают мышечную массу и снижают количество жира. Повышенный уровень андрогенов повышает либидо у обоих полов, а также способствует развитию мужских вторичных половых признаков: огрубение голоса, изменение скелета, рост волос на лице и т. д.

Мужские половые гормоны (андрогены) вырабатываются интерстициальными клетками яичек (клетки Лейдига). В небольшом количестве они также вырабатываются в сетчатой зоне коры надпочечников у мужчин и женщин и в наружном слое яичников у женщин. Все половые гормоны являются стероидами и синтезируются из одного предшественника – холестерина. Наиболее важным из андрогенов является тестостерон. Тестостерон разрушается в печени, а его метаболиты экскретируются с мочой в виде 17-кетостероидов. Концентрация тестостерона в плазме крови имеет суточные колебания. Максимальный уровень отмечается в 7-9 часов утра, минимальный - с 24 до 3 часов.

Тестостерон участвует в половой дифференцировке гонады, обеспечивает развитие первичных (рост полового члена и яичек) и вторичных (мужской тип оволосения, низкий голос, характерное строение тела, особенности психики и поведения) половых признаков и появление половых рефлексов. Гормон участвует и в созревании мужских половых клеток - сперматозоидов, которые образуются в сперматогенных эпителиальных клетках семенных канальцев. Тестостерон обладает выраженным анаболическим действием, т.е. увеличивает синтез белка, особенно в мышцах, что приводит к росту мышечной массы, ускорению процессов роста и физического развития. За счет ускорения образования белковой матрицы кости, а также отложения в ней солей кальция гормон обеспечивает рост, толщину и прочность кости. Способствуя окостенению эпифизарных хрящей, половые гормоны практически останавливают рост костей. Тестостерон уменьшает содержание жира в организме. Гормон стимулирует эритропоэз, чем объясняется большее количество эритроцитов у мужчин, чем у женщин. Тестостерон оказывает влияние на деятельность центральной нервной системы, определяя половое поведение и типичные психофизиологические черты мужчин.

Продукция тестостерона регулируется лютеинизирующим гормоном аденогипофиза по механизму обратной связи. Повышенное содержание в крови тестостерона тормозит выработку лютропина, сниженное - ускоряет. Созревание сперматозоидов происходит под влиянием ФСГ. Клетки Сертоли, наряду с участием в сперматогенезе, синтезируют и секретируют в просвет семенных канальцев гормон ингибин, который тормозит продукцию ФСГ.

Недостаточность продукции мужских половых гормонов может быть связана с развитием патологического процесса в паренхиме яичек (первичный гипогонадизм) и вследствие гипоталамо-гипофизарной недостаточности (вторичный гипогонадизм). Различают врожденный и приобретенный первичный гипогонадизм. Причинами врожденного являются дисгенезии семенных канальцев, дисгенезия или аплазия яичек. Приобретенные нарушения функции яичек возникают вследствие хирургической кастрации, травм, туберкулеза, сифилиса, гонореи, осложнений орхита, например при эпидемическом паротите. Проявления заболевания зависят от возраста, когда произошло повреждение яичек.

При врожденном недоразвитии яичек или при повреждении их до полового созревания возникает евнухоидизм. Основные симптомы этого заболевания: недоразвитие внутренних и наружных половых органов, а также вторичных половых признаков. У таких мужчин отмечаются небольшие размеры туловища и длинные конечности, увеличение отложения жира на груди, бедрах и нижней части живота, слабое развитие мускулатуры, высокий тембр голоса, увеличение молочных желез (гинекомастия), отсутствие либидо, бесплодие. При заболевании, развившемся в постпубертатном возрасте, недоразвитие половых органов менее выражено. Либидо часто сохранено. Диспропорций скелета нет. Наблюдаются симптомы демаскулинизации: уменьшение оволосения, снижение мышечной силы, ожирение по женскому типу, ослабление потенции вплоть до импотенции, бесплодие. Усиленная продукция мужских половых гормонов в детском возрасте приводит к преждевременному половому созреванию. Избыток тестостерона в постпубертатном возрасте вызывает гиперсексуальность и усиленный рост волос.

Женские половые гормоны, эстрогены, также являются анаболическими стероидами. Они в основном отвечают за развитие женских половых органов, включая молочные железы, формирование женских вторичных половых признаков. Также открыто, что эстрогены обладают антиатеросклеротическим действием, с чем связывают более редкое проявление атеросклероза у женщин

Женские половые гормоны вырабатываются в женских половых железах - яичниках, во время беременности – в плаценте, а также в небольших количествах клетками Сертоли семенников у мужчин. В фолликулах яичников осуществляется синтез эстрогенов, желтое тело яичника продуцирует прогестерон.

К эстрогенам относятся эстрон, эстрадиол и эстриол. Наибольшей физиологической активностью обладает эстрадиол. Эстрогены стимулируют развитие первичных и вторичных женских половых признаков. Под их влиянием происходит рост яичников, матки, маточных труб, влагалища и наружных половых органов, усиливаются процессы пролиферации в эндометрии. Эстрогены стимулируют развитие и рост молочных желез. Кроме этого эстрогены влияют на развитие костного скелета, ускоряя его созревание. За счет действия на эпифизарные хрящи они тормозят рост костей в длину. Эстрогены оказывают выраженный анаболический эффект, усиливают образование жира и его распределение, типичное для женской фигуры, а также способствуют оволосению по женскому типу. Эстрогены задерживают азот, воду, соли. Под влиянием этих гормонов изменяется эмоциональное и психическое состояние женщин. Во время беременности эстрогены способствуют росту мышечной ткани матки, эффективному маточно-плацентарному кровообращению, вместе с прогестероном и пролактином – развитию молочных желез.

При овуляции в желтом теле яичника, которое развивается на месте лопнувшего фолликула, вырабатывается гормон – прогестерон. Главная функция прогестерона – подготовка эндометрия к имплантации оплодотворенной яйцеклетки и обеспечение нормального протекания беременности. Если оплодотворение не наступает, желтое тело дегенерирует. Во время беременности прогестерон вместе с эстрогенами обусловливает морфологические перестройки в матке и молочных железах, усиливая процессы пролиферации и секреторной активности. В результате этого в секрете желез эндометрия возрастают концентрации липидов и гликогена, необходимых для развития эмбриона. Гормон угнетает процесс овуляции. У небеременных женщин прогестерон участвует в регуляции менструального цикла. Прогестерон усиливает основной обмен и повышает базальную температуру тела, что используется в практике для определения времени наступления овуляции. Прогестерон обладает антиальдостероновым эффектом. Концентрации тех или иных женских половых гормонов в плазме крови зависят от фазы менструального цикла.

Недостаточная продукция женских половых гормонов может возникнуть при непосредственном воздействии патологического процесса на яичники. Это так называемый первичный гипогонадизм. Вторичный гипогонадизм встречается при снижении продукции гонадотропинов аденогипофизом, в результате чего наступает резкое уменьшение секреции эстрогенов яичниками. Первичная недостаточность яичников может быть врожденной вследствие нарушений половой дифференцировки, а также приобретенной в результате хирургического удаления яичников или повреждения инфекционным процессом (сифилис, туберкулез). При повреждении яичников в детском возрасте отмечается недоразвитие матки, влагалища, первичная аменорея (отсутствие менструаций), недоразвитие молочных желез, отсутствие или скудное оволосение на лобке и под мышками, евнухоидные пропорции: узкий таз, плоские ягодицы. При развитии заболевания у взрослых недоразвитие половых органов менее выражено. Возникает вторичная аменорея, отмечаются различные проявления вегетоневроза.

Плацента – это временный орган, формирующийся во время беременности. Она обеспечивает связь зародыша с организмом матери: регулирует поступление кислорода и питательных веществ, удаление вредных продуктов распада. Плацента выполняет также барьерную функцию, обеспечивая защиту плода от вредных для него веществ.

Итак, к 16-й неделе беременности желтое тело в яичнике практически угасло. Всю заботу о гормональной продукции взяла на себя плацента. Она обеспечивает организм ребенка необходимыми белками и гормонами. Посмотрите, как внушителен их ряд: прогестерон, предшественники эстрогенов, хорионический гонадотропин, хориальный соматотропин, хориональный тиреотропин, адренокортикотропный гормон, окситоцин, релаксин.

Гормоны плаценты обеспечивают нормальное протекание беременности. Наиболее изучен хорионический гонадотропин. По своим физиологическим свойствам он близок к гонадотропинам гипофиза. Гормон оказывает эффект на процессы дифференцировки и развитие плода, а также на обмен веществ матери: задерживает воду и соли, стимулирует выработку антидиуретического гормона и сам обладает антидиуретическим действием, стимулирует механизмы иммунитета.

Тимус, вилочковая железа

Тимус, или вилочковая железа – парный орган, расположенный за грудиной в верхнем средостении, является центральным иммунным органом. Обе доли вилочковой железы соприкасаются по срединной линии и между ними находится промежуточная доля. По своей конфигурации вилочковая железа напоминает пирамиду, обращенную вершиной книзу. Форма железы нередко варьирует, что зависит от расположения соседних органов. Вилочковая железа богата сосудами. Иннервация вилочковой железы осуществляется веточками блуждающего нерва, а также симпатическими нервами, исходящими от нижнего шейного и верхнего грудного узла. При гистологическом исследовании вилочковая железа напоминает лимфоцитарную ткань с большим количеством лимфоцитов. Ткань тимуса активно продуцирует лимфоциты и для нее характерен интенсивный синтез дезоксирибонуклеиновой кислоты. Тимус состоит из широкого периферического коркового слоя и мозгового вещества. Лимфоидные элементы обнаруживаются главным образом в корковом веществе. Они обадают плотным кругым ядром и узкой каймой цитоплазмой. Ретикулярные элементы преобладают в мозговом слое. Характерно наличие телец Гассаля – скопления эпителиальных телец. При распаде тельца Гассаля заполняются активно пролиферирующими лимфоцитами. В ткани тимуса наблюдаются альвеолярные трубчатые и кистозные структуры, заполненные секретом. Вилочковая железа энергично растет в первые годы после рождения (10-15 г.) и достигает максимального размера (20-30 г.) к периоду полового развития, после чего начинается ее постепенная инволюция (постепенное обратное развитие). После 30 лет  активно подвергается возрастной инволюции  и к пожилому возрасту практически не выделяется на фоне окружающей жировой ткани. Помимо возрастных изменений, вилочковая железа претерпевает изменения в весе и объеме в результате происходящих различных реакций организма, связанных с влиянием интоксикаций, голодания, облучения, инфекций и стрессовых воздействий, нарушающих общее состояние больного. В редких случаях возрастная инволюция железы не наблюдается. Железа остается большой. Нормально и хорошо развита даже в том возрасте, когда она должна физиологически уменьшаться. Обычно функции вилочковой железы достаточны для средней продолжительности жизни. С возрастом функциональность тимуса снижается. С физиологической точки зрения вскоре после достижения половой зрелости начинается инволюция тимуса. Таким образом, в течение последующих 5 десятилетий человеку остается лишь крохотная часть тимуса. Уменьшение активности тимуса напрямую связано со старением человека. Следовательно, снижение активности тимуса может стать возможным объяснением того факта, что с возрастом количество дегенеративных заболеваний, малигнаций и аутоиммунных изменений увеличивается. Ослабленные факторы тимуса не в состоянии полностью управлять защитным механизмом организма. Вместе с тем, сохраняется большое количество нуклеопротеидов (тимонуклеиновых кислот), которые частично принимают на себя функции вилочковой железы. В дальнейшем тимус находится во взаимодействии с гонадами и оказывает влияние на рост.

Гормоны тимуса:

  • Тимозин стимулирует иммунную систему, участвует в углеводном обмене и развитии скелета.
  • Тимопоэтин принимает участие в развитии Т-лимфоцитов иммунной системы.

Помимо гормональной функции, в тимусе происходит созревание Т-лимфоцитов, важнейших имунных клеток. Гормональные и клеточные факторы тимуса являются причиной развития иммунологически способных клеток в иммунокомпетентные клетки. В вилочковой железе  происходит образованием из стволовых клеток костного мозга Т-лимфоцитов. Гормоны обеспечивают дифференцировку Т-лимфоцитов и играют определенную роль в клеточных иммунных реакциях. Примерно 3% иммигрирующих лимфоцитов, образованных тимусом, в конечном итоге снова попадают в кровеносные сосуды. Остальная часть остается в зобной железе и преобразуется в индивидуальные соматические клетки.

Клеточный тимус-фактор вызывает в тимусе созревание лимфатических стволовых клеток, которые по завершении процесса созревания переходят в лимфатические органы (лимфатические узлы, кишечную стенку, селезенку, костный мозг) в качестве иммунных клеток. При контакте Т-лимфоцитов с тимоцитами (гормонами тимуса) постоянно образуются подгруппы Т-лимфоцитов, например, хелперные Т-клетки. В случае необходимости защиты они производят специальные иммуноглобулины против инородных или внутренних инородных антигенов.

При отсутствии хелперных Т-клеток или факторов тимуса лимфоциты подгруппы В не способны трансформироваться в плазматические клетки, производящие иммуноглобулины. Супрессорные Т-клетки оказывают сдерживающее воздействие на лимфоциты, предотвращая избыточное образование антител. Без супрессорных клеток объяснить аутоиммунные, иммунокомплексные и другие заболевания достаточно сложно.

Тимус и соответствующие особые гормоны представляют собой своего рода защитный механизм, управляющий иммунологическими защитными реакциями. В случае прекращения работы тимуса (например, при удалении или вследствие лучевой терапии) соответствующие Т-лимфоциты отсутствуют. При замещении тимуса в подобных случаях специфические функции лимфоцитов восстанавливаются.

Имеются также сведения, что гормоны обеспечивают синтез клеточных рецепторов к медиаторам и гормонам, например, рецепторов ацетилхолина на постсинаптических мембранах нервно-мышечных синапсов.

Тканевые гормоны

Гормоны местного действия (тканевые гормоны) вырабатываются не железами внутренней секреции, а специализированными клетками, расположенными в самых различных органах. Их называют гистогормонами, или парагормонами, они имеют, так сказать «местное» значение, оказывая влияние не на весь организм в целом, а на процессы регуляции деятельности того органа или клетки или даже ее части, где они образуются.Физиологическое значение этих гормонов состоит в том, что они контролируют, в первую очередь, деятельность того органа, в котором образуются.

        Гормоны желудочно-кишечного тракта - гастрин, холецистокинин, мотлн, секретин и панкреозимин. Это полипептиды, секретируемые слизистой оболочкой желудочно-кишечного тракта в ответ на специфическую стимуляцию. Например, гастрин стимулирует секрецию соляной кислоты; холецистокинин контролирует опорожнение желчного пузыря, а секретин и панкреозимин регулируют выделение сока поджелудочной железы. Паротин, образующийся в околоушной слюнной железе,  влияет на развитие зубов, хрящевой и костной ткани. Мотилин, секретируемый энтерохромаффинными клетками слизистой оболочки двенадцатиперстной и тощей кишок, стимулирует перистальтические сокращения гладких мышц стенки желудка, тонкой и толстой кишок.

        Нейрогормоны -группа химических соединений, секретируемых нервными клетками (нейронами). Эти соединения обладают гормоноподобными свойствами, стимулируя или подавляя активность других клеток; они включают упомянутые ранее рилизинг-факторы, а также нейромедиаторы, функции которых заключается в передаче нервных импульсов между клетками. К нейромедиаторам относятся дофамин, адреналин, норадреналин, серотонин, гистамин, ацетилхолин и гамма-аминомасляная кислота. В середине 1970-х годов был открыт ряд новых нейромедиаторов, обладающих морфиноподобным обезболивающим действием; они получили название «эндорфины», т.е. «внутренние морфины».

        Эндорфины способны связываться со специальными рецепторами в структурах головного мозга; в результате такого связывания в спинной мозг посылаются импульсы, которые блокируют проведение поступающих болевых сигналов. Болеутоляющее действие морфина и других опиатов несомненно обусловлено их сходством с эндорфинами, обеспечивающим их связывание с теми же блокирующими боль рецепторами.

Почки синтезируют и секретируют в кровь ренин, эритропоэтин. 

Эритропоэти́н (гемопоэтин) контролирует эритропоэз, то есть образование красных кровяных клеток (эритроцитов). По химическому строению является гликопротеином. Секретируется не только в почках но и в перисинусоидальных клетках печени. Производство эритропоэтина печенью преобладает в эмбриональный и перинатальный периоды, в то время как почечная секреция преобладает в течение зрелого возраста. Он активирует в красном костном мозге  митоз и созревание эритроцитов из клеток-предшественников эритроцитарного ряда. Секреция эритропоэтина почками усиливается при кровопотере, различных анемических состояниях, при ишемии почек (например, при травматическом шоке), при гипоксических  состояниях. Секреция эритропоэтина почками также усиливается под влиянием глюкокортикоидов, что служит одним из механизмов быстрого повышения уровня гемоглобина и кислород-снабжающей способности крови при стрессовых состояниях. Уровень гемоглобина и количество эритроцитов в крови повышаются уже через несколько часов после введения экзогенного эритропоэтина. Эритропоэтин повышает системное артериальное давление. Он также увеличивает вязкость крови за счёт увеличения соотношения эритроцитарной массы к плазме крови. Определяющим в образовании эритропоэтина является кислородный режим в целом организме и в частности почек.

Ренин (ангиотензиногеназа) – это компонент ренин-ангиотензиновой системы, регулирующей кровяное давление. В отличие от остальных показателей гормонов, он не имеет клетки-мишени, а воздействует на белки крови, поэтому считается протеолитическим ферментом. Вырабатывается он по принципу обратной связи, то есть если его мало, происходит синтез внутри клубочков почек. Если много – продуцирование прекращается. При его выработке происходит активизация ангиотензина (из неактивного переходит в активный). Он повышает выделение альдостерона (гормон надпочечников), сосуды сужаются, скорость циркуляции жидкости падает. Механизмы соотношения ренина и альдостерона приводят к повышению кровяного давления и называются ренин-ангиотензин-альдостероновая система (РААС). Ренин-ангиотензин-альдостероновая система стимулирует повышение артериального давления (гипертензия) для того, чтобы к почкам поступало больше крови. Это вызывает активизацию надпочечников и увеличение их функционирования.

В миокарде предсердий (особенно правого) имеются секреторные кардиомиоциты - секретируют атриопептид (натрийуретический гормон), регулирующий артериальное давление; предсердный натрийуретический фактор (PNYF).  Гормон накапливается в специфических гранулах саркоплазмы миоцитов и секретируется в кровь под влиянием ряда регуляторных стимулов: повышение кровяного давления,  растяжения предсердий объемом крови, уровня натрия в крови, эффектов блуждающего и симпатических нервов, содержания в крови вазопрессина. Предсердный натрийуретический пептид снижает объем воды и концентрацию натрия в сосудистом русле.  Физиологические эффекты атриопептида состоят в расслаблении гладких мышц сосудов и вазодилатации. Атриопептид явется полным антогонистом ренин-ангиотензин-альдостероновой системы. Предотвращает развитие гипертрофии сердца. Атриопептид, кроме того, расслабляет гладкую мускулатуру кишечника, уменьшает величину внутриглазного давления, объеме и давления ликвора в желудочках мозга. Близкий по натрийуретическому эффекту гормон выявляется и в ткани головного мозга.

Гормоны, влияющие на сосудистую систему.

Кроме описанных выше адреналина, норадреналина, антидиуретического гормона гипофиза (вазопрессина), артериальное давление может измениться при действии ряда биологически активных веществ. К ним относится ренин, вырабатываемый юкстагломерулярным аппаратом почки и вызывающий переход гипертензиногена плазмы в гипертензии, который стимулирует сокращение гладких мышц артериол.

Из подчелюстной слюнной железы, легких и поджелудочной железы ряда животных было выделено активное вещество — калликреин, который вызывает расщепление одной из фракций глобулина плазмы крови, вследствие чего образуется гормон каллидин. Последний вызывает расслабление гладкой мускулатуры артериол, понижает артериальное давление и является в этом отношении антагонистом норадреналина.

Сосудорасширяющим действием обладает также полипептид брадикинин, образуемый многими клетками. Брадикинин появляется в коже при действии тепла и является одним из факторов, обусловливающих расширение сосудов при согревании. Полагают, что, кроме расширения сосудов, брадикинин вызывает ощущение боли, являясь раздражителем болевых рецепторов. Сходным действием обладает и гистамин, возникающий в коже при различных, в том числе и болевых, ее раздражениях, в желудке во время пищеварения, в мышцах при их работе. Появление гистамина (наряду с образованием углекислоты, молочной и фосфорной кислот и других продуктов метаболизма) является одной из причин расширения артериол и капилляров в работающих мышцах, которое обеспечивает усиленное их кровоснабжение.

Гистамин при действии на болевые рецепторы, так же как и брадикинин, участвует в возникновении чувства боли и зуда. Гистамин увеличивает проницаемость капиллярной стенки и способствует выходу (транссудации) воды и белков плазмы в ткани.

К числу веществ, суживающих артериолы и повышающих артериальное давление, принадлежит серотонин (5-гидроокситриптамин). Он образуется в нервной ткани, в кишечнике, эпифизе, в клетках ретикуло-эндотелия, в кровяных пластинках.

Серотонин обладает широким, напоминающим адреналин» спектром действия. Высказывается мнение, что серотонин принимает участие в передаче нервных импульсов в центральной нервной системе.

Другие биологически активные вещества. Имеется еще ряд тканевых гормонов, принимающих участие в регуляции различных физиологических процессов. Так, в экстрактах подчелюстных желез найден паротин — вещество, стимулирующее трофику (питание) хрящевой ткани, развитие дентина зубов и костной ткани. Имеются наблюдения, что до наступления половой зрелости зобная железа выделяет вещество, тормозящее деятельность щитовидной и половых желез.

ТЕСТОВЫЙ КОНТРОЛЬ

по теме «ЭНДОКРИННАЯ СИСТЕМА»

Выберите правильный ответ

1. Моментальные реакции организма регулируются:
а) гормонами
б) периферической нервной системой
в) центральной нервной системой

2. К железам внешней секреции не относят:
а) гипофиз
б) слюнные железы
в) сальные железы

3. К железам смешанной секреции относится:

а) гипофиз

б) сальная железа

в) потовая железа

г) надпочечник

д) поджелудочная железа

4. Функция желез внутренней секреции напрямую зависит от состояния:
а) ЖКТ
б) НС
в) кроветворной системы

5. Гормоны это:
а) смесь жиров и углеводов
б) растворы солей и кальция
в) биологически активные вещества

6. Вещества, которые железы внутренней секреции выделяют в кровь:
а) бактерии
б) ферменты
в) гормоны

7. Базедова болезнь развивается: при:
а) недостаточной функции эпифиза
б) гиперфункции щитовидной железы
в) гиперфункции поджелудочной железы

8. Гормон роста – это:
а) соматотропин
б) вазопрессин
в) окситоцин

9. Человеку, страдающему сахарным диабетом, необходимо регулярно:
а) принимать витамины
б) прогуливаться на свежем воздухе
в) вводить инсулин

10. Небольшая железа, расположенная в “турецком седле”, и состоящая из трёх частей:
а) вилочковая железа
б) гипофиз
в) щитовидная железа

1. Химический элемент, являющийся действующим началом в тироксине (гормоне) щитовидной железы:
а) магний
б) калий
в) йод

12. При нехватке инсулина у человека развивается:
а) сахарный диабет
б) базедова болезнь
в) аддисонова болезнь

13. Гормон поджелудочной железы:
а) норадреналин
б) тироксин
в) инсулин

14. При избытке гормона роста у взрослых людей развивается:
а) гигантизм
б) акромегалия
в) карликовость

15. Характерными клиническими проявлениями тиреотоксикоза является (ются):
а) снижение массы тела, стойкая тахикардия
б) сонливость
в) запоры

16. Гипофункция передней доли гипофиза сопровождается:
а) усилением роста
б) нарушением роста
в) диспропорцией экстерьера

17. Эндемический зоб наблюдается при:
а) избытке йода
б) недостатке йода
в) нехватке витаминов

18. Адреналин вырабатывается:
а) почками
б) надпочечниками
в) поджелудочной железой

19. Адреналин усиливает работу:
а) печени
б) сердца
в) почек

20. Нарушение функции __________сопровождается судорогами нижних, верхних конечностей, преимущественно сгибательных мышц, изменением кальциевого баланса:
а) паращитовидных желез
б) тимуса
в) надпочечников

21. Болезнь, которая развивается при недостатке гормона щитовидной железы:
а) микседема
б) базедова болезнь
в) гигантизм

22. Минералокортикоиды выделяются:

а) эндокринной частью поджелудочной железы

б) паращитовидными железами

в) мозговым веществом надпочечников

г) корковым веществом надпочечников

23. Паращитовидные железы вырабатывают гормон:

а) тиреотропный

б) соматотропный

в) паратиреоидный

 

24. Гипофиз производит:

а) соматотропин

б) адреналин

в) норадреналин

25.Поджелудочная железа продуцирует:
а) ренин
б) тироксин
в) адреналин
г) инсулин

26. Надпочечники продуцируют:
а) инсулин
б) нейрогормоны
в) адреналин

27. Заболевание, связанное с нарушением работы гипофиза:
а) астения
б) базедова болезнь
в) гигантизм
г) сахарный диабет
д) ожирение

28. У взрослого человека болезнь акромегалия: увеличение стоп и кистей, мягких тканей лица связана с нарушениями функций железы:
а) щитовидной
б) гипофиза
в) надпочечников

29. При выявлении у пациента глюкозурии в первую очередь необходимо:
а) провести глюкозотолерантный тест
б) определить уровень базального инсулина
в) определить уровень глюкозы в крови натощак

30. Тестостерон:

а) увеличивает синтез белка

б) уменьшает содержание жира в организме

в) ускоряет физическое развитие

г) стимулирует эритропоэз
д) все перечисленное верно


По теме: методические разработки, презентации и конспекты

Тестовые задания по теме "Терморегуляция" (дисциплина "Анатомия и физиология человека")

Тестовые задания по теме "Терморегуляция" (дисциплина "Анатомия и физиология человека")...

Методический материал по теме: "Спинномозговые и черепномозговые нервы" (дисциплина "Анатомия и физиология человека")

Методический материал по теме: "Спинномозговые и черепномозговые нервы" (дисциплина "Анатомия и физиология человека")...

Методический материал с тестовым контролем по теме: "Опухоли" (дисциплина "Основы патологии")

Методический материал с тестовым контролем по теме: "Опухоли" (дисциплина "Основы патологии")...

Методический материал с тестовым контролем по теме: "Внутренняя среда: Кровь" (дисциплина "Анатомия и физиология человека")

Методический материал с тестовым контролем по теме: "Внутренняя среда: Кровь" (дисциплина "Анатомия и физиология человека")...

Методический материал с тестовым контролем по теме "Особенности иммунной системы" (дисциплина "Анатомия и физиология человека")

Методический материал с тестовым контролем по теме "Особенности иммунной системы" (дисциплина "Анатомия и физиология человека")...

Тестовые задания к практическому занятию дисциплины "Анатомия и физиология человека" специальности (34.02.01 Сестринское дело)

Материал составлен согласно программе дисциплины"Анатомия и физиология человека" специальности "34.02.01 Сестринское дело " и может быть для проверки знаний по теме;"Пищ...

Тестовые задания к практическому занятию Дисциплина:"Анатомия и физиология человека" (34.02.01 Сестринское дело). Тема: "Водно-солевой обмен"

Материал составлен согласно программе дисциплины "Анатомия и физиология человека" специальности "34.02.01 Сестринское дело " и может быть использован для проверки знаний по теме....