• Главная
  • Блог
  • Пользователи
  • Форум
  • Литературное творчество
  • Музыкальное творчество
  • Научно-техническое творчество
  • Художественно-прикладное творчество

Презентация по теме :"Комбинаторика"

Опубликовано Болдова Надежда Петровна вкл 21.12.2013 - 17:36
Болдова Надежда Петровна
Автор: 
Петров Владимир,учащийся 12 группы ГБОУ СО НПО "Профессиональное училище №22" г. Саратова

В презентации рассмотрены премеры решения задач на нахождение перестановок, размещений, сочетаний.

Скачать:

ВложениеРазмер
Файл petrov.pptx450.19 КБ
Предварительный просмотр:
Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

Подписи к слайдам:

Слайд 1

Элементы комбинаторики: перестановки, сочетания и размещения Презентацию подготовил студент 12 группы ГБОУ СО НПО Петров Владимир .

Слайд 2

Комбинаторика – раздел математики, который занят поисками ответов на вопросы: сколько всего есть комбинаций в том или ином случае, как из всех этих комбинаций выбрать наилучшую. Слово «комбинаторика» происходит от латинского слова «combinare», что в переводе на русский означает – «сочетать», «соединять». Термин "комбинаторика" был введён знаменитым Готфридом Вильгельмом Лейбницем, - всемирно известным немецким учёным.

Слайд 3

Комбинаторные задачи делятся на несколько групп: Задачи на перестановки Задачи на размещение Задачи на сочетание

Слайд 4

Задачи на перестановки Сколькими способами можно расставить 3 различные книги на книжной полке? Это задача на перестановки

Слайд 5

Запись n ! читается так :«эн факториал» Факториал - это произведение всех натуральных чисел от 1 до n Например, 4! = 1*2*3*4 = 24 n! = 1 · 2 · 3 · ... · n.

Слайд 6

n 1 2 3 4 5 6 7 8 9 10 n! 1 4 6 24 120 720 5040 40320 362880 3628800 Факториалы растут удивительно быстро:

Слайд 7

Задача. Сколькими способами можно расставить 8 участниц финального забега на восьми беговых дорожках? P8 = 8!= 1 ∙2∙ 3 ∙4∙ 5 ∙6∙ 7 ∙8 = 40320

Слайд 8

Перестановкой из n элементов называется каждое расположение этих элементов в определённом порядке. P n = 1 · 2 · 3 · ... · n. P n =n !

Слайд 9

Задача. Квартет Проказница Мартышка Осёл, Козёл, Да косолапый Мишка Затеяли играть квартет … Стой, братцы стой! – Кричит Мартышка, - погодите! Как музыке идти? Ведь вы не так сидите… И так, и этак пересаживались – опять музыка на лад не идет. Вот пуще прежнего пошли у них разборы И споры, Кому и как сидеть… Сколькими способами можно рассадить четырех музыкантов? P = 4! = 1 * 2 * 3 * 4 = 24

Слайд 10

Задачи на размещения

Слайд 11

Задача: У нас имеется 5 книг, что у нас всего одна полка, и что на ней вмещается лишь 3 книги . Сколькими способами можно расставить на полке 3 книги? Выбираем одну из 5-ти книг и ставим на первое место на полке. Это мы можем сделать 5-ю способами. Теперь на полке осталось два места и у нас осталось 4 книги. Вторую книгу мы можем выбрать 4-мя способами и поставить рядом с одной из 5-ти возможных первых. Таких пар может быть 5·4. Осталось 3 книги и одно место. Одну книгу из 3-ёх можно выбрать 3-мя способами и поставить рядом с одной из возможных 5·4 пар. Получится 5·4·3 разнообразных троек. Значит всего способов разместить 3 книги из 5-ти 5·4·3 = 60. Это задача на размещения .

Слайд 12

Размещением из n элементов по k ( k≤n ) называется любое множество, состоящее из k элементов, взятых в определённом порядке из данных n элементов.

Слайд 13

Задача. Учащиеся второго класса изучают 9 предметов. Сколькими способами можно составить расписание на один день, чтобы в нём было 4 различных предмета? A 4 9 = = 6∙ 7∙ 8∙ 9 = 3024

Слайд 14

Решите самостоятельно: В классе 27 учащихся. Нужно отправить одного учащегося за мелом, второго дежурить в столовую, а третьего вызвать к доске. Сколькими способами можно это сделать?

Слайд 15

Задачи на сочетания: Задача. Сколькими способами можно расставить 3 тома на книжной полке, если выбирать их из имеющихся в наличии внешне неразличимых 5 книг? Книги внешне неразличимы. Но они различаются, и существенно! Эти книги разные по содержанию. Возникает ситуация, когда важен состав элементов выборки, но несущественен порядок их расположения. 123 124 125 134 135 145 234 235 245 345 ответ: 10 Это задача на сочетания

Слайд 16

Сочетанием из n элементов по k называется любое множество, составленное из k элементов, выбранных из данных n элементов.

Слайд 17

Задача . В классе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде? C 7 2 = = 21

Слайд 18

Решите самостоятельно: В классе 7 учащихся успешно занимаются по математике. Сколькими способами можно выбрать двоих из них, чтобы направить для участия в математической олимпиаде?

Слайд 19

Особая примета комбинаторных задач – вопрос, который можно сформулировать так, чтобы он начинался словами «Сколькими способами…» или «Сколько вариантов…»

Слайд 20

Перестановки Размещения Сочетания n элементов n клеток n элементов k клеток n элементов k клеток Порядок имеет значение Порядок имеет значение Порядок не имеет значения Составим таблицу:

Слайд 21

Решите самостоятельно задачи: 1.В коробке находится 10 белых и 6 черных шаров. Сколькими способами из коробки можно вынуть один шар любого цвета? 2.Ольга помнит, что телефон подруги оканчивается тремя цифрами 5, 7, 8 но забыла, в каком порядке эти цифры расположены. Укажите наибольшее число вариантов, которые ей придется перебрать, чтобы дозвониться подруге. 3. В магазине “Филателия” продается 8 разных наборов марок, посвященных спортивной тематике. Сколькими способами можно выбрать из них 3 набора?

Слайд 22

Спасибо за урок!

Поделиться:

Рисуем ветку берёзы сухой пастелью

В поисках капитана Гранта

Астрономы получили первое изображение черной дыры

Анатолий Кузнецов. Как мы с Сашкой закалялись

Лиса Лариска и белка Ленка