Цель исследования:
Сформировать представление о возникновении и развитии обыкновенных дробей; развивать любознательность; вызвать интерес к изучению математики.
Для достижения этой цели были сформулированы задачи:
1) развивать умение работать с дополнительной литературой;
2) рассмотреть применение дробей в повседневной жизни;
3) привитие интереса к изучению математики через рассмотрение исторических фактов;
4) научиться обобщать полученную информацию.
Объект исследования – математика.
Предмет исследования – обыкновенные дроби.
Гипотеза: повседневная жизнь человека не обходится без дробей.
Вложение | Размер |
---|---|
proekt.docx | 406.25 КБ |
МБОУ Новотроицкая СОШ
Проект по математике:
«Ох, уж эти дроби!»
Выполнил:
ученик 6 класса Хайруллин Дмитрий
Проверил: Чемоданова И.С.
с.Новотроицк
2017
Оглавление
1. Введение…………………………………………………………….
2. История развития обыкновенных дробей.
2.1Появление дробей…………………………………………………
2.2Дроби в древнем Египте…………………………………………..
2.3Дроби в древнем Риме…………………………………………….
2.4Нумерация и дроби в древней Греции………………………….
2.5 Нумерация и дроби на Руси……………………….......................
3. Старинные задачи с использованием дробей………………
4. Применение дробей в повседневной жизни ……………………….
5. Заключение…………………………………………………………...
6. Список использованных источников информации………………..
Введение.
На уроках математики при изучении темы «Обыкновенные дроби» мы узнали некоторые исторические факты из появления и развития дробей. Мне захотелось рассмотреть этот вопрос более основательно: рассмотреть более подробно этапы развития обыкновенных дробей; найти задачи с дробями, составленные в далёком прошлом. Хотелось в ходе исследования этого вопроса убедиться и убедить других в необходимости дробей в повседневной жизни.
Цель исследования:
Сформировать представление о возникновении и развитии обыкновенных дробей; развивать любознательность; вызвать интерес к изучению математики.
Для достижения этой цели были сформулированы задачи:
1) развивать умение работать с дополнительной литературой;
2) рассмотреть применение дробей в повседневной жизни;
3) привитие интереса к изучению математики через рассмотрение исторических фактов;
4) научиться обобщать полученную информацию.
Объект исследования – математика.
Предмет исследования – обыкновенные дроби.
Гипотеза: повседневная жизнь человека не обходится без дробей.
Актуальность и значимость моей работы вижу в том, что будет интересной для учащихся и полезной для учителей математики в качестве дополнительного материала при проведении уроков и мероприятий.
История развития обыкновенных дробей.
2.1 Появление обыкновенных дробей.
Что может быть проще счёта? Говорить подряд: один, два, три, четыре, пять и т.д. может всякий. Счёт вошёл в наш быт так прочно, мы с ним так сжились, что не можем себе представить человека, не умеющего считать. И всё же было время, когда люди считать не умели. Наши отдалённые предки, населявшие землю тысячи веков тому назад, не знавшие огня, не знали и счёта.
В старинных сказаниях упоминаются пророки и герои, которым боги открыли или которые сами отняли у богов огонь и число. Таких пророков и героев, разумеется, никогда не было. Люди научились считать сами, постепенно в течение сотен веков, передавая свой опыт и свои знания из поколения в поколение, развивая и совершенствуя искусство счёта.
На древних гробницах, на развалинах старых храмов находят иногда странные, причудливые письмена. Учёные сумели их прочесть и узнали, как жили люди четыре-пять тысяч лет назад. Из этих надписей видно, что и тогда наши предки считали неплохо. Но как считали они ещё раньше, когда не умели писать? Об этом мы можем только догадываться.
В те отдалённые времена, когда люди едва научились говорить и пользоваться огнём, они знали только два числа: один и два. Число «два» связывалось с органами зрения и слуха и вообще с конкретной парой предметов. Если перечисляемых предметов было больше двух, то люди говорили просто «много». «Много» было звёзд на небе, но и пальцев на руке было тоже «много».
Постепенно к первым двум числам прибавлялись новые и новые. Люди научились считать до пяти и соединять два «пятка» в десяток. На первых ступенях развития общества люди считали с помощью десяти пальцев рук. Поныне существует высказывание «Перечесть по пальцам». Так постепенно увеличивался набор чисел, которые употребляли при счёте предметов, т.е. появились натуральные числа.
В жизни человеку приходилось не только считать предметы, но и измерять величины. Люди встретились с измерениями длин, площадей земельных участков, объемов, массы тел. При этом случалось, что единица измерения не укладывалась целое число раз в измеряемой величине. Например, измеряя длину участка шагами, человек встречался с таким явлением: в длине укладывалось десять шагов, и оставался остаток меньше одного шага. Появление дробей связано у многих народов с делением добычи на охоте. В связи с этой необходимой работой люди стали употреблять выражения: половина, треть, два с половиной шага. Откуда можно было сделать вывод, что дробные числа возникли как результат измерения величин.
2.2 Дроби в древнем Египте.
Первая дробь, с которой познакомились люди, была, наверное, половина. За ней последовали …, затем и т.д., то есть самые простые дроби, доли целого, называемые единичными или основными дробями. У них числитель всегда единица. Египтяне выражали любую дробь в виде суммы только основных дробей.
Например, .
В древнем Египте архитектура достигла высокого развития. Об этом свидетельствуют сохранившиеся до наших дней египетские пирамиды. Разумеется, для того чтобы строить их, чтобы вычислить длины, площади и объёмы фигур, необходимо было знать арифметику.
Египтяне писали на папирусах, то есть на свитках, изготовленных из стебля крупных тропических растений, носивших такое же название.
2.3 Дроби в древнем Риме.
Римляне пользовались, в основном, только конкретными дробями, которые заменяли части известных величин. Медленным и длительным был переход от конкретных к отвлечённым дробям, не связанным с определёнными мерами. Они остановили свое внимание на мере «асс», который у римлян служил основной единицей измерения массы, а также денежной единицей. Асс делился на двенадцать частей – унций. Из них складывали все дроби со знаменателем 12, то есть и т. д.
Так возникли римские двенадцатеричные дроби, то есть дроби, у которых знаменателем всегда было число 12. Вместоримляне говорили «одна унция», – «пять унций» и т.д. Три унции назывались четвертью, четыре унции – третью, шесть унций – половиной.
Чтобы работать с дробями, надо было помнить для этих дробей и таблицу сложения, и таблицу умножения. Для облегчения работы составлялись специальные таблицы, некоторые из них дошли до нас.
2.4 Нумерация и дроби в древней Греции
В греческих сочинениях по математике дробей не встречалось. Греческие учёные считали, что математика должна заниматься только целыми числами. Возиться с дробями они предоставляли купцам, ремесленникам, а также астрономам, землемерам и другому «чёрному люду».
В Древней Греции арифметику – учение об общих свойствах чисел – отделяли от логистики – искусства исчисления. Греки считали, что дроби можно использовать только в логистике. Здесь мы впервые встречаемся с общим понятием дроби вида . Таким образом, можно считать, что впервые область натуральных чисел расширилась до области дополнительных рациональных чисел в Древней Греции не позднее V столетия до н. э. Греки свободно оперировали всеми арифметическими действиями с дробями, но числами их не признавали.
Греки употребляли наряду с единичными, «египетскими» дробями и общие обыкновенные дроби. Среди разных записей употреблялась и такая: сверху знаменатель, под ним – числитель дроби. Например, означало три пятых и т.д.
2.5. Нумерация и дроби на Руси
Как свидетельствуют старинные памятники русской истории, наши предки-славяне, находившиеся в культурном общении с Византией, пользовались десятичной алфавитной славянской нумерацией, сходной с ионийской. Над буквами-числами ставился особый знак, названный титло. Для обозначения тысячи применялся другой знак, который приставлялся слева от букв.
Старейшим арифметическим памятником Киевской Руси является сочинение о календаре, написанное на славянском языке в 1136году и названное «Учение им же ведати человеку числа всех лет», то есть «Наставление, как человеку познать счисление лет».автор сочинений – учёный монах Кирик Новгородец, о жизни которого известно немного. Кирик пользуется конкретными дробями: и т.д.
В русских рукописных арифметиках XVII века дроби называли долями, позднее «ломаными числами». В старых руководствах находим следующие названия дробей на Руси:
|
|
|
|
|
|
|
|
|
|
|
|
Славянская нумерация употреблялась в России до XVI века, затем в страну начала постепенно проникать десятичная позиционная система счисления. Она окончательно вытеснила славянскую нумерацию при Петре I
3. Старинные задачи с использованием обыкновенных дробей
В различных книжных пособиях я нашел интересные задачи, которые были использованы в различные исторические периоды.
1) Задача Эйлера.
Леонард Эйлер (4 апреля 1707г.- 18 сентября 1783г.) - является основателем русской научной математической школы. Полное собрание его сочинений насчитывает более 70 томов, а списки его трудов – более 850 названий.
Решив все свои сбережения поделить поровну между всеми сыновьями, некто составил завещание. «Старший из моих сыновей должен получить 1000 рублей и восьмую часть остатка; следующий – 2000 рублей и восьмую часть нового остатка; третий сын – 3000 рублей и восьмую часть следующего остатка и т.д.». Определите число сыновей и размер завещанного сбережения.
Решение: так как все сыновья получили поровну, то восьмая часть каждого нового остатка была на 1000 рублей меньше восьмой части предыдущего остатка, а, значит, весь новый остаток был на 8000 рублей меньше предыдущего. Так как по условию все деньги были поделены полностью, то, когда младший сын получил по завещанию, кроме нескольких тысяч рублей, ещё восьмую часть остатка, этого остатка не оказалось. Но тогда предыдущий остаток 8000 рублей. Из него предпоследний сын получил восьмую часть, равную 1000 рублей, а остальные 7000 рублей получил младший сын, который, таким образом, был седьмым сыном: сыновей было семь, а завещанная сумма 49000 рублей.
2) Известный физик А.В. Цингер в своих воспоминаниях о Л.Н. Толстом рассказывает о следующей задаче, которая очень нравилась известному писателю:
«Артели косцов надо было скосить два луга, один вдвое больше другого. Половину дня артель косила большой луг. После этого артель разделилась пополам: первая половина осталась на большом лугу и докосила его к вечеру до конца; вторая же половина косила малый луг, на котором к вечеру ещё остался участок, скошенный на другой день косцом за один день работы. Сколько косцов было в артели?»
Решение: если большой луг полдня косила вся артель и полдня пол- артели, то ясно, что заполдняпол-артели скашивает луга. Следовательно, на малом лугу остался нескошенным участок в . Если один косец скашивает в день луга, а скошено было , то косцов было восемь.
3) «Некий человек нанял работника на год, обещал ему дать 12 рублей и кафтан. Но тот, работав 7 месяцев, восхотел уйти и просил достойной платы с кафтаном. Хозяин дал ему по достоинству расчёт 5 рублей и кафтан, какой цены кафтан был.»
Решение: пусть стоимость кафтана х рублей. За один месяц работник заработал 1 рубль и кафтана, тогда за 7 месяцев должен был получить 7 рублей и кафтана. Получаем уравнение:
, значит, кафтан стоит рубля.
4. Применение дробей в повседневной жизни.
1) Дроби и музыка.
Ноты отличаются по длительности их звучания. Знаком обозначают целую ноту, ноту вдвое короче – половинную - , четвертную - ,восьмую - , шестнадцатую - .
2) Золотое сечение.
Золотым сечением называли математики древности и средневековья деление отрезка при котором длина всего отрезка так относится к длине его большей части, как длина большей части к меньшей. Это отношение приближённо равно 0,618. Золотое сечение чаще всего применяется в произведениях искусства, архитектуре, встречается в природе.
Окружающие нас предметы также часто дают примеры золотого сечения. Например, переплёты многих книг имеют отношение ширины и длины, близкое к значению 0,618.
Красивейшее произведение древнегреческой архитектуры – Парфенон – построено вV в. до н.э. отношение высоты здания к его длине равно 0,618
3) География
Участки земной поверхности изображаются на карте в уменьшенном виде, для этого используется понятие масштаба: отношение длины отрезка на карте к длине соответствующего отрезка на местности.
Например: масштаб карты означает, что 1см на карте соответствует 10000см на местности.
4) В строительстве.
Фасад здания Первой клинической больницы им. Н.И. Пирогова (Москва) построен так, что если разделить высоту здания так, как показано на рисунке, т.е. по золотому сечению, то получим те или иные выступы, карнизы и т.д. Например, равны отношения .
5. Заключение
В результате работы над проектом я узнал историю развития обыкновенных дробей, сумел рассмотреть задачи древности, связанные с дробями и задачи с практическим содержанием. В ходе их решения я закрепил алгоритмы выполнения действий над дробями, нахождение числа по его части и части от числа.
Особый интерес при работе над проектом я испытал при решении старинных задач с использованием дробей.
Разнообразие предложенных задач убедили меня в необходимости применения дробей в повседневной жизни и для многих профессий.
Считаю, что материалы моей работы будут интересными для других учащихся. Они могут быть использованы как на уроке, так и для проведения внеклассных мероприятий по математике.
6. Список использованных источников информации:
1.Виленкин Н.Я., Жохов А.С., Чесноков А.С., Шварцбурд С.И. Математика: Учебник для 5 класса общеобразовательных учреждений. –
М.: Мнемозина, 2011г.
2.Григорьева Г.И. Математика. Предметная неделя в школе. –
.: Глобус, 2008г.
3. Совайленко В.К. Система обучения математике в 5-6 классах: Книга для учителя: Из опыта работы. – М.: Просвещение, 2005г.
4. Шейнина О.С., Соловьёва Г.М. Математика. Занятия школьного кружка. 5-6 кл. – М. Издательство НЦ ЭНАС, 2007г
5. http://funnymath.ru
6. http://udivit-matem.narod.ru
Рисуем крокусы акварелью
Попробуем на вкус солёность моря?
Неньютоновская жидкость
Никто меня не любит
Одеяльце