НОУ. Презентация выступления ученика 11 класса Корнева Алексея по теме: "Решение уравнений третьей степени". Включает разработанную учеником компьютерную программу, для решения указанных уравнений.
Слайд 1
Выполнил: ученик 11 «а» класса Корнев Алексей Владимирович научный руководитель: Пузанова Наталья Анатольевна, учитель математики «Решение уравнений третьей степени» МБОУ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №68 г. Нижний Новгород 2014 годСлайд 2
ЦелЬ работы: Освоить решение кубических уравнений различными способами задачи: найти исторические сведения об открытии формул для решения кубических уравнений узнать новые способы решения создать несклько компьютерных программ для решения данных уравнений
Слайд 3
Исторические сведения Николо Тарталья (1499-1557) Джироламо Кардано (1501-1576)
Слайд 4
Понятие кубического уравнения Кубическое уравнение - алгебраическое уравнение третьей степени, ax 3 + bx 2 +cx-d=0 где a , b,c , d - коэффициенты, а х - переменная. Число x , обращающее уравнение в тождество , называется корнем или решением уравнения График кубического уравнения Любое кубическое уравнение можно привести к более простому виду -каноническому : y 3 +py+q=0
Слайд 5
Способы решения Кубических уравнений: с помощью вынесения общего множителя; с помощью деления на многочлен; с помощью формулы Кардано ; с помощью теоремы Виета; с помощью схемы Горнера; решение возвратных уравнений; г рафический способ. с помощью компьютерных программ
Слайд 6
Алгоритм решения: 1. Перегруппировать члены данного уравнения 2. Вынести общий множитель за скобки 3. Получить произведение равное нулю 4. Решить полученные уравнения. Решение кубических уравнений с помощью вынесение общего множителя за скобки
Слайд 8
Алгоритм решения: 1. Подобрать один корень из делителей свободного члена 2. Поделить многочлен на многочлен 3.Найти корни в получившемся квадратном уравнении Решение кубических уравнений с помощью д еления многочлен на многочлен
Слайд 11
Алгоритм решения: 1. Свести уравнение к каноническому виду ( добавить кононич . вид ) 2. Расчет корней по специальной формуле (добавить формулу) Решение кубических уравнений с помощью формулы Кардано
Слайд 14
Алгоритм решения: 1. Подобрать корни, удовлетворяющие системе a x 3 + b x 2 + c x + d = 0 x 1 +x 2 +x 3 =-b/a x 1 x 2 +x 2 x 3 +x 3 x 1 =c/a x 1 x 2 x 3 =-d/a Решение кубических уравнений с помощью теоремы Виета ,где x 1 , x 2 , x 3 – корни уравнения
Слайд 15
Не очень хорошо стоят индексы 1,2,3
Слайд 16
Алгоритм решения: 1. По схеме Горнера найти корень уравнения 2. Решить получившееся квадратное уравнение Решение кубических уравнений с помощью схемы Горнера
Слайд 19
Алгоритм решения: 1. Корнем уравнения является x=-1 2. Поделить многочлен на многочлен 3. Найти корни в получившемся квадратном уравнении Решение возвратных кубических уравнений
Слайд 21
Алгоритм решения: 1. Разбить кубическое уравнение на два уравнения 2. Построить графики функций стоящих в левой и правой частях уравнения 3. Абсциссы точек пересечения графиков – корни заданного уравнения Графический способоб решения кубических уравнений
Слайд 23
Старинные задачи, связанные с кубическими уравнениями
Слайд 25
Решение кубических уравнений С помощью компьютерной программы Ознакомившись с кубическими уравнениями, я написал ещё программу для быстрого их решения. Метод , который будет использоваться в программе - перебор. Программа находит целочисленные корни находящиеся в промежутки от -100 до 100. Язык программирования: Pascal .
Слайд 26
Скриншоты работы
Слайд 27
Итог моих исследований Просмотрев множество способов решения кубических уравнений, я остался верен двум на мой взгляд самым надёжным и практичным способам - это теорема Виета и схема Горнера, они позволяют быть уверенным в своем ответе. Теперь, выбирая между ними, мне стоит лишь посмотреть на сложность коэффициента уравнения.
Рождественский венок
Лупленый бочок
Золотой циркуль
Сказочные цветы за 15 минут
Как нарисовать зайчика