Олимпиады

Сивцева Мария Юрьевна

На этой странице представлены материалы для олимпиад.

Скачать:


Предварительный просмотр:

Олимпиада по математике, 6 класс.

Задания школьной олимпиады по математике рассчитаны на учащихся 6 классов. При подборе заданий олимпиады использовался принцип, при котором из 8 задач 3 задачи должны быть посильны для большинства участников, 3 задачи повышенной трудности (их может решить половина участников), 2 сложные, требующие особой математической смекалки и навыков в решении нестандартных задач.

Задания.

1. В записи * 1 * 2 * 4 * 8 * 16 * 32 * 64 = 27 вместо знаков «*» поставить знаки «+» или «-» так, чтобы равенство стало верным.

2. Можно ли разложить гири в 1, 2, 3, …, 21 граммов на две равные по весу кучи?

3. Два друга Вася и Петя, немного поссорившись, пошли с равными скоростями в разные стороны. Через 5 минут Вася решил помириться и стал догонять Петю, увеличив скорость в 3 раза. Сколько пройдет минут, прежде чем он догонит Петю?

4. У Коли на дне рождения было 5 друзей. Первому он отрезал 1/6 часть пирога, второму — 1/5 остатка, третьему — 1/4 того, что осталось, четвертому — 1/3 нового остатка. Последний кусок Коля разделил пополам с пятым другом. Кому достался самый большой кусок?

5. Цена картофеля повысилась на 20%. Через некоторое время цена понизилась на 20%. Когда картофель стоил дешевле: до повышения или после снижения? Ответ поясните.

6. Одно четырехзначное число составлено из последовательных цифр, расположенных в порядке возрастания, второе число составлено из тех же цифр, но в порядке убывания, третье четырехзначное число также составлено из этих четырех цифр. Что это за числа, если их сумма равна 12300?

7. Предположим, что сейчас угол между часовой и минутной стрелкой такой же, каким он был два часа назад. Чему равен этот угол?

8. Разрежьте квадрат на

а) 6 квадратов;

б) 7 квадратов;

в) 8 квадратов.

г) На какое количество квадратов можно разрезать квадрат?

Решения.

1. Это можно сделать единственным способом:

1 – 2 + 4 + 8 – 16 – 32 + 64 = 27.

2. Предположим, что гири разложили на две кучи равные по весу. Тогда вес каждой кучи должен равняться (1 + 2 + ... + 21) : 2 = 115,5 г, что невозможно, так как каждая гиря весит целое число грамм. Противоречие.

Ответ: нельзя.

3. Если x м/мин — первоначальная скорость ребят, то через 5 минут между ними будет 10x метров. Когда Вася будет догонять Петю, то скорость их сближения будет равна 3x – x = 2x м/мин. Тогда, расстояние между ними пропадет через 10x : 2x = 5 мин.

Ответ: 5 минут.

4.Примем весь пирог за 1. Тогда первому другу досталась 1/6 пирога; второму — 1/5 остатка, то есть 1/5 × (1 – 1/6) = 1/6 пирога. Осталось 1 – 1/6 – 1/6 = 4/6 пирога. Третьему другу Коля отрезал 1/4 × 4/6 = 1/6 пирога, четвертому — 1/3 × (4/6 – 1/6) = 1/6 часть. Осталось 2/6 пирога, которые он разделил поровну между собой и пятым другом, то есть по 1/6 пирога. Таким образом, все получили по одинаковому куску пирога.

Ответ: всем досталось поровну.

5. Пусть x рублей — начальная цена картофеля. Цена повысилась на 20%, то есть на 0,2x рублей, после чего стала равной x + 0,2x = 1,2x (руб). Затем цена понизилась на 20% (внимание: цена понизилась на 20% не от первоначальной цены x, а от цены, полученной после повышения — 0,2x), то есть на 0,2 × 1,2x = 0,24x (руб), и стала равной 1,2x – 0,24x = 0,96x (руб). Так как 0,96x < x, то картофель стал стоить дешевле после снижения цены.

Ответ: картофель стоил дешевле после снижения цены.

6. Если одно из этих чисел 1234, то второе – 4321. Тогда третье число равно

12300 – (1234 + 4321) = 6745.

Этот вариант не подходит, так как третье число состоит из других цифр.

Если первое число 2345, то второе – 5432, а третье

12300 – (2345 + 5432) = 4523.

Этот вариант подходит.

В случае, когда первое число 3456, третье будет равно

12300 – (3456 + 6543) = 2301

— не подходит. Если же первое число 4567, то третье

12300 – (4567 + 7654) = 79.

В остальных случаях третье число будет еще меньше, что не удовлетворяет условию задачи.

Ответ: 2345, 5432, 4523.

7. Решение. Через два часа минутная стрелка будет на том же месте, а часовая повернется на 60°. Поэтому, искомый угол 60°:2 = 30° или (360° – 60°):2 = 150°. Первый случай возникает от 11:00 до 13:00, второй — от 5:00 до 7:00.

Ответ: 30° или 150°.

8. Примеры для (а)-(в) показаны на рисунке:

https://pandia.ru/text/78/160/images/image001_219.jpg

При разрезании квадрата на 4 равных количество квадратов увеличивается

на 3. Таким способом из пунктов (а)-(в) можно получить любое число квадратов, начиная с пяти.

Критерии оценивания заданий

1.  Указан способ, но допущена вычислительная ошибка – 4 балла. Задача полностью решена – 7 баллов.

2.  Дан ответ без обоснования – 1 балл. Указан способ, но допущена вычислительная ошибка – 4 балла. Задача полностью решена – 7 баллов.

3.  Допущена вычислительная ошибка – 4 балла. Задача полностью решена – 7 баллов.

4.  Дан ответ без обоснования – 1 балл. Верно подсчитан остаток, но не сделан вывод – 4 балла. Задача полностью решена – 7 баллов.

5. Верно подсчитана стоимость после повышения цены
– 1 балл. Верно подсчитана стоимость после снижения цены, но не сделан вывод – 4 балла. Задача полностью решена – 7 баллов.

6. Дан ответ без обоснования – 1 балл. Обоснование верное, но допущена вычислительная ошибка – 4 балла. Задача полностью решена – 7 баллов.

7. Допущена вычислительная ошибка – 3 балла. Задача полностью решена – 7 баллов.

8. Рассмотрен один вариант – 1 балл, два или три варианта – 4 балла. Задача полностью решена – 7 баллов.



Предварительный просмотр:

  1. Арифметика

1. На карточках записаны цифры: 1, 2, 0. Из этих карточек составлены числа и записано неверное равенство. Покажите, как, переместив только одну карточку, сделать равенство верным.

1

0

1

_

1

0

2

=

1

2. МУХА + УХА + ХА + А = 2000.

3. Квадрат натурального числа состоит из цифр 0; 2; 3; 5. Найти его.

4. АТУ+ИАЗ=ИИТЕ
НЕГ:ИОГ=Е
ПАУ-НЗ=ППА

Каждая буква здесь обозначает определенную цифру. Одинаковым буквам соответствуют одинаковые цифры. Математические знаки показывают действия, которые производятся и по горизонтали и по вертикали. Определив числовое значение каждой буквы, расставьте буквы соответственно их числовому значению — от 0 до 9. При этом получится математический термин.

5. Кассир продал все билеты в первый ряд кинотеатра, причем по ошибке на одно из мест было продано два билета. Сумма номеров мест на всех этих билетах равна 857. На какое место продано два билета?

6. Когда солдаты строились в колонну по 4, по 5 или по 6 человек, то каждый раз один оставался лишним, а когда построились в колонну по 7, лишних не осталось. Каким могло быть наименьшее количество солдат?

7. Крестьянин попросил взять у царя одно яблоко из его сада. Царь разрешил. Пошел крестьянин к саду и водит: весь сад огражден тройным забором, имеет одни ворота, вход в которые охраняет сторож. Подошел крестьянин к Первову сторожу и говорит: «Царь разрешил мне взять одно яблоко из сада». На что сторож ему сказал: «Возьми, но при выходе отдашь мне половину тех яблок, что возьмёшь и ещё одно». Эти же слова повторили крестьянину 2 и 3 сторожа, охранявшие другие ворота. Сколько яблок должен взять крестьянин, чтобы после того, как он отдаст положенную часть 3 сторожам, у него осталось одно яблоко?

8. Лошадь съедает копну сена за 2 суток, корова – за 3, овца – за 6 суток. За какое время съедят копну сена лошадь, корова и овца вместе?

9. К числу 43 припишите слева и справа по одной цифре так, чтобы полученное число делилось на 45. Ответ. 2430, 6435

10. Три рыбака решили сообща сварить на костре уху. Первый дал два окуня, второй четыре, а третий рыбак внес свою долю деньгами, дав 60 рублей. Как должны разделить между собой эти деньги первые два рыбака?

11. Охотник встретил двоих пастухов. У одного пастуха было три куска хлеба, у второго - пять кусков. Все куски хлеба одинакового размера. Все трое разделили и съели весь хлеб поровну. Охотник дал пастухам после еды 8 монет на двоих. Как пастухи разделили эти деньги?

12. Было совершено 52 распила и получили 72 полена. Сколько всего было бревен?

Задачи на составление уравнения

1. Количество отсутствующих в классе составляло 1/6 всех присутствующих. После того, как один ученик вышел, количество отсутствующих стало составлять 1/5 присутствующих. Сколько учеников в классе?

2. Петя съел 1/3 всех яблок и ещё 2 яблока, Сеня съел 1/4 всех яблок и ещё 1 яблоко, а Коля — половину тех яблок, которые остались после Пети и Сени. После этого осталась 1/6 часть первоначального числа яблок. Сколько яблок было вначале?

3. Отцу 41 год, старшему сыну 13 лет, дочери 10 лет и младшему сыну 6 лет. Через сколько лет возраст отца будет равен сумме лет его детей?

4. На двух кустах сидело 25 воробьев. После того как с первого куста перелетело на второй 5, а со второго улетело 7 воробьев, то на первом кусте осталось вдвое больше воробьев, чем на втором. Сколько воробьев было на каждом кусте первоначально?

  1. Задачи на проценты

1. Число увеличено на 25%. На сколько процентов нужно уменьшить результат этого увеличения, чтобы получить первоначальное число?

2. У старшего брата на 25% больше денег, чем у младшего. Сколько процентов своих денег старший должен дать младшему, чтобы денег у них стало поровну?

3. Картофель подешевел на 20%. На сколько больше можно купить картофеля на ту же сумму?

4. Первый множитель увеличился на 10%, а второй множитель уменьшился на 10%. Как при этом изменилось произведение?


4. Числовая задача (построение примера, доказательство невозможности его построения).

1. Половина — это его треть. Что же это за число?

2. Найдите сумму чисел 1+2+…+870+871.

3. Какой цифрой заканчивается сумма 135х+31у+56х+у , если х и у натуральные числа?

4. Продолжите ряд чисел: 10,8,11,9,12,10 до 8 числа. По какому правилу он составлен?

5. На какую цифру оканчивается число 2100?

6. Из числа 12345678910111213…5960 вычеркнуть 100 цифр так, чтобы полученное число было наибольшим?

7. Задумано трехзначное число, у которого с любым из чисел 543,142 и 562 совпадает с одним из разрядов, а 2 других не совпадают. Какое число задумано?

8. К трехзначному числу слева приписали 3 и оно увеличилось в 9 раз. Что это за число?

Этап рассуждений

Выводы

аб*9=аб3

б=7, т.к. произведение 7*9 оканчивается на 3

а7*9=а73

а=8, поскольку а73 делится на 9


Проверкой убеждаемся, что 87*9=873, т.е. искомое число 87

9. Какое число больше: 2379*23782378 или 2378*23792379?

10. Верно ли что число 1 234 537 896 543 является квадратом некоторого натурального числа?

5. Фигуры, нахождение многоугольника с указанными свойствами или на площади и разрезания.

1. Коридор длины 6 м покрыт тремя трёхметровыми ковровыми дорожками, причём нигде дорожки не лежат в три слоя. Докажите, что какие-то две из них перекрываются не меньше, чем на 1,5 м.

2. Проведите 3 прямые так, чтобы тетрадный лист разделился на наибольшее число частей. Сколько получится частей? Проведите 4 прямые с тем же условием. Сколько теперь получилось частей?

https://arhivurokov.ru/multiurok/7/f/4/7f467daa61b0598ff20b5764d2d5166e07b0dc9f/olimpiadnyie-zadachi-po-matiematikie-za-6-klass_13.pnghttps://arhivurokov.ru/multiurok/7/f/4/7f467daa61b0598ff20b5764d2d5166e07b0dc9f/olimpiadnyie-zadachi-po-matiematikie-za-6-klass_14.pnghttps://arhivurokov.ru/multiurok/7/f/4/7f467daa61b0598ff20b5764d2d5166e07b0dc9f/olimpiadnyie-zadachi-po-matiematikie-za-6-klass_15.png

3. Можно ли разрезать шахматную доску на прямоугольники размером 3х1?

4. У шахматной доски отпилили 2 поля: левое нижнее и правое верхнее. Можно ли покрыть такую шахматную доску «костями» домино размером 2х1?

5. Посередине участка квадратной формы устроена квадратная клумба. Площадь участка равна 100 м2. Сторона клумбы в 2 раза меньше стороны участка. Чему равна площадь клумбы?

6. Как разрезать прямоугольник со сторонами 4х9 на минимальное число частей, чтобы из них сложить равновеликий квадрат?

7. Все треугольники, изображенные на рисунке, имеют равные стороны. Радиус каждой из окружностей равен 2 см. Окружности касаются друг друга и сторон квадрата. Чему равен периметр «звездочки», нарисованной жирной линией?

https://arhivurokov.ru/multiurok/7/f/4/7f467daa61b0598ff20b5764d2d5166e07b0dc9f/olimpiadnyie-zadachi-po-matiematikie-za-6-klass_17.jpeg


6. Логическая задача.

1) на движение

1. Могут ли три человека преодолеть расстояние в 60 км за 3 часа, если у них в распоряжении имеется двухместный мотоцикл? Скорость мотоцикла 50 км/ч, скорость пешехода 5 км/ч.

2. Мотоциклист, велосипедист и пешеход движутся по шоссе в одну сторону с постоянными скоростями. Когда велосипедист поравнялся с пешеходом, мотоциклист отставал от них на 6 км. Когда мотоциклист догнал велосипедиста, пешеход отстал от них на 3 км. Какое было расстояние между пешеходом и велосипедистом, когда мотоциклист догнал пешехода?

2) на взвешивание

1. Из девяти монет одна фальшивая: она легче остальных. Как за два взвешивания на чашечных весах без гирь определить, какая именно?

3. Имеется 10 мешков монет. В 9 мешках монеты настоящие (весят по 10г), а в одном фальшивые (весят по 11 г) Одним взвешиванием на электронных весах определить, в каком мешке фальшивые монеты?

3) на принцип Дирихле

1. Пятнадцать мальчиков собрали вместе 100 орехов. Докажите, что какие-то двое из них собрали одинаковое количество орехов.

2. Верно ли, что среди любых 34 разных натуральных чисел, не превосходящих 50, всегда можно выбрать два числа, одно из которых вдвое больше другого?

3. В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.

4. 10 школьников на олимпиаде решили 35 задач, причем известно, что среди них есть школьники, решившие ровно одну задачу, школьники, решившие ровно две задачи и школьники, решившие ровно три задачи. Докажите, что есть школьник, решивший не менее пяти задач.

5. Пятеро молодых рабочих получили на всех зарплату – 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты.

6. Сто человек сидят за круглым столом, причем более половины из них – мужчины. Докажите, что какие-то два мужчины сидят друг напротив друга.

7. В городе 15 школ. В них обучается 6015 школьников. В концертном зале городского дворца культуры 400 мест. Доказать, что найдётся школа, ученики которой не поместятся в этот зал.

4) на взаимно однозначное соответствие

1. В кругу стоят девочки: Ася, Катя, Галя и Нина, одетые в зелёное, голубое, белое, розовое платья. Девочка в зелёном платье (не Ася и не Катя) стоит между девочкой в голубом платье и Ниной. Девочка в белом платье стоит между девочкой в розовом платье и Катей. Какого цвета платье было надето на каждой из девочек?

2. Учащиеся школы решили организовать инструментальный ансамбль. Михаил играет на саксофоне. Пианист учится в 9 классе. Ударника зовут не Валерием, а ученика 10 класса зовут не Леонидом. Михаил учится не в 11 классе. Андрей – не пианист и не ученик 8 класса. Валерий учится не в 9 классе, ударник - не в 11. Леонид играет не на контрабасе. На каком инструменте играет Валерий и в каком классе он учится?

3. В семье 4 ребенка. Младшему 5, старшему 15 лет. Двум другим 8 и 13 лет. 
Имена детей: Боря, Галя, Вера и Аня. Какой возраст каждого ребенка, если одна девочка ходит в детский сад. Аня старше Бори. Сумма лет Ани и Веры делится на 3.

4. Царь призвал ко двору трех богатырей. И спрашивает: - Кто убил Змея Горыныча?
Илья Муромец сказал: — Змея убил Добрыня Никитич. 
Добрыня Никитич сказал: — Змея убил Алёша Попович. 
Алёша Попович сказал: — Я убил змея.
Только один богатырь сказал правду, остальные два слукавили. Так кто же убил Змея Горыныча?

5. Михаилу в викторине предложили выбрать один из ящиков. В одном из ящиков спрятан приз. Михаил получил 4 подсказки
- приз в желтом или красном ящике
- приз в зеленом или синем ящике
- приз в зеленом ящике
- в желтом ящике приза нет
Три подсказки ошибочны, но только одна правильная.
Андрей подумал и открыл правильный ящик. Какого цвета?


5) на круги Эйлера

1. На спортивные соревнования в ЛМШ ходили 220 школьников. При этом некоторые из них участвовали в чемпионатах, а остальные были зрителями. В легкоатлетической эстафете приняли участие 30 человек, в соревнованиях по волейболу – 26, пионерболу – 32, футболу – 31, шахматам – 28 и теннису – 36 человек. 53 школьника приняли участие более чем в одном соревновании; из них 24 школьника участвовали 3 или более раз, 9 школьников – не менее 4 раз и 3 школьника – даже 5 раз (в последнюю тройку входит и один чудак, который выступал во всех шести соревнованиях). Сколько из школьников были зрителями?

2. Из 100 туристов, отправляющихся в заграничное путешествие, немецким языком владеют 30 человек, английским – 28, французским – 42. Английским и немецким одновременно владеют 8 человек, английским и французским – 10, немецким и французским – 5, всеми тремя языками – 3. Сколько туристов не владеют ни одним языком?


6) комбинаторные задачи

1. Сколькими способами победитель «Поля чудес» может выбрать два приза из 50 имеющихся?

2. Сколькими способами можно из 50 участников собрания выбрать председателя и секретаря?

3. Сколькими способами можно зажечь свет в нашем классе? (в классе 3 лампочки, у каждой – отдельный выключатель)

4. В гардеробе в беспорядке лежат 20 пар ботинок. 10 пар черных и 10 пар белых. Сколько нужно взять ботинок, чтобы среди них оказалась хотя бы одна пара (правый и левый ботинок) одного цвета? В гардеробе темно и нельзя отличить правый ботинок от левого.

5. В темной комнате 10 арбузов и 8 дынь (дыни и арбузы не различимы на ощупь). Сколько нужно взять фруктов, чтобы среди них было не менее 2 арбузов?

6. Сколько диагоналей у тридцатичетырехугольника ?


7) Математические игры

1. В двух кучках лежат предметы, по 100 предметов в каждой. За ход разрешается взять произвольное количество предметов, но только из одной кучки. Проигрывает тот, кто не может сделать очередной ход. Найдите выигрышную стратегию для второго игрока.

2. У ромашки а) 12 лепестков; б) 11 лепестков. За ход разрешается оторвать либо один лепесток, либо два рядом растущих лепестка. Проигрывает тот, кто не может сделать хода.

3. Волк и Заяц играют в следующую игру: на доске написано некоторое натуральное число с ненулевой последней цифрой. Ход состоит в том, что из числа вычитают какую-нибудь его ненулевую цифру и пишут результат вместо старого числа. Выигрывает тот, кто первым получит нуль.

4. Имеется две кучи конфет: в первой – 40, во второй – 45. За ход нужно одну кучу съесть, а другую разделить на две (не обязательно равные). Проигрывает тот, кто не может сделать ход.

5. Круг разделили на 6 секторов, в каждом лежит селедка. За ход можно одну селедку передвинуть в соседний сектор. Можно ли собрать все селедки ровно за 20 ходов?

8) разные

1. В токарном цехе завода вытачиваются детали из металлических заготовок. Из одной заготовки вытачивают одну деталь. Стружку, которая остается при изготовлении шести деталей, можно переплавить и приготовить еще одну заготовку. Сколько деталей можно сделать таким образом из 36 металлических заготовок?

2. На озере расцвела одна лилия. Каждый день число ее цветков удваивалось, а на 20-й день всё озеро покрылось цветами. На который день покрылась цветами половина озера?

3. Ваня, Петя, Катя и Олег вместе съели 70 бананов. Причем каждому сколько-то досталось. Ваня съел больше всех. Катя и Петя вместе съели 45 бананов. Сколько бананов досталось Олегу?

4. Пассажир проехал половину пути и лег спать и спал до тех пор, пока не осталось ехать половину того пути, который он проехал спящим. Какую часть всего пути пассажир спал?

 5. От Нижнего Новгорода до Астрахани теплоход идет 5 суток, а обратно 7 суток. Сколько времени будут плыть плоты от Нижнего Новгорода до Астрахани.

6. Гриша с папой пошли в тир. Уговор был такой: Гриша делает 5 выстрелов и за каждое попадание в цель получает право сделать еще 2 выстрела. Всего Гриша сделал 17 выстрелов. Сколько раз он попал в цель.

7. На день рождения Малыша Фрекен Бок испекла торт. Малыш и торт весили столько же, сколько Карлсон и Фрекен Бок. Когда торт съели, Карлсон весил столько же, сколько Фрекен Бок и Малыш. Докажите, что Карлсон съел кусок торта, весивший столько же, сколько Фрекен Бок до дня рождения.

Приложение

Логические задачи

http://www.rcub.ru/problems.html

1. В токарном цехе завода вытачиваются детали из металлических заготовок. Из одной заготовки вытачивают одну деталь. Стружку, которая остается при изготовлении шести деталей, можно переплавить и приготовить еще одну заготовку. Сколько деталей можно сделать таким образом из 36 металлических заготовок ?

2. Поезд шел из Москвы в Петербург без остановок со скоростью 120 км/ч. Другой поезд также без остановок шел ему навстречу из Петербурга в Москву со скоростью 80 км/ч. Вопрос: на каком расстоянии будут эти поезда за 1 час до их встречи ?

3. У мальчика есть столько же братьев, сколько и сестер, а у его сестры в два раза меньше сестер, чем братьев. Вопрос: сколько в семье сестер и братьев?

4. Половина — это его треть. Что же это за число?

 5. Пассажир проехал половину пути и лег спать и спал до тех пор, пока не осталось ехать половину того пути, который он проехал спящим. Какую часть всего пути пассажир спал?

 6. Охотник встретил двоих пастухов. У одного пастуха было три куска хлеба, у второго - пять кусков. Все куски хлеба одинакового размера.
Все трое разделили и съели весь хлеб поровну. Охотник дал пастухам после еды 8 монет на двоих. Как пастухи разделили эти деньги?

7. В пруду растет 1 лист лилии. К вечеру каждого дня число листьев удваивается. На какой день пруд будет покрыт листьями наполовину, если полностью он будет покрыт лилиями через 100 дней?

8. На конференцию в Мадагаскаре приехали 10 делегатов. Они не понимают языки друг друга. Какое минимальное число переводчиков понадобится для обслуживания этой конференции, если известно, что каждый  переводчик знает только два языка.

9. Во дворе дети катались на велосипедах. Самые маленькие на 3-хколесных. Школьники на 2-хколесных. Миша сосчитал, что у всех велосипедов было 12 колес. Сколько на 3-х и 2-х колесных велосипедов было на улице?

10. В пакетике находятся конфеты трех разных сортов. На ощупь они одинаковые. Вопрос: какое минимальное число конфет надо взять наугад из пакетика, чтобы среди взятых конфет были хотя бы
а) две конфеты одного сорта;
б) три конфеты одного сорта.

11. Ваня, Петя, Катя и Олег вместе съели 70 бананов. Причем каждому сколько-то досталось. Ваня съел больше всех. Катя и Петя вместе съели 45 бананов. Сколько бананов досталось Олегу?

12. Было совершено 52 распила и получили 72 полена. Сколько всего было бревен?

13. В гардеробе в беспорядке лежат 20 пар ботинок. 10 пар черных и 10 пар белых. Сколько нужно взять ботинок, чтобы среди них оказалась хотя бы одна пара (правый и левый ботинок) одного цвета? В гардеробе темно и нельзя отличить правый ботинок от левого.

14. Две мухи между собой соревнуются. Они бегут от пола к потолку, а затем обратно. Первая муха бежит и вверх и вниз с одинаковой скоростью.
Вторая муха бежит вниз вдвое быстрее, чем первая. А вверх она бежит вдвое медленнее. Какая из мух победит?


Задачки с подвохом

1. Как может куриное яйцо, которое бросили, пролететь два метра и не разбиться?

2. Три ласточки вылетели из гнезна. Какова вероятность того, что через 10 секунд они будут находиться в одной плоскости?

3. Шесть кошек ловят шесть мышей за шесть минут. Сколько времени нужно одной кошке для ловли одной мышки.

4. Двое подошли к реке. У берега реки стоит одна лодка. На лодке можешь переправиться только один человек. Как этим двум удалось переправиться на другой берег без посторонней помощи?

5. У треугольника стороны равны 13, 18 и 31 сантиметр. Чему же равна площадь этого треугольника?

6. Как то солдат в Древнем Риме, который был в карауле, подошел к центуриону и сказал, что этой ночью видел сон, в котором варвары нападали на крепость с юга.
Центурион в это особо не поверил, но меры принял. Тем же вечером варвары действительно напали на крепость с юга и их атака была отбита.
После сражения центурион поблагодарил солдата за предупреждение, а затем взял его  под стражу. За что был взят солдат под стражу?

7. На столе стоит 6 стаканов. Первые три полный, вторые три пустые.
Как сделать, чтобы полные стаканы и пустые чередовались между собой?
При этом трогать можно только один стакан.


http://www.rcub.ru/zadachi-na-sootvetstvie.html

Задачи на соответствие

1. В семье 4 ребенка. Младшему 5, старшему 15 лет. Двум другим 8 и 13 лет. 
Имена детей: Боря, Галя, Вера и Аня.
Какой возраст каждого ребенка, если одна девочка ходит в детский сад. Аня старше Бори. Сумма лет Ани и Веры делится на 3.

 2. В банке работают: заведующий, контролер и кассир. Их имена: Борис, Иван, Саша.
У кассира нет братьев, сестер и он меньше всех ростом. Саша женат на сестре Бориса и ростом выше контролера.
Какое имя у кассира, контролера и заведующего?

3. У четырех школьников следующие имена: Петр, Андрей, Федор и Иван. Фамилии: Петров, Андреев, Федоров, Иванов. Ни у кого из них собственные имя и фамилия не одинаковые. У Андреева имя не Иван. Имя школьника с фамилией Федоров - фамилия школьника, чье имя фамилия Петра.

4. Михаилу в викторине предложили выбрать один из ящиков. В одном из ящиков спрятан приз. Михаил получил 4 подсказки
- приз в желтом или красном ящике
- приз в зеленом или синем ящике
- приз в зеленом ящике
- в желтом ящике приза нет
Три подсказки ошибочны, но только одна правильная.
Андрей подумал и открыл правильный ящик. Какого цвета?

5. В пассажирском поезде Петербург-Москва едут пассажиры. Сидоров, Петров и Иванов. У машиниста, электрика и кондуктора такие же фамилии.
Подсказки:
- В Москве живет Иванов
- Пассажир, однофамилец кондуктора, живет в Питере
- Кондуктор живет на половине пути от Питера до Москвы
- Пассажир, который ближе к месту жительства кондуктора, чем другие пассажиры - в три раза старше кондуктора
- 20 лет в тот день исполниломь пассажиру Петрову
- У электрика Сидоров (из бригады) выиграл в биллиард
Какая фамилия у машиниста?

6. Три сестры: Полли, Сара и Ада. Они приехали из деревни в большой город учиться. Одна сестра стала строителем, одна архитектором, а третья поваром. Позже все сестры вышли замуж. Одного мужа звали господин Адамсон, второго просто Педро, а третьего величали доктором Смитом. Ни у кого в семьях не совпали первые буквы профессии, имени мужа и жены. (Сара не стала строителем и ее муж не Смит). Жена Педро не строитель. Как зовут жену доктора?

7. Царь призвал ко двору трех богатырей. И спрашивает: - Кто убил Змея Горыныча?
Илья Муромец сказал: — Змея убил Добрыня Никитич. 
Добрыня Никитич сказал: — Змея убил Алёша Попович. 
Алёша Попович сказал: — Я убил змея.
Только один богатырь сказал правду, остальные два слукавили. Так кто же убил Змея Горыныча?

Комбинаторика

Задача 1: Сколькими способами можно зажечь свет в нашем классе? (в классе 3 лампочки, у каждой – отдельный выключатель)

Задача 2: Комбинация из трёх букв на автомобильном номере состоит только из тех русских букв, у которых есть похожие латинские, а именно из А, В, Е, К, М, Н, О, Р, С, Т, У, Х. Сколько всего таких комбинаций?

Задача 3: Сколькими способами можно поставить на шахматную доску белую и черную ладьи так, чтобы они не били друг друга?

Задача 4: а) В магазине «Все для чая» продаются 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить там набор «чашка  +  блюдце»?

б) В тот же магазин завезли еще 4 вида чайных ложек. Сколькими способами можно купить комплект «чашка  +  блюдце  +  ложка»?

в) Известно, что одна из чашек, одно из блюдец и одна из ложек – золотые. Сколькими способами можно купить набор из 3-х различных предметов, в котором

в1) нет золотых предметов?

в2) 1 золотой предмет?

в3) 2 золотых предмета?

в4) 3 золотых предмета?

г) Сколькими способами в магазине можно купить комплект из двух предметов?

д) сколькими способами можно купить комплект из 1 предмета?

е) Ясно, что «купить 0 предметов» можно единственным способом. Каков смысл равенства 1 + 12 + 47 + 60 = 6 × 4 × 5?

Четность и нечетность

Задача 1: а) У скольких двузначных чисел все цифры чётные? б) А у скольких трёхзначных?

Задача 2: а) У скольких двузначных чисел все цифры разные? б) А у скольких трёхзначных? в) А у скольких 11-значных?

Задача 3: На окружности отмечены 5 красных и 7 синих точек. Рассмотрим всевозможные отрезки (хорды) с концами в отмеченных точках. У скольких отрезков концы а) разного цвета; б) одинакового цвета?

Задача 4: В обычном домино на половинках доминошек бывает от 0 до 6 точек. Всего в комплекте 28 доминошек. А сколько доминошек будет в комплекте, где на половинке возможно от 0 до 13 точек?

Задача 5: Сколькими способами можно разменять 50 руб монетами в 1 и 2 руб?

Задача 6: Сколькими способами можно поставить на доску черного и белого королей так, чтобы они не били друг друга?

Задача 7: В детский сад привезли кубики: красные и синие. Каждому из 100 детей выдали по 3 кубика, и каждый ребенок построил из своих кубиков башню. Какое наибольшее число различно раскрашенных башен могло получиться? А если выдали по 4 кубика? По 5? По 6? По 7?

Задача 8: Сигнальное устройство состоит из пяти одноцветных лампочек, расположенных в ряд. Сколько различных сигналов можно подать с его помощью? А сколько, самое меньшее, надо взять лампочек, чтобы можно было подать 200 различных сигналов? А 1000 сигналов?

Задача 9: Назовем число забавным, если все его цифры делятся на 4. Сколько забавных чисел среди четырёхзначных? А среди шестизначных?

Задача 10: Как известно, компьютер работает с двоичными кодами, которые представляют собой записи, составленные из нулей и единиц (например, 11001011). Количество знаков в коде называется его длиной. Сколько разных символов можно закодировать двоичными кодами длины 5? Длины 6?

Задача 11: Во рту у марсианина есть 10 гнезд для зубов. В каждом гнезде либо есть зуб, либо его нет. Известно, что любые два марсианина отличаются набором зубов (т.е., если взять любых двух, то найдется гнездо, в котором у одного есть зуб, а у другого нет). Каково наибольшее возможно число марсиан?

Задача 12: Сигнальный флажок состоит из шести горизонтальных полосок белого, синего или красного цвета, причём верхняя полоска всегда синяя, а соседние полоски – разноцветные. Сколько бывает разных сигнальных флажков?

Задача 13: Назовем две цифры близкими, если они отличаются на 1. Кроме того, будем считать близкими цифры 0 и 9. Сколько существует различных десятизначных чисел, у которых любые две соседние цифры – близкие?

Задача 14: Из Манчестера в Ливерпуль ведут два шоссе с односторонним движением, пересеченные десятью проселками (см. рисунок). Машина выезжает из М в Л по одному из шоссе, и, доезжая до любой развилки, может либо свернуть на проселок, либо не сворачивать. Свернув, она проезжает проселок до конца и продолжает опять по другому шоссе (по тем же правилам). Сколькими разными способами можно проехать из Манчестера в Ливерпуль?

https://arhivurokov.ru/multiurok/7/f/4/7f467daa61b0598ff20b5764d2d5166e07b0dc9f/olimpiadnyie-zadachi-po-matiematikie-za-6-klass_19.png

Задача 15: Имеется 10 различных книг. Сколькими различными способами можно выбрать из них одну или несколько книг для подарка?

Задача 1: Сколькими способами Алексей Николаевич может построить 50 шестиклассников в шеренгу?

Задача 2: Сколько сторон и диагоналей у 50-угольника?

Задача 3: Сколькими способами можно расставить на шахматной доске размером 50 × 50 пятьдесят ладей, не бьющих друг друга?

Задача 4: Сколькими способами победитель «Поля чудес» может выбрать два приза из 50 имеющихся?

Задача 5: Сколькими способами можно выдать 50 шестиклассникам два наряда: на уборку апельсиновых корок и дежурство в столовой?

Задача 6: Сколькими способами можно из 50 участников собрания выбрать председателя и секретаря?

Задача 7: Есть два письма и 50 разных конвертов. Сколькими способами можно упаковать письма в конверты?

Задача 8: Есть 50 разных конфет. Сколькими способами можно раздать их по одной 50 шестиклассникам?

Задача 9: Сколькими способами можно расставить в таблице 5 × 10 числа от 1 до 50?

Задача 10: Сколькими способами можно отметить в таблице 5 × 10 две клетки?

Задача 11: а) В левом верхнем углу доски 10 × 8 стоит ладья. Двое по очереди ходят ею, причём разрешается ходить только вправо или вниз. Выигрывает тот, кто ставит ладью в правый нижний угол. Кто выиграет при правильной игре: тот, кто ходит первым, или его партнер?

б) В одной кучке лежит 7 спичек, в другой – 9. За один ход разрешается взять любое число спичек, но только из одной кучки. Выиграл тот, кто взял последнюю спичку. Кто выиграет при правильной игре?

Задача 12: а) В городе Колоколамске живут 10 шпионов по кличкам Нелли, Одри, Долли, Тилли, Чарли, Петя, Штирлиц, Супер, Вилли, Деловой. Нелли шпионит за Супером, Одри – за Чарли и Тилли, Долли – за Одри, Штирлицем и Вилли, Тилли – за Петей и Деловым, Чарли – за Долли и Деловым, Петя – за Штирлицем и Долли, Штирлиц – за Тилли и Петей, Супер – за Нелли и Вилли, Вилли – за Чарли, Деловой – за Одри и Вилли. Какое наибольшее число шпионов сможет выстроиться в очередь так, чтобы перед каждым, кроме первого, стоял тот, за кем он шпионит?

б) Какое наибольшее количество различных цифр можно выписать в ряд так, чтобы, подчеркнув любые две соседних, мы получили двузначное число, делящееся на 7 или 13? Число 07 тоже считается двузначным.

Задача 13: а) Летучая ладья ходит как обычная, только не может становиться на соседнюю клетку. Может ли она пройти по доске 4 × 4, побывав на каждой ее клетке ровно один раз?

б) Хромая ладья ходит как обычная, но только на соседнюю клетку. Может ли она пройти по доске 4 × 4, побывав на каждой ее клетке ровно один раз?

Принцип Дирихле

Задача 1: Пятнадцать мальчиков собрали вместе 100 орехов. Докажите, что какие-то двое из них собрали одинаковое количество орехов.

Задача 2: 10 друзей послали друг другу праздничные открытки. Каждый послал 5 открыток. Докажите, что двое послали открытки друг другу.

Задача 3: Докажите, что в любой момент однокругового чемпионата найдутся две команды, сыгравшие одинаковое число матчей.

Задача 4: Числа 1, 2, …, 7 разбиты на две группы. Докажите, что произведение чисел хотя бы в одной из групп меньше 72.

Задача 5: Цифры 1, 2, …, 9 разбили на 3 группы. Докажите, что произведение чисел в хотя бы одной группе меньше 72.

Задача 6: Докажите, что из любых 10 чисел можно выбрать несколько, сумма которых делится на 10.

Задача 7: Докажите, что из 65 целых чисел всегда можно найти ровно 9 таких, сумма которых делится на 9.

Задача 8: Докажите, что из 65 целых чисел либо найдутся 9 таких, что каждое из чисел этой девятки, кроме последнего, делится на число, стоящее за ним, либо найдется девять таких чисел, что ни одно из них не делится на другое.

Задача 9: Верно ли, что среди любых 34 разных натуральных чисел, не превосходящих 50, всегда можно выбрать два числа, одно из которых вдвое больше другого?

Задача 10: Докажите, что из 26 различных натуральных чисел, не превосходящих 50, всегда можно выбрать два числа, одно из которых делится на другое.

Задача 11: Попробуйте обобщить предыдущую задачу, если вместо 50 в условии будет стоять произвольное чётное число 2N. (Какое число должно стоять вместо числа 26?)

Задача 12: Дано 20 различных натуральных чисел, меньших 70. Рассматриваются всевозможные их попарные разности (из большего числа вычитают меньшее). Докажите, что среди них всегда найдутся четыре одинаковых.

Задача 13: В последовательности 2, 0, 0, 0, 2, 2, 4,…каждый член, начиная с пятого, равен последней цифре суммы предшествующих четырёх членов. а) Встретятся ли в этой последовательности еще раз подряд 4 цифры 2, 0, 0, 0? б) Встретятся ли в ней четыре подряд цифры 0, 0, 8, 2 ?

Задача 1: Коридор длины 6 м покрыт тремя трёхметровыми ковровыми дорожками, причём нигде дорожки не лежат в три слоя. Докажите, что какие-то две из них перекрываются не меньше, чем на 1,5 м.

Задача 2: Окружность длины 6 м покрыта тремя трёхметровыми дугами, причём никакие три дуги не имеют общих точек. Докажите, что какая-то пара дуг имеет пересечение не меньше, чем 1 м.

Задача 3: В комнате площадью 6 кв.м постелены на полу три ковра площади 3 кв.м каждый. Верно ли, что какие-нибудь 2 из них пересекаются по площади, не меньшей 1 кв.м.?

Задача 4: В комнате площадью 6 кв.м постелены на полу три ковра площади S кв.м каждый. Известно, что S  2. Докажите, что какие-нибудь 2 из них пересекаются по площади, не меньшей S – 2 кв.м.

Задача 5: В комнате площадью 6 кв.м на полу постелены 4 ковра площади 2 кв.м каждый. Верно ли, что какие-то два из них обязательно перекрываются по площади, не меньшей 1 кв.м?

Задача 6: Внутри квадрата со стороной 1 расположены 4 прямоугольника, площадь каждого из которых не менее 1/2. Докажите, что хотя бы два из них имеют общую часть площади не менее 1/6.

Задача 7: На кафтане площади 1 расположены 4 заплаты, площадь каждой из которых не менее 5/8. Докажите, что какие-то две из них имеют общую часть площади не менее 1/3.

Задача 8: На спортивные соревнования в ЛМШ ходили 220 школьников. При этом некоторые из них участвовали в чемпионатах, а остальные были зрителями. В легкоатлетической эстафете приняли участие 30 человек, в соревнованиях по волейболу – 26, пионерболу – 32, футболу – 31, шахматам – 28 и теннису – 36 человек. 53 школьника приняли участие более чем в одном соревновании; из них 24 школьника участвовали 3 или более раз, 9 школьников – не менее 4 раз и 3 школьника – даже 5 раз (в последнюю тройку входит и один чудак, который выступал во всех шести соревнованиях). Сколько из школьников были зрителями?

Задача 9: На кафтан площади 1 поставлены 5 заплат. Площадь каждой из них равна 1/2. Докажите, что найдутся две заплаты, пересекающиеся по площади не менее 1/5.

Задача 10: На кафтане площади 1 имеется 5 заплат площади 1/3. Докажите, что найдутся такие две заплаты, площадь общей части которых не меньше 1/15.

Задача 11: На кафтане площади 1 имеется 9 заплат площади 1/5. Докажите, что найдутся такие две заплаты, площадь общей части которых не меньше 1/45.

Математические игры

Задача 1: В двух кучках лежат предметы, по 100 предметов в каждой. За ход разрешается взять произвольное количество предметов, но только из одной кучки. Проигрывает тот, кто не может сделать очередной ход. Найдите выигрышную стратегию для второго игрока.

Задача 2: В трёх кучках лежат предметы, по 100 предметов в каждой. За ход разрешается взять произвольное количество предметов, но только из одной кучки. Проигрывает тот, кто не может сделать очередной ход. Найдите выигрышную стратегию для первого игрока.

Задача 3: Два миллионера по очереди кладут пятаки на круглый стол, так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать хода. Как надо играть миллионеру, который кладёт первый пятак, чтобы наверняка выиграть?

Задача 4: Двое по очереди разламывают шоколадку. За один ход разрешается сделать прямолинейный разлом любого из имеющихся кусков вдоль углубления. Проигрывает тот, кто первым отломит дольку 1 × 1. Кто выигрывает при правильной игре, если шоколадка имеет размеры а) 10 × 10; б) 10 × 13. в) шоколадка 10 × 13, но первый получивший дольку 1 × 1 выигрывает.

Задача 5: Двое по очереди ставят шахматных слонов в клетки доски 8 × 8 так, чтобы слоны не били друг друга. Проигрывает тот, кто не может сделать ход. Кто выигрывает при правильной игре, и как ему при этом нужно играть?

Задача 6: У ромашки а) 12 лепестков; б) 11 лепестков. За ход разрешается оторвать либо один лепесток, либо два рядом растущих лепестка. Проигрывает тот, кто не может сделать хода.

Задача 7: Доска 8 × 8. За ход можно положить доминошку на любое свободное место. Проигрывает тот, кто не может сделать очередной ход.

Задача 8: В каждой клетке доски а) 11 × 11 б) 11 × 12 в) 12 × 12 стоит шашка. За ход разрешается снять с доски любое количество подряд идущих шашек либо из одного вертикального, либо из одного горизонтального ряда. Выигрывает снявший последнюю шашку.

Задача 9: Для игры «щелк» требуется прямоугольная шоколадка (в этой задаче – шоколадка 8 × 8). За ход разрешается съесть произвольную дольку и все находящиеся справа и сверху от неё. Проигрывает тот, кто съедает левую нижнюю дольку.

Задача 10: Двое играют в следующую игру: первый выбирает любое поле на доске 8 × 8, ставит туда короля и делает ход (король может ходить в соседние и соседние по диагонали клетки), при условии, что на эту клетку раньше никто не вставал. Проигрывает тот, кто не может сделать ход. Кто выигрывает при правильной игре?

Задача 1: Игра начинается с числа 60. За ход разрешается уменьшить имеющееся число на любой из его делителей. Проигрывает тот, кто получит ноль.

Задача 2: Волк и Заяц играют в следующую игру: на доске написано некоторое натуральное число с ненулевой последней цифрой. Ход состоит в том, что из числа вычитают какую-нибудь его ненулевую цифру и пишут результат вместо старого числа. Выигрывает тот, кто первым получит нуль.

Задача 3: Имеется две кучи конфет: в первой – 40, во второй – 45. За ход нужно одну кучу съесть, а другую разделить на две (не обязательно равные). Проигрывает тот, кто не может сделать ход.

Задача 4: Имеется две кучи конфет: в первой – 100, во второй – 201. За ход разрешается съесть из одной кучки любое число конфет, являющееся делителем количества конфет в другой кучке. Выигрывает тот, кто съедает последнюю конфету.

Задача 5: Два игрока ставят по очереди числа вместо звездочек в следующей системе равенств:

https://arhivurokov.ru/multiurok/7/f/4/7f467daa61b0598ff20b5764d2d5166e07b0dc9f/olimpiadnyie-zadachi-po-matiematikie-za-6-klass_22.png

(в последнем равенстве справа 8 слагаемых). Второй игрок выигрывает, если все равенства выполняются, в противном случае выигрывает первый.

Задача 6: Имеется полоска клетчатой бумаги длиной 10 клеток. В крайней правой ее клетке стоит шашка (рис. 1). Двое играющих по очереди передвигают ее влево на одну или две клетки. Проигрывает тот, кому некуда ходить.

6cm

https://arhivurokov.ru/multiurok/7/f/4/7f467daa61b0598ff20b5764d2d5166e07b0dc9f/olimpiadnyie-zadachi-po-matiematikie-za-6-klass_23.png

Рис 1.

Задача 7: Кто выигрывает в игре Баше, если длина полоски составляет 11 клеток? 12 клеток? 13 клеток? 2000 клеток?

Задача 8: Изменим правила игры Баше: теперь за один ход можно сдвигать шашку на 1, 2, 3, 4 или 5 клеток, а длина полоски – 13 клеток.

Задача 9: А теперь в игре Баше можно сдвигать шашку на 3, 6, 9 или 12 клеток, а длина полоски – 40 клеток.

Задача 10: Проанализируйте игру Баше, где можно сдвигать шашку на 1, 3 или 4 клетки, а длина полоски – 15 клеток. А что можно сказать про случай, если длина полоски – 2000 клеток?

Задача 1: Имеется 40 конфет. Двое по очереди едят от одной до шести из них. Выигрывает съевший последнюю конфету.

Задача 2: Имеется 40 конфет. Двое по очереди едят от 1 до 6 из них. Тот, кто съел последнюю, проигрывает.

Задача 3: В 6-й класс ЛМШ приехало 50 школьников. За ход разрешается съесть двух, четверых или семерых из них. Проигрывает тот, кто не может сделать ход.

Задача 4: В чашке сидит 105 микробов. За ход разрешается вытащить 2, 3 или 5 микробов. Проигрывает тот, кто не может сделать очередной ход.

Задача 5: Конь стоит на поле a1. За ход разрешается передвигать коня на две клетки вправо и одну клетку вверх или вниз, или на две клетки вверх и на одну вправо или влево. Проигрывает тот, кто не может сделать ход. Кто выигрывает при правильной игре?

Задача 6: В кучке n спичек. За ход нужно взять от 1 до 3 спичек, но не столько, сколько только что взял противник. Тот, кто не может сделать ход, проигрывает. Кто выигрывает при правильной игре сторон а) при n = 12 б) при n = 13?

Задача 7: В куче – n спичек, из них 3 – обломанные, остальные – целые. За ход можно взять 1, 2 или 3 спички, но обломанные можно брать только когда кончились целые. Тот, кому досталось меньше обломанных спичек, выплачивает разницу в их числе другому. Кто победит и с каким счетом а) при n = 13; б) при n = 14?

Задача 8: Имеется две кучи по семь апельсинов. За ход разрешается съесть один апельсин из любой кучки или по одному апельсину из каждой кучки. Проигрывает тот, кто не сможет сделать ход.

Задача 9: Король стоит на поле a1. За один ход разрешается сдвинуть его на одну клетку вверх, одну клетку вправо или одну клетку по диагонали вправо-вверх. Выигрывает тот, кто поставит короля на поле h8.

Задача 10:

.7mm

В начале игры фишка стоит на верхней позиции П. Игроки по очереди передвигают ее на одну позицию вниз по линиям. Игра заканчивается, когда фишка попадает на число. После этого второй выплачивает первому столько тугриков, каково это число (если число меньше 0, то на самом деле выплачивает первый второму). Сколько тугриков будет выплачено при наилучшей игре сторон, и какой игрок их получит?

Задача 11: В трёх кучках лежит по 7 камней. За ход можно взять любое количество камней, но только из одной кучки. Выигрывает взявший последний камень. а) Кто выигрывает в этой игре, если в нее играют 2 человека? б) Докажите, что если в эту игру играют трое, то двое из них могут сговориться и обыграть третьего.

Задача 12: В коробке лежат 300 спичек. За ход можно взять из коробка не более половины имеющихся в нем спичек. Проигрывает тот, кто не может сделать ход.

Задача 13: На столе лежат 9 карточек, на которых написаны натуральные числа от 1 до 9. Двое по очереди откладывают в сторону по одной карточке. Проигрывает тот, после хода которого сумма чисел на отложенных карточках станет больше 25.

Задача 1: Найдите выигрышную стратегию для первого игрока в игре «щёлк» на шоколадке 2 × 100.

Задача 2: Проанализируйте игру «щёлк» на огрызке шоколадки из трёх строчек: 2, n и n + 2 дольки. а) Кто выигрывает при n = 2,3,4,5 б) n – произвольное.

Задача 3: Игра в «двойные шахматы» ведется также, как и в обычные, только игроки делают по 2 хода за раз. Докажите, что в этой игре у второго игрока не может быть выигрышной стратегии.

Решение: Передача хода – ход конём туда-обратно, в результате чего позиция не изменится. Знатоки шахматных правил могут заметить, что на самом деле ситуация в игре всё же не вполне симметрична, так как есть, наример, правило троекратного повторения позиции (и правило 50 ходов). Полезно подумать, как можно ответить на эти возражения.

Задача 4: Докажите, что в игре «щёлк» у первого игрока есть выигрышная стратегия на любой прямоугольной шоколадке, в которой больше одной дольки (предъявлять стратегию не обязательно).

Задача 5: На бесконечной доске двое играют в крестики-нолики. Кто поставит пять своих в ряд – по вертикали или горизонтали – выигрывает. Докажите, что при правильной игре первый не проигрывает.

Задача 6: На доске написано число 2. За ход можно к записанному числу прибавить один из его делителей отличный от самого этого числа. Проигрывает тот, кто получит число большее 1000. Докажите, что у первого игрока есть выигрышная стратегия.

Задача 7: Двое играют в следующую игру: первый выбирает любое поле на доске 8 × 8, ставит туда а) короля; б) коня и делает ход этой фигурой, причём разрешается ходить только на те клетки, на которые раньше никто не вставал. Далее игроки ходят по очереди. Проигрывает тот, кто не может сделать ход.

Задача 1: Может ли в месяце быть 3; 4; 5; 6 воскресений?

Задача 2: Может ли в году быть 51; 52; 53; 54 воскресенья?

Задача 3: Может ли сумма цифр трёхзначного числа быть равной 22? А равной 28?

Задача 4: Может ли произведение цифр трёхзначного числа быть равно 22? 28? 350? 730?

Задача 5: Позавчера Васе было 11 лет, а в следующем году исполнится 14. Может ли такое быть?

Задача 6: Двое близнецов родились с интервалом в 10 минут. Когда спустя 7 лет они готовились идти в первый класс, их спросили, сколько им лет. «Мне вчера исполнилось семь», – гордо ответил один. «А мне семь исполнится только завтра», – признался второй. Как такое могло быть?

Задача 7: Можно ли в прямоугольную таблицу поставить числа так, чтобы в каждом столбце сумма была положительна, а в каждой строке – отрицательна?

Задача 8: Можно ли в таблицу 4 × 4 поставить числа  – 1, 0 и 1 так, чтобы все 8 сумм чисел в строках и столбцах были различными?

Задача 9: Можно ли в прямоугольной таблице расставить натуральные числа так, чтобы в каждом столбце сумма чисел была больше 100, а в каждой строке – меньше 5 ?

Задача 10: Может ли и сумма, и произведение нескольких натуральных чисел быть равными а) 999? б) 1999?

Задача 11: Площадь прямоугольника меньше 1 кв.м. Может ли его периметр быть больше 1 км?

Задача 12: На балу было юношей и девушек поровну, было 10 танцев и каждый раз танцевали все.

а) Могло ли получиться, что каждый юноша каждый следующий танец танцевал либо с более красивой, либо с более умной девушкой?

Задача 13: Сумма положительных чисел больше 10. Может ли сумма их квадратов быть меньше 1?

Решение: Да. Возьмем 1001 число, все равны 1/100, тогда их сумма равна 10.01, а сумма квадратов – 1\,001/10\,000.

Задача 14: На занятии Вася, Леня и Стас решили все задачи. Может ли оказаться, что Стас большинство задач решил раньше Лени, Леня – большинство раньше Васи, а Вася – большинство раньше Стаса?

Задача 15: Фирма проработала год, подсчитывая свою прибыль каждый месяц. Каждые два подряд идущих месяца суммарная прибыль была отрицательной.

а) Может ли суммарная прибыль за весь год быть положительной?

б) А за первые 11 месяцев?

Задача 16: В однокруговом футбольном турнире за победу давали 2 очка, за ничью 1 очко, за поражение 0 очков. «Спартак» одержал больше всех побед. Мог ли он набрать меньше всех очков?

Задача 17: Можно ли на шахматной доске расставить а) 9 ладей; б) 14 слонов так, чтобы они не били друг друга?

Задача 18: Какое наибольшее число ладей (слонов, королей, ферзей, коней) можно расставить на доске так, чтобы они не били друг друга?

Задача 19: У шахматной доски выпилены а) угловая клетка; б) две противоположные угловые клетки; в) две клетки разного цвета. Можно ли такую испорченную доску распилить на двуклеточные прямоугольники?

Задача 20: Из 4 одинаковых с виду монет одна фальшивая (легче настоящей). Можно ли наверняка найти ее за одно взвешивание на чашечных весах без гирь?

Задача 21: На сковороде могут одновременно жариться 2 котлеты. Каждую надо обжарить с обеих сторон, причём для обжаривания одной стороны требуются 2 минуты. Можно ли поджарить 3 котлеты быстрее, чем за 7 минут?

Задача 22: В магазин привезли платья трёх цветов и трёх фасонов. Всегда ли можно выбрать для витрины 3 платья, чтобы были представлены все цвета и все фасоны?

Задача 1: На двух кустах сидело 25 воробьев. После того как с первого куста перелетело на второй 5, а со второго улетело 7 воробьев, то на первом кусте осталось вдвое больше воробьев, чем на втором. Сколько воробьев было на каждом кусте первоначально?

Задача 2: Золотоискатель Джек добыл 9 кг. песка. Сможет ли он за три взвешиванимя отмерить 2 кг песка с помощью двухчашечных весов а) с двумя гирями – 200 г и 50 г; б) с одной гирей 200 г?

Задача 3: Часы показывают час дня. Найти ближайший момент времени, когда часовая и минутная стрелка совпадут.

Задача 4: Из 100 туристов, отправляющихся в заграничное путешествие, немецким языком владеют 30 человек, английским – 28, французским – 42. Английским и немецким одновременно владеют 8 человек, английским и французским – 10, немецким и французским – 5, всеми тремя языками – 3. Сколько туристов не владеют ни одним языком?

Задача 5: Три человека выписали по 100 различных слов. После этого слова, встречающиеся не менее двух раз, вычеркнули. В результате у одного осталось 45 слов, у другого – 68, а у третьего – 54. Докажите, что по крайней мере одно слово выписали все трое.

Задача 6: Оксана Николаевна раздавала фумигаторы для шести отрядов. Каждому отряду она давала половину всех имеющихся у нее фумигаторов и еще полфумигатора. Оксана Николаевна раздала все фумигаторы. Сколько их всего было?

Задача 7: На доске написаны 10 единиц и 10 двоек. За ход разрешается стереть две любые цифры и, если они были одинаковыми, написать двойку, а если разными – единицу. Если последняя оставшаяся на доске цифра – единица, то выигрывает первый игрок, а если двойка – то второй. Докажите, что игрок, который ходит вторым, всегда выигрывает.

Задача 8: Каких натуральных чисел, меньших 200,000, больше: тех, которые делятся на 8 и не делятся на 9, или тех, которые делятся на 9 и не делятся на 8?

Задача 1: На озере расцвела одна лилия. Каждый день число ее цветков удваивалось, а на 20-й день всё озеро покрылось цветами. На который день покрылась цветами половина озера?

Задача 2: Мама послала Алешу в магазин за покупками, вручив ему кошелек с деньгами. Половину денег Алеша уплатил за молоко и сыр. Доехав за 3 р. на автобусе до магазина, половину оставшихся денег и еще 1 р. он уплатил за книгу. На половину того, что еще осталось, Алеша купил тетрадей. Выйдя из магазина, он купил мороженое за 4 р., оставив деньги лишь на обратный проезд на автобусе. Сколько денег мама дала Алеше?

Задача 3: 48 спичек разложены по трем кучкам. Известно, что если из первой кучки переложить во вторую столько спичек, сколько в этой второй кучке имеется, а затем из этой второй переложить в третью столько, сколько в этой третьей находится и, наконец, из третьей переложить в первую столько спичек, сколько в этой первой кучке будет тогда находиться, то число спичек во всех кучках станет одинаковым. Сколько спичек было в каждой кучке первоначально?

Задача 4: Алеша задумал число. Он прибавил к нему 5, потом разделил сумму на 3, умножил на 4, отнял 6, разделил на 7 и получил число 2. Какое число задумал Алеша?

Задача 5: Микрокалькулятор позволяет делать с введённым в него числом две операции: умножать на 2 или переставлять его цифры. Можно ли получить из числа 1 число 68?

Задача 6: В колбу пустили бактерию. Каждую минуту число бактерий удваивается. Через три часа колба заполнилась бактериями. В какой момент бактериями была заполнена четверть колбы?

Задача 7: Над озерами летели гуси. На каждом садилась половина гусей и еще полгуся, остальные летели дальше. Все сели на 7 озерах. Сколько было гусей?

Задача 8: Клетчатая доска 8 × 8 выложена плитками домино 1 × 2. Докажите, что какие-то две из них образуют квадрат из четырёх клеток.

Задача 9: Учитель раздавал школьникам открытки. Первому он дал одну открытку и одну десятую оставшихся. Второму он дал две открытки и одну десятую оставшихся и т.д. Девятому он дал девять открыток и одну десятую оставшихся. Оказалось, что все получили поровну и все открытки были розданы. Сколько всего было открыток?

Задача 10: По кругу расставлены 9 нулей и единиц, причём не все они равны. За один ход между каждыми двумя соседними числами записывается 0, в случае если они равны, и 1 в противном случае. Далее старые числа стираются. Могут ли в конце все числа оказаться равными?

Задача 11: За столом сидят 7 гномов, перед каждым – кружка, в некоторые налит эль (но, быть может, не поровну). Первый разлил весь свой эль поровну в кружки всем остальным. Затем второй разлил свой эль поровну всем остальным (включая первого), затем третий гном и т.д. до седьмого. Когда и седьмой гном разлил свой эль, у всех оказалось столько же эля, сколько было вначале. Сколько эля в каждой кружке, если всего его 3 литра?

Задача 12: На большой клетчатой доске стоят (живут) несколько шашек. За один ход некоторые шашки убираются с доски (умирают), кроме того на некоторых клетках шашки появляются (рождаются). Рождение и смерть происходят одновременно на всех клетках по следующим законам:

  • Живая шашка умирает, если у неё меньше двух или больше трёх живых соседей (по стороне или углу).
  • Шашка рождается в клетке, если у этой клетки три соседа (по стороне или углу).

Оказалось, что на доске шашки стоят так, как показано на рисунке. Какое положение шашек могло быть за ход до этого?

Задачи для учеников 5 – 7 классов

Задача 1. Известный бизнесмен Андрей Крутой пришел в Госбанк, чтобы обменять несколько 50- и 100- долларовых купюр старого образца. Ему было выдано 1999 купюр достоинством 1, 5 и 25 долларов. Докажите, что его обсчитали.

Задача 2. Три землекопа за два часа выкопали три ямы. Сколько ям выкопают шесть землекопов за пять часов?

Задача 3. Кот Матроскин и пес Шарик каждое утро бегают на речку умываться. Они выскакивают из дома одновременно и бегут по одной и той же тропинке. Скорость каждого из них постоянна, но Матроскин бежит в 3 раза быстрее Шарика, зато моется в 2 раза дольше, чем Шарик. Однажды Шарик, прибежав к речке, обнаружил, что не взял с собой полотенце. Он тут же побежал домой, схватил полотенце и прибежал к речке как раз в тот момент, когда Матроскин закончил умываться (бежал Шарик по той же тропинке и с той же скоростью, что и каждое утро). Кто обычно прибегает домой раньше – Шарик или Матроскин или они прибегают домой одновременно?

Задача 4. В Цветочном городе живет 14 коротышек. Они объединены в различные партии. По закону, партия должна состоять не менее чем из 3 коротышек, и две разные партии не могут состоять из одних и тех же членов. Кроме того, каждый коротышка может быть членом не более 2 партий. Какое наибольшее число партий может быть в Цветочном городе?

Задача 5. Во время шторма капитан корабля приказал выбросить за борт половину из 30 тюков с товарами, которые везли два купца. Купцы были в нерешительности: каждому было жаль выбрасывать свой груз. Видя это, капитан сказал: «Сделаем так: матросы расставят 30 тюков по кругу, а мы будем по кругу ходить и выбрасывать каждый девятый тюк, пока не выбросим половину тюков». Один из купцов подкупил матросов, и они сумели расставить тюки так, что 15 оставшихся на палубе тюков оказались с товарами одного купца. Как были расставлены тюки?

Задача 6. Футбольный мяч сшит из 32 лоскутков: белых шестиугольников и черных пятиугольников. Каждый черный лоскуток граничит только с белыми, а каждый белый - с тремя черными и тремя белыми. Сколько лоскутков белого цвета?

Задача 7. Инженер ежедневно приезжал на станцию в одно и то же время, и в то же время за ним подъезжала машина, на которой он ехал на завод. Однажды инженер приехал на станцию на 55 мин раньше обычного. Сразу пошел навстречу машине и приехал на завод на 10 мин раньше, чем обычно. Во сколько раз скорость инженера меньше скорости машины?

Задача 8. В вагоне электропоезда ехали из города на дачу две подруги-школьницы.   «Я замечаю, – сказала одна из подруг, – что обратные дачные поезда нам встречаются через каждые 5 мин. Как ты думаешь, сколько дачных поездов прибывает в город в течение одного часа, если скорости поездов в обоих направлениях одинаковы?» «Конечно, 12, так как 60 : 5 = 12», – сказала вторая подруга. Но школьница, задавшая вопрос, не согласилась с решением подруги и привела ей свои соображения. А что вы думаете по этому поводу?

Задача 9. В триседьмом царстве живут драконы. У каждого дракона одна, две или три головы, а) Может ли у 40 % драконов быть 60 % голов? б) Может ли у 40 % драконов быть 70 % голов?

Задача 10. У филателиста Бори большое количество марок. Однажды он решил разместить их в большом альбоме, состоящем из 1000 страниц, так, чтобы на всех заполненных страницах марок было поровну (какие-то страницы в конце альбома могут остаться пустыми). Но когда Боря попробовал раскладывать по 7 марок на странице, то у него 5 марок осталось (но не все страницы были заполнены). Тогда он стал раскладывать сначала по 11 марок на странице, затем – по 13 марок на странице. Но снова у него оба раза осталось 5 марок. Наконец, когда Боря решил разложить по 23 марки на странице, то на этот раз у него осталось 6 марок.   Сколько марок в коллекции у Бори?

 

Олимпиадные задания по математике с решениями. 6-8 классы.

Исходная 1. Сколько было брёвен, если 52 распилами получили 72 полена?

Исходная 2. Сколько существует различных треугольников с целыми сторонами и с периметром 13?

Исходная 3. Ане втрое больше лет, чем было Пете, когда она была в его нынешнем возрасте. Когда он будет в её нынешнем возрасте, им вместе будет 28 лет. Сколько сейчас лет Ане и Пете вместе?

Исходная 4. В некотором месяце понедельников больше, чем вторников, а воскресений больше, чем суббот. Какой день недели был пятого числа этого месяца?

Исходная 5. Какое наименьшее число участников может быть в математическом кружке, если мальчиков в нём меньше 50%, но больше 40%?

Исходная 6. К числу 43 припишите слева и справа по одной цифре так, чтобы полученное число делилось на 45.

Исходная 7. Учитель проводит урок в классе. Возраст учителя на 24 года больше среднего возраста учеников и на 22 года больше среднего возраста всех присутствующих в классе. Сколько в классе учеников?

Исходная 8. Коллекция марок Боба состоит из трёх альбомов. 1/5 его марок находится в первом альбоме, несколько седьмых — во втором и 303 марки в третьем альбоме. Сколько марок у Боба?

Исходная 9. Найдите трёхзначное число, равное кубу суммы его цифр.

Исходная 10. В выпуклом пятиугольнике проведены все его диагонали. Сколько треугольников можно увидеть на таком чертеже?

Исходная 11. В корзине 13 яблок. За одно взвешивание на весах со стрелкой разрешается узнать суммарный вес любых двух яблок. За какое минимальное число таких взвешиваний можно узнать суммарный вес всех яблок?

Исходная 12. Найдите наименьшее десятизначное число, делящееся на 72, в записи которого встречаются все цифры от 0 до 9.

Исходная 13. Футбольный мяч сшит из 32 лоскутков: белых шестиугольников и чёрных пятиугольников. Каждый чёрный лоскут граничит только с белыми, а каждый белый — с тремя чёрными и тремя белыми. Сколько лоскутов белого цвета?

Исходная 14. В магазин привезли меньше 500, но больше 400 тарелок. Когда стали раскладывать их десятками, то не хватило трёх тарелок до полного числа десятков, а когда стали раскладывать дюжинами, осталось 7 тарелок. Сколько было тарелок?

Зачётная 1. Андрея попросили написать номер квартиры, в которой он живёт. Он ответил, что этот номер выражается числом, которое в 17 раз больше числа, стоящего в разряде единиц номера. Какой же номер этой квартиры?

Зачётная 2. Найдите все трёхзначные числа, у которых сумма цифр в 11 раз меньше самого числа.

Зачётная 3. В математической олимпиаде участвовали 100 школьников. Было предложено четыре задачи. Первую задачу решили 90 человек, вторую — 80, третью — 70 и четвёртую — 60. При этом никто не решил все задачи. Награду получили те, кто решил и третью, и четвёртую задачи. Сколько школьников было награждено?

Зачётная 4. Ученик выполняет тестовое задание из 20 задач. За каждый правильный ответ ему ставят 8 баллов, за каждый неправильный ответ штрафуют на 5 баллов, если ответа на задачу нет, он получает за неё 0 баллов. В результате ученик получил 13 баллов. Сколько задач он решил правильно?

Зачётная 5. Вася задумал целое число. Коля умножил его не то на 5, не то на 6. Женя прибавил к результату Коли не то 5, не то 6. Саша отнял от результата Жени не то 5, не то 6. В итоге получилось 71. Какое число задумал Вася?

Зачётная 6. Миша, Паша, Саша, Яша и Наташа играли в настольный теннис пара на пару, причём каждая пара сыграла с каждой ровно один раз. В результате Саша проиграл 12 игр, а Яша — 6. Сколько игр выиграла Наташа?

Зачётная 7. Школьник прочитал книгу за три дня. В первый день он прочитал 0,2 всей книги и ещё 16 страниц, во второй день — 0,3 остатка и ещё 20 страниц, а на третий день — 0,75 нового остатка и последние 30 страниц. Сколько страниц в книге?

Зачётная 8. Военный оркестр демонстрировал своё искусство на площади. Сначала музыканты выстроились в квадрат, а затем перестроились в прямоугольник, причём количество шеренг увеличилось на 5. Сколько музыкантов в оркестре?

Зачётная 9. Найдите наибольшее число, все цифры которого различны, а их произведение равно 360.

Зачётная 10. В теннисном турнире принимают участие 10 теннисистов. Сколько существует вариантов разбиения их на пары для игры в первом круге?

Зачётная 11. Двое рабочих могут напилить за день 5 поленниц дров, а наколоть 8 поленниц. Какое наибольшее число поленниц они могут напилить, чтобы успеть наколоть их в тот же день?

Зачётная 12. Электронные часы показывают время от 00:00:00 до 23:59:59. Сколько секунд в течение суток на индикаторе горят ровно четыре цифры 3?

Зачётная 13. У некоторого трёхзначного числа переставили две последние цифры и сложили полученное число с исходным. Получилось четырёхзначное число, начинающееся с 173. Какой может быть его последняя цифра?

Зачётная 14. Два автомобиля одновременно выехали из пунктов А и В навстречу друг другу. Через 7 часов они находились на расстоянии 136 километров один от другого. Найдите расстояние между А и В, если один автомобиль может проехать его за 10 часов, а другой — за 12.

Зачётная 15. Вася живёт на 9 этаже дома, в котором на каждом этаже по 6 квартир. Петя живёт на 7 этаже дома, в котором на каждом этаже по 7 квартир. Номера квартир у обоих друзей одинаковые. Каждый из друзей живёт в первом подъезде. Найдите номер квартиры друзей.

Зачётная 16. Одна снегоуборочная машина могла бы убрать всю улицу за 1 час, а другая за 45 минут. Начав работу одновременно, машины проработали вместе 20 минут, после чего первая сломалась. Через сколько минут вторая машина закончила работу?

Зачётная 17. Петя съел 1/3 всех яблок и ещё 2 яблока, Сеня съел 1/4 всех яблок и ещё 1 яблоко, а Коля — половину тех яблок, которые остались после Пети и Сени. После этого осталась 1/6 часть первоначального числа яблок. Сколько яблок было вначале?

Зачётная 18. На каждом шаге к данному числу можно прибавить единицу или удвоить его. За какое наименьшее число шагов из числа 1 можно получить число 51?

Зачётная 19. Найдите сумму пяти идущих подряд натуральных чисел, у которых сумма квадратов двух последних чисел равна сумме квадратов трёх первых чисел.

Зачётная 20. Борода Карабаса-Барабаса составляла 40% его веса. После того, как Буратино её обрезал, она стала составлять 10% его веса. Какую часть бороды обрезал Буратино?

Зачётная 21. В США дату принято записывать так: номер месяца, потом номер дня и год. В Европе же сначала идет число, потом месяц и год. Сколько в году дней, дату которых нельзя прочитать однозначно, не зная, каким способом она написана?

Зачётная 22. Велосипедист должен попасть в пункт назначения к определённому сроку. Если он поедет со скоростью 10 км/ч, он опоздает на один час, а если он поедет со скоростью 15 км/ч, то он приедет на один час раньше срока. С какой скоростью ему нужно ехать, чтобы приехать вовремя?

 

6 класс

1. Кассир продал все билеты в первый ряд кинотеатра, причем по ошибке на одно из мест было продано два билета. Сумма номеров мест на всех этих билетах равна 857. На какое место продано два билета?

2. Каждый из трёх приятелей либо всегда говорит правду, либо всегда лжёт. Им был задан вопрос: «Есть ли хотя бы один лжец среди двух остальных?» Первый ответил: «Нет», второй ответил: «Да». Что ответил третий?

3. Существует ли 10-угольник, который можно разрезать на 5 треугольников?

4. Вася и Митя играют в «морской бой» на поле размером 8× 8 по следующим правилам. Митя расставляет 16 одноклеточных кораблей так, чтобы они не соприкасались (даже углами). Каждым ходом Вася называет одну из клеток поля и, если на этой клетке стоит корабль, то корабль считается уничтоженным. Докажите, что независимо от расстановки кораблей Вася за 4 хода сможет уничтожить хотя бы один корабль.

5. На острове Невезения отменили понедельники: у них за воскресеньем сразу следует вторник. За последний год (то есть, с 15 декабря 2009 года по 14 декабря 2010 года) воскресенья на острове совпадали с нашими воскресеньями ровно восемь раз. Какой день недели на острове сегодня?

6. На каждом километре между селами Марьино и Рощино стоит столб с табличкой, на одной стороне которой написано расстояние до Марьино, на другой – расстояние до Рощино. Останавливаясь у каждого столба, Бобик заметил, что если сложить все цифры, записанные на обеих сторонах таблички, то получится 13. Найдите расстояние между селами.

7. По кругу стоят восемь козлов разного роста. Любой из них умеет перепрыгивать через двух соседних козлов против часовой стрелки. Докажите, что при любом начальном расположении козлов они смогут встать по росту.

Основной тур

  1. Даны две палочки. Их можно прикладывать друг к другу и делать отметки. Как с помощью этих операций выяснить, что больше – длина более короткой палочки, или 2/3 длины более длинной палочки?
  2. Одно число увеличили на 2%, а другое на 3%. Могла ли сумма увеличиться на 5%? (Числа считаются положительными.)
  3. Сколькими способами можно разрезать доску, показанную на рисунке, на прямоугольники из двух клеток так, чтобы в каждой части была закрашенная клетка?



  1. Петя выкладывал примеры из спичек. Цифры он «записывал» следующим образом:

Когда Петя отвлёкся, Вася в записанном им верном примере на сложение внутри каждой цифры переложил ровно одну спичку и получил:

Восстановите исходное равенство.



Дополнительный тур


  1. В 6А классе учится 27 школьников. Им предложили посещать кружки по пению, молчанию и чтению стихов. Каждый хочет посещать один или несколько из этих кружков. Оказалось, что в каждый кружок желает ходить более трети класса. Можно ли составить такие списки кружков, что каждый будет ходить ровно в один кружок, в который хочет, и во всех кружках будет поровну школьников?
  2. Четыре друга участвовали в олимпиаде. Витя решил больше всех задач – восемь, а Петя меньше всех – пять задач. Каждая задача олимпиады была решена ровно тремя из друзей. Сколько задач было на олимпиаде?
  3. Клетки тетрадного листа раскрашены в восемь цветов. Докажите, что найдется фигура вида, указанного на рисунке, внутри которой есть клетки одного цвета.

Олимпиадные задачи по математике 6 класса

  1. решите уравнение: 0,5
  2. Найдите все дроби со знаменателем 15, которые больше и меньше 1.
  3. Возраст старика Хоттабыча записывается числом с различными цифрами. Об этом числе известно следующее:
  • Если первую и последнюю цифру зачеркнуть, то получится двузначное число, которое при сумме цифр, равной 13, является наибольшим;
  • Первая цифра больше последней в 4 раза.

Сколько лет Хоттабычу?

  1. Некоторый товар стоил 500 рублей. Затем цену товара увеличили на 10%, а затем уменьшили на 10%. Какой стала цена товара в итоге?
  2. В летний лагерь приехали отдыхать три друга: Миша, Володя и Петя. Известно, что каждый из них имеет одну из следующих фамилий: Иванов, Семенов, Герасимов. Миша – не Герасимов. Отец Володи – инженер. Володя учится в 6 классе. Герасимов учится в 5 классе. Отец Иванова – учитель. Какая фамилия у каждого из трех друзей?

Принцип Дирихле". Решения.

Задача 1:

В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок.

 Задача 2:

Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

Задача 3:

В городе Ленинграде живет более 5 миллионов человек. Докажите, что у каких-то двух из них одинаковое число волос на голове, если известно, что у любого человека на голове менее миллиона волос.

Задача 4:

В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.

Задача 5:

В стране Курляндии m футбольных команд (по 11 футболистов в каждой). Все футболисты собрались в аэропорту для поездки в другую страну на ответственный матч. Самолет сделал 10 рейсов, перевозя каждый раз по m пассажиров. Еще один футболист прилетел к месту предстоящего матча на вертолете. Докажите, что хотя бы одна команда была целиком доставлена в другую страну.

Задача 6:

Дано 8 различных натуральных чисел, не больших 15. Докажите, что среди их положительных попарных разностей есть три одинаковых.

Задача 7:

Докажите, что в любой компании из 5 человек есть двое, имеющие одинаковое число знакомых в этой компании.

Задача 8:

Несколько футбольных команд проводят турнир в один круг. Докажите, что в любой момент турнира найдутся две команды, сыгравшие к этому моменту одинаковое число матчей.

Задача 9:

а) Какое наибольшее число полей на доске 8 ? 8 можно закрасить в черный цвет так, чтобы в любом уголке вида из трех полей было по крайней мере одно незакрашенное поле?

б) Какое наименьшее число полей на доске 8 ? 8 можно закрасить в черный цвет так, чтобы в каждом уголке вида было по крайней мере одно черное поле?

Задача 10:

10 школьников на олимпиаде решили 35 задач, причем известно, что среди них есть школьники, решившие ровно одну задачу, школьники, решившие ровно две задачи и школьники, решившие ровно три задачи. Докажите, что есть школьник, решивший не менее пяти задач.

Задача 11:

Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?

Задача 12:

Докажите, что равносторонний треугольник нельзя покрыть двумя меньшими равносторонними треугольниками.

Задача 13:

В квадрат со стороной 1 метр бросили 51 точку. Докажите, что какие-то три из них можно накрыть квадратом со стороной 20 см.

Задача 14:

Пятеро молодых рабочих получили на всех зарплату – 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты.

Задача 15:

В бригаде 7 человек и их суммарный возраст – 332 года. Докажите, что из них можно выбрать трех человек, сумма возрастов которых не меньше 142 лет.

Задача 16:

Докажите, что среди степеней двойки есть две, разность которых делится на 1987.

 Задача 17:

Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.

Задача 18:

Докажите, что среди чисел, записываемых только единицами, есть число, которое делится на 1987.

Задача 19:

Докажите, что существует степень тройки, оканчивающаяся на 001.

Задача 20:

В клетках таблицы 3 ? 3 расставлены числа  – 1, 0, 1. Докажите, что какие-то две из 8 сумм по всем строкам, всем столбцам и двум главным диагоналям будут равны.

 

Задача 21:

Сто человек сидят за круглым столом, причем более половины из них – мужчины. Докажите, что какие-то два мужчины сидят друг напротив друга.

Задача 22:

15 мальчиков собрали 100 орехов. Докажите, что какие-то два из них собрали одинаковое число орехов.

Задача 23:

Цифры 1, 2, …, 9 разбили на три группы. Докажите, что произведение чисел в одной из групп не меньше 72.

Задача 24:

В таблице 10 ? 10 расставлены целые числа, причем любые два числа в соседних клетках отличаются не более, чем на 5. Докажите, что среди этих чисел есть два равных.

Решение:

Поскольку от любой клетки до любой другой можно добраться, не более 19 раз сдвинувшись в соседнюю клетку, то все числа находятся между числами a и a + 95, где a – минимальное из всех расставленных чисел. Значит, среди этих чисел не более 96 различных.

Задача 25:

Докажите, что среди любых 6 человек есть либо трое попарно знакомых, либо трое попарно незнакомых.

Решение:

У данного человека среди остальных пяти есть либо не менее трех знакомых, либо не менее трех незнакомых ему. Разберем, например, первый случай. Среди этих трех людей есть либо двое знакомых – тогда они вместе с выбранным нами исходно человеком образуют нужную тройку, либо они все трое попарно незнакомы.

Задача 26:

На клетчатой плоскости дано 5 произвольных узлов сетки. Докажите, что середина одного из отрезков, соединяющих какие-то две из этих точек, также является узлом сетки.

Решение:

Рассмотрите координаты этих точек и их остатки при делении на 2.

Задача 27:

На складе имеется по 200 сапог 41, 42 и 43 размеров, причем среди этих 600 сапог 300 левых и 300 правых. Докажите, что из них можно составить не менее 100 годных пар обуви.

Решение:

В каждом размере каких-то сапог меньше: правых или левых. Выпишем эти типы сапог по размерам. Какой-то тип, например, левый, повторится по крайней мере дважды, например, в 41 и 42 размерах. Но так как количество левых сапог в этих размерах суммарно не меньше 100 (почему?), то мы имеем не менее 100 годных пар обуви в этих размерах.

Задача 28:

В алфавите языка племени Ни-Бум-Бум 22 согласных и 11 гласных, причем словом в этом языке называется произвольное буквосочетание, в котором нет двух согласных подряд и ни одна буква не использована дважды. Алфавит разбили на 6 непустых групп. Докажите, что из всех букв одной из групп можно составить слово.

Решение:

Докажите, что в одной из групп разность между числом согласных и числом гласных не больше 1.

Задача 29:

Докажите, что среди любых 10 целых чисел найдется несколько, сумма которых делится на 10.

Решение:

Рассмотрите 10 сумм: x1, x1 + x2, …, x+ x2 +  …  + x10 и их остатки при делении на 10.

Задача 30:

Дано 11 различных натуральных чисел, не больших 20. Докажите, что из них можно выбрать два числа, одно из которых делится на другое.

Решение:

Разбейте числа от 1 до 20 на 10 наборов, в каждом из которых в любой паре чисел одно делится на другое: 11, 13, 15, 17, 19, 1,2,4,8,16, 3,6,12, 5,10,20, 7,14, 9,18.

"Делимость и остатки". Ответы.

Задача 1: 

а) a + 1 делится на 3. Докажите, что 4 + 7a делится на 3.
б) 2 + a и 35 – b делятся на 11. Докажите, что a + b делится на 11.
Решение: 
Указания: а) 4 + 7a = 4(a + 1) + 3a; б) a + b = (2 + a) – (35 – b) + 33.
Задача 2: 
Найдите последнюю цифру числа 1? + 2? + … + 99?.
Решение:0

Задача 3: 
Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из данных чисел делится на 5.
Решение: 
Докажите, что любые два числа из этих семи дают одинаковый остаток от деления на 5. Для этого рассмотрите две шестерки: одну – не содержащую первое из них, вторую – не содержащую второе.

Задача 4: 
Найдите наименьшее число, дающее следующие остатки: 1 – при делении на 2, 2 – при делении на 3, 3 – при делении на 4, 4 – при делении на 5, 5 – при делении на 6.
Решение: 
Заметим, что это число, увеличенное на 1, делится на 2, 3, 4, 5, 6. Ответ: 59.
Задача 5: 
Докажите, что если (n – 1)! + 1 делится на n, то n – простое число.
Решение: 
Если n – составное число (n 4), то (n – 1)! делится на n.
Задача 6: 
Докажите, что существует такое натуральное n, что числа n + 1, n + 2, …, n + 1989 – составные.
Решение: 
Попробуем рассказать, как можно придти к решению. Число n + 1 должно быть составным. Попытаемся пойти по самому простому пути: сделаем так, чтобы n + 1 делилось на 2. n + 2 также должно быть составным, но делиться на 2 уже не может. Попытаемся опять пойти по самому простому пути: хотелось бы сделать так, чтобы n + 2 делилось на 3. Продолжая в том же духе, можно пытаться найти число n такое, что n + 1 делится на 2, n + 2 – на 3, n + 3 – на 4 и так далее. Это равносильно тому, что n – 1 делится на 2, 3, 4, …, 1990. Такое число, конечно, существует – например, 1990!. Итак, в качестве искомого n можно взять число 1990! + 1.
Задача 7: 
Докажите, что существует бесконечно много простых чисел.
Решение: 
Предположим противное. Пусть p1, p2, …, pn – все простые числа. Рассмотрим число p1p2 … pn + 1. Это число не делится ни на одно из чисел p1, p2, …, pn и, следовательно, не может быть разложено в произведение простых. Противоречие.

Алгоритм Евклида".Ответы.

Задача 1: 
Найти наибольший общий делитель чисел 2n + 13 и n + 7.
Решение: 
НОД (2n + 13,n + 7) = НОД (n + 7,n + 6) = НОД (n + 6,1) = 1.

 

Задача 2: 
Найдите НОД (2??? – 1,2??? – 1).
Решение: 
Указание: Воспользуйтесь алгоритмом Евклида.
Задача 3: 
Найдите НОД (111 … 111,11 … 11) – в записи первого числа 100 единиц, в записи второго – 60.
Решение: 
Указание: Воспользуйтесь алгоритмом Евклида.



Предварительный просмотр:

Нестандартные задачи на уроках математики  

К учителю

Известно, что решение текстовых задач представляет большие трудности для учащихся. Известно и то, какой именно этап решения особенно труден. Это самый первый этап – анализ текста задачи. Учащиеся плохо ориентируются в тексте задачи, в ее условиях и требованиях.

Текст задачи – это рассказ о некоторых жизненных фактах:

"Маша пробежала 100 м, а навстречу ей..."

"Ученики 1-го класса купили 12 гвоздик, а ученики 2-го... "

"Мастер сделал за смену 20 деталей, а его ученик..."

В тексте важно все: и действующие лица, и их действия, и числовые характеристики. При работе с математической моделью задачи (числовым выражением или уравнением) часть этих деталей опускается. Но мы именно и учим умению абстрагироваться от некоторых свойств и использовать другие.

Умение ориентироваться в тексте математической задачи – важный результат и важное условие общего развития ученика. И заниматься этим нужно не только на уроках математики, но и на уроках чтения и изобразительного искусства. Некоторые задачи – хорошие темы для рисунков. И любая задача – хорошая тема для пересказа. А если в классе есть уроки театра, то некоторые математические задачи можно инсценировать. Разумеется, все эти приемы: пересказ, рисунок, инсценировка – могут иметь место и на самих уроках математики. Итак, работа над текстами математических задач – важный элемент общего развития ребенка, элемент развивающего обучения.

Но достаточно ли для этого тех задач, которые имеются в ныне действующих учебниках и решение которых входит в обязательный минимум? Нет, недостаточно. В обязательный минимум входит умение решать задачи определенных типов:

о числе элементов некоторого множества;
о движении, его скорости, пути и времени;
о цене и стоимости;
о работе, ее времени, объеме и производительности труда.

Указанные четыре темы являются стандартными. Считается, что умение решать задачи на эти темы может научить решать задачи вообще. К сожалению, это не так. Хорошие ученики, умеющие решить практически любую задачу из учебника на перечисленные темы, часто бывают не в состоянии понять условие задачи на другую тему.

Выход заключается в том, чтобы не ограничиваться какой-либо тематикой текстовых задач, а решать и нестандартные задачи, то есть задачи, тематика которых не является сама по себе объектом изучения. Ведь не ограничиваем мы сюжеты рассказов на уроках чтения! Нестандартные задачи нужно решать в классе ежедневно.

Чтобы облегчить поиск таких задач для решения на уроках в 1-м классе, предлагаю этот материал. Число задач в ней таково, что можно выбрать из них задачи для каждого урока: по одной на урок. Задачи решаются дома. Но очень часто нужно разбирать их и в классе. Среди предлагаемых задач есть такие, которые сильный ученик решает моментально. Тем не менее нужно требовать и от сильных детей достаточной аргументации, объясняя, что на легких задачах человек учится способам рассуждения, которые понадобятся при решении трудных задач. Нужно воспитывать в детях любовь к красоте логичных рассуждений. В крайнем случае можно добиваться от сильных учеников таких рассуждений, требуя построить объяснение, понятное для других – для тех, кто не понимает быстрого решения.

Среди задач есть совершенно однотипные в математическом отношении. Если дети увидят это, – замечательно. Учитель может и сам показывать это. Однако недопустимо говорить: решаем эту задачу, как ту, и ответ будет такой же. Дело в том, что, во-первых, не все учащиеся в 1-м классе способны к таким аналогиям. А, во-вторых, в нестандартных задачах фабула не менее важна, чем математическое содержание. Поэтому лучше подчеркивать связи между задачами со сходной фабулой.

Тексты и решение задач

в 1-м классе

1. Портфель Коли помещается в портфеле Васи, а портфель Васи можно спрятать в портфель Севы. Какой из этих портфелей самый большой?

Эта задача о свойствах предметов. Но о размерах портфелей сообщается опосредованно – через возможность одному из них поместиться в другом. Заметим, что эти свойства не эквивалентны: если один портфель не помещается в другом, то из этого не следует, что он больше. Но если один портфель помещается в другом, то из этого следует, что он меньше. Нужно добиться четкого решения задачи в три этапа:

1) Так как портфель Коли помещается в портфеле Васи, то портфель Коли меньше портфеля Васи.
2) Так как портфель Васи можно спрятать в портфеле Севы, то портфель Васи меньше портфеля Севы.
3) Так как портфель Коли меньше портфеля Васи, а портфель Васи меньше портфеля Севы, то портфель Севы самый большой.

При анализе решения желательно сопроводить этот сюжет рисунком на доске и в тетрадях: изобразить портфели в виде отрезков с буквами к, в и с. С самого начала нужно приучать детей изображать отрезками любые объекты, о которых известно, что один из них больше другого или равен ему.

2. Температура тела у человека меньше температуры тела голубя, но больше, чем у слона. У кого из них термометр покажет самую низкую температуру?

И в этой задаче речь идет о свойствах объектов. В данном случае сравнивается температура, а вывод требуется делать о показаниях термометра. Мы вводим ребенка в круг понятий, связанных с измерением температуры: с термометром и со словоупотреблением "температура ниже" – значит меньше. Ход решения и здесь в три этапа:

1) У человека термометр покажет более низкую температуру, чем у голубя, так как температура у человека меньше.
2) У слона термометр покажет более низкую температуру, чем у человека, так как температура у слона меньше.
3) Значит, самую низкую температуру термометр покажет у слона.

При анализе задачи можно нарисовать отрезки – столбики термометра – с надписями Ч, Г и С.

3. Если провести более твердым по менее твердому, то на менее твердом может остаться след, царапина. Останется ли царапина, если провести стеклом по картону? Картоном по стеклу?

Здесь ученик знакомится с еще одним свойством вещей – их твердостью – и со способом сравнения твердости. Нужно получить ответ: стекло оставит царапину на картоне, так как оно тверже; картон не оставит царапины на стекле, так как стекло тверже картона.

4. Если провести стеклом по мрамору, на мраморе окажется царапина. А если провести алмазом по стеклу, царапина останется на стекле. Какой из этих материалов самый твердый?

В этой задаче известны результаты взаимодействия веществ, а вывод требуется сделать об их сравнительной твердости. Решение в три этапа:

1) Стекло тверже мрамора, так как оставляет на нем царапину.
2) Алмаз тверже стекла, так как оставляет на нем царапину.
3) Следовательно, алмаз самый твердый из этих трех веществ.

5. Мама дала по яблоку трем своим детям. Катино яблоко тяжелее, чем Петино, а Петино легче, чем Васино. Какое яблоко самое большое, а какое самое маленькое?

Здесь в условии говорится о сравнительной тяжести яблок, а вывод требуется сделать об их сравнительной величине. Детям должно быть понятно, что чем тяжелее яблоко, тем оно больше. Вдобавок, условие о том, что Васино яблоко тяжелее Петиного, дано в косвенной форме. Решение в три этапа:

1) Катино яблоко больше Петиного, так как оно тяжелее его.
2) Васино яблоко тяжелее Петиного, так как Петино яблоко легче Васиного. Значит, Васино яблоко больше Петиного.
3) Неизвестно, какое яблоко самое большое, а какое самое маленькое – известно. Это Петино яблоко. Рисовать отрезки здесь обязательно. Нужно дать все три варианта рисунков: когда Катино и Васино яблоки равны между собой, когда Катино больше Васиного и когда Катино меньше Васиного. При этом во всех случаях нужно изображать Петино яблоко самым маленьким из трех отрезков.

во 2-м классе

1. Сколько весит арбуз?

Решение: 10 – (1 + 3) = 6 (кг).

Ответ: 6 кг.

2. Шесть пирожных разделили между братьями и сестрами так, что у братьев их оказалось на два меньше, чем у сестер. Сколько у кого?

Решение. Задача может быть решена угадыванием. Однако желательно дать и решение с вопросами. Этого можно добиться, если нарисовать два отрезка, один из которых на две клетки больше другого. Как узнать, сколько клеток должно быть в каждом отрезке? Сумма этих трех отрезков должна равняться 6 клеткам. Значит, сумма двух равных отрезков равна 6 – 2 = 4, а каждый из них 2. Когда учащимся покажется, что это рассуждение ими понято, нужно записать его по вопросам и действиям. Нужно подсказать первый вопрос:

1) Сколько было бы пирожных, если бы у сестер было столько же, сколько у братьев? 6 – 2 = 4.
2) Сколько было пирожных у братьев? 4 : 2 = 2.
3) Сколько было пирожных у сестер? 2 + 2 = 4 (или 6 –2 = 4).

Ответ: у братьев 2, у сестер 4.

3. Ваня живет в 12-этажном доме, на 9 этаже, если считать сверху. На каком этаже живет Ваня?

Решение. Можно нарисовать дом, а можно решить задачу и без рисунка, узнав, сколько этажей дома находится ниже Вани (12 – 9 = 3).

Ответ: На 4 этаже.

4. В коробке лежит 15 шариков: черных, белых и красных. Красных шариков в 7 раз больше, чем белых. Сколько в коробке черных шариков?

Решение. Белых шариков не может быть больше одного, так как если бы их было хотя бы 2, то красных шариков было бы не меньше 14, а шариков всего 15. Значит, белый шарик всего один, а красных в семь раз больше, то есть семь. Черных шариков 15 – (1 + 7) = 7.

5. Пес Тузик на 6 кг тяжелее кота Барсика, а Барсик втрое легче Тузика. Сколько весит Барсик?

Решение можно сопроводить рисунком. 6 : 2 = 3 (кг) – вес Барсика.

Ответ: 3 кг.

6. Расшифруй предложение, в котором каждая буква заменена ее номером в русском алфавите и все слова написаны слитно:

(15)1(14)(17)6(19)(15)(33)(19)(20)(18)(16)(10)(20)(30)

(10)8(10)(20)(30)(17)(16)(14)(16)4(1)6(20).

Ответ: Нам песня строить и жить помогает.

7. Придумай возможное продолжение этой последовательности чисел: 1, 1, 2, 3, 5,…

Решение. 1 + 1 = 2; 1 + 2 = 3; 2 + 3 = 5. Одно из правил, по которому может быть составлена эта последовательность, таково: первые два числа – единицы, а каждое число, начиная с третьего, равно сумме двух предыдущих чисел.

Ответ: Возможно такое продолжение: 8, 13, 21, …

в 3-м классе

1. 1 февраля 1999 г. был понедельник. Каким днем недели было 1 марта 1999 г.?

Решение. Задачи на эту тему актуальны в переживаемом нами начале века и тысячелетия, их несколько в этой книжке (№ 1, 21, 41, 61, 81, 101, 121 и 141). Все они решаются подсчетом остатка от деления некоторого числа дней на число дней в неделе – на 7. В данной задаче нужно выяснить: сколько дней прошло с 1 февраля 1999 г. до 1 марта 1999 г. (так как 1999 г. был невисокосным, то в феврале было 28 дней); каким днем является день "понедельник + 28 дней" (так как 28 дней – это ровно 4 недели, то "понедельник + 28 дней" – снова понедельник).

Ответ: 1 марта 1999 г. был понедельник.Полезно составить календарь на февраль 1999 г. Из него станет ясно, что ответ получен правильный.

2. Сколько существует трехзначных чисел, все цифры которых – 1, 2 или 3?

Решение. На первое место можно поставить любую из трех данных цифр. На второе – тоже любую из этих трех цифр. Значит, первые два места могут быть заняты девятью способами: 11_ , 12 _, 13 _, 21 _, 22 _, 23 _,31 _, 32 _, 33 _. В любом из этих случаев третье место можно занять любой из тех же трех цифр. Значит, все число можно записать 27 разными способами, от 111 до 333.
Кратко это решение можно высказать так: первой может быть любая из трех цифр, второй – любая из трех цифр, третьей – любая из трех цифр; значит, всего таких чисел 3 x 3 x 3 = 27.

Ответ: 27 чисел.

3. Петя нашел один гриб, Коля – два, а Паша – три. Мама дала им 18 орехов и велела разделить их по заслугам. Сколько орехов получил каждый?

Решение. Паша собрал ровно половину всех грибов, поэтому ему полагается половина всех орехов – девять. Из остальных девяти орехов Коля должен получить в два раза больше Пети, так как он собрал вдвое больше грибов. Значит, Петя должен получить три ореха, а Коля шесть.

Ответ: Петя – 3, Коля – 6, Паша – 9.

4. Во сколько вопросов можно узнать день рождения человека, если он на каждый вопрос отвечает "да" или "нет" (и всегда правдив)?

Решение. Один из 12 месяцев можно узнать в 4 вопроса (так как 12 > 8 и 12 < 16). Вопросы могут быть такими:
Родились ли вы в первом полугодии?
Родились ли вы в первом квартале полугодия?
Родились ли вы в первом месяце квартала?
(Задается, если на третий вопрос получен Ответ "нет") Родились ли вы во втором месяце квартала?
Число в данном месяце определяется в 5 вопросов (так как в месяце больше 16 дней и не больше 32). Эти вопросы могут быть такими:
Родились ли вы с 1 по 16 число?
Родились ли вы в первые 8 из тех 16 дней, которые определены предыдущим ответом?
Родились ли вы в первые 4 из тех 8 дней, которые определены предыдущим ответом?
Родились ли вы в первые 2 из тех 4 дней, которые определены предыдущим ответом?
Родились ли вы в первый из тех 2 дней, которые определены предыдущим ответом?
Нужно проиграть эти вопросы для разных случаев (подробно об этом говорится в моей книжке "Нестандартные задачи во втором классе").

Ответ: 9 вопросов.

5. Среди трех монет одна фальшивая. Она не отличается от настоящей монеты по виду, но немножко тяжелее настоящей монеты. У нас имеются чашечные весы без гирь. Как одним взвешиванием установить, какая монета фальшивая?

Решение. Сравниваем две монеты взвешиванием; если они уравновесятся, то фальшивая монета – третья, если одна из монет окажется тяжелее, то она – фальшивая.

в 4-м классе

1. Сколько разных нарядных костюмов у Андрея, если у него три пары нарядных брюк, два нарядных пиджака и два нарядных галстука и все эти предметы подходят друг другу?

Решение. К любой паре брюк можно подобрать любой из двух пиджаков и любой из двух галстуков. То есть к любой паре брюк можно подобрать четыре варианта "пиджак + галстук". А так как пар брюк имеется 3, то всего нарядных костюмов 12. Желательно начертить на доске такое дерево возможностей:

А еще лучше сделать такой рисунок.

Ответ: 12.

2. Как тремя взвешиваниями на чашечных весах без гирь найти одну фальшивую (более легкую) монету из 20 монет?

Решение. Разделим монеты на три группы: 9, 9 и 2 монеты. Первое взвешивание – сравниваем вес первых двух групп. Если они одинаковы, то фальшивая монета среди двух монет третьей группы, и мы вторым взвешиванием сравниваем их между собой. Та, которая легче, – фальшивая. Если в первом взвешивании одна из групп окажется легче, то фальшивая монета в ней. Делим эту группу на три группы по три монеты. Вторым взвешиванием устанавливаем, которая из этих трех групп легче, а третьим взвешиванием находим легкую монету в этой тройке.

3. Продолжи последовательность: 8, 6, 10, 6, 12, 6, ... .

Решение. Все четные члены последовательности равны 6, а все нечетные получаются прибавлением числа 2 к предыдущему нечетному члену.

Ответ: 8, 6, 10, 6, 12, 6, 14, 6, 16, 6, ... .

4. Разгадай ребус: 5* + **3 = **01.

Решение. Достаточно записать пример в столбик, и решение будет очевидным.

Ответ: 58 + 943 = 1001.

5. В одной бочке 50 л жидкого дегтя, в другой – 50 л жидкого меда. Ложку дегтя переливают в бочку меда, а потом ложку полученной смеси переливают в бочку дегтя. Чего стало больше: меда в дегте или дегтя в меде?

Решение. Это задача на тему поговорки "Ложкой дегтя можно испортить бочку меда". Но интересна она не этим, а тем, что даже взрослые люди часто дают на нее неверный ответ: дегтя в меде больше, так как дегтя перелили целую ложку, а меда перелили не целую ложку (ложку, в которой был также и деготь). После того как будут выслушаны разные ответы, нужно дать такое решение задачи.
В результате переливаний в первой бочке оказалось
х миллилитров меда. Так как в ней всего 50000 мл, то дегтя в ней 50000 – х миллилитров. Во второй бочке осталось поэтому 50000 – х миллилитров меда. Значит, дегтя в ней тоже х мл.
И сопроводить решение таким рисунком:

Довод в пользу неверного ответа, который казался таким убедительным, теперь легко опровергнуть: во время второго переливания часть дегтя вернули обратно.

Ответ: поровну.



Предварительный просмотр:

  1. Классификация задач

        Олимпиадные задачи классифицируются следующим образом (данная классификация является неполной):

  1. Логические

Логические задачи стоят несколько особняком среди математических задач: в них, как правило, отсутствуют вычисления. Однако решение логических задач является обязательным компонентом подготовки к решению олимпиадных задач. Главной задачей при рассмотрении этого раздела является формирование культуры мышления. Очень важно, чтобы ученики не путали причину со следствием, тщательно проводили перебор вариантов, правильно строили цепочку рассуждений. Как правило, у логической задачи имеется единственный ответ.

К логическим задачам модно отнести задачи , которые решаются следующими способами:

  • переливание
  • взвешивание
  • принцип Дирихле
  • графы
  • задачи – шутки

«Принцип Дирихле»

Данный принцип был сформулирован почетным немецким математиком Иоганном Дирихле еще в 1834 году. Сегодня его применяют в комбинаторике, а также в математической физике. В переводе с оригинального немецкого он звучит как «принцип ящиков».

Этот принцип достаточно прост и очевиден, иногда им пользуются из соображений логики, даже не зная формулировки. Но, зная этот принцип, легче догадаться в каких случаях его применять. Проще всего принцип Дирихле выражается в такой шуточной форме: «Если в n клетках больше чем n+1 зайцев, то хотя бы в одной клетке сидят не меньше двух зайцев». Заметим, что в роли зайцев могут выступать различные предметы и математические объекты – числа, отрезки, места в таблице и т.д. несмотря на совершенную очевидность этого принципа, его применение является весьма эффективным методом решения задач, дающим во многих случаях наиболее простое и изящное решение. Однако во всех этих задачах часто нелегко догадаться, что считать «зайцем», что – «клеткой», и как использовать наличие двух «зайцев», попавших в одну «клетку». С помощью принципа Дирихле обычно доказывается существование некоторого объекта, не указывая, вообще говоря, алгоритм его нахождения или построения. Это дает так называемое не конструированное доказательство – мы не можем сказать, в какой именно «клетке» сидят два зайца, а знаем только, что такая «клетка» есть.

Задачи.

  1. В школе 400 учеников. Докажите, хотя бы двое из них родились в один день года.

Решение: всего в году 366 дней. Пусть дни будут «клетками», а ученики – «кроликами». Тогда в некоторой «клетке» сидят не меньше  «кроликов», т.е. больше одного, отсюда следует, что не меньше двух.

  1. Кот Базилио пообещал Буратино открыть великую тайну, если он составит чудесный квадрат 6×6 из чисел +1,-1,0 так, чтобы все суммы по строкам, по столбцам и по большим диагоналям были различны. Помогите Буратино.

Решение: Допустим, что квадрат составлен, тогда суммы чисел могут меняться в пределах от -6 до +6. Всего 13 значений. Строк в квадрате 6, столбцов 6, диагоналей 2. Получаем 14 различных сумм. Противоречие, значит составить такой квадрат невозможно.

  1. На собеседовании пришли 65 школьников. Им предложили 3 контрольные работы. За каждую контрольную ставилась одна из оценок: 2,3,4 или 5. Верно ли, что найдутся два школьника, получившие одинаковые оценки на всех контрольных?

Решение: рассмотрим множество наборов из трех оценок за соответствующие контрольные. Количество таких наборов равно 43 или 64 (4 возможности за каждую из трех контрольных). Поскольку число учащихся больше 64, по принципу Дирихле каким-то двум учащимся соответствует один набор оценок.

  1. У человека на голове не более 3 млн волос, в городе более 8 млн жителей. Докажите, что найдутся 20 человек с одинаковым количеством волос.

Решение: всего на голове у каждого человека, по условию, может быть от 0 до 400000 волос – имеем всего 400001 возможность. Предположим, что утверждение задачи неверно. Тогда лысых москвичей найдется не более 19, имеющих 1 волос – тоже не более 19, имеющих 400000 волос – не более 19 и т.д. но тогда всего человек не более 19·400001=7600019, что меньше 8 миллионов – противоречие.

  1. В ковре размером 4×4 метра моль проела 15 дырок. Докажите, что из него можно вырезать коврик размером 1×1 метр, не содержащий внутри себя дырок. (Дырки считать точечными).

Решение: разрежем ковер четырьмя вертикальными и четырьмя горизонтальными размерами на 16 одинаковых ковриков размером 1×1 метр. Поскольку 16>15, то один из ковриков будет без дыр. Здесь «кролики» - это дыры, а «клетки» - это коврики.

  1. Родители 25 учеников 5 класса купили своим детям сотовые телефоны 8 разных моделей. Найдутся ли четыре ученика, имеющие телефоны одной модели.

Решение: пусть модели сотовых телефон это – «клетки», то есть 8 «клеток», тогда в каждую «клетку» посадят , то есть более 3. Ответ «Да».  

  1. В кондитерский отдел завезли 45 коробок с конфетами пяти разных наименований, причем в каждой коробке лежат конфеты только какого-то одного наименования. Найдутся ли 9 коробок с конфетами одного наименования.

Решение: пусть «клетками» будут наименования коробок, тогда коробки – «кролики», значит в каждой клетке будет по  «кроликов», то есть равно 9. Ответ «Да».

  1. Учитель математики объявил результаты самостоятельной работы, проведенной в 6 классе. Наибольшее количество ошибок допустил Олег – у него ровно 13 ошибок. Можно ли среди 28 учащихся класса, допустивших ошибки, найти три ученика с одинаковым количеством ошибок?

Решение: пусть количество ошибок – «клетки», тогда таких клеток будет ровно 13, так как наибольшее количество ошибок 13 а наименьшее 1. Значит рассаживаем по «клеткам» 28 «зайцев», тогда получится  – 26 учащихся по 2 ошибки и 2 учащихся по 3 ошибки. Ответ «Да».

  1. В классе 35 учеников. Можно ли утверждать, что среди них найдутся хотя бы два ученика, фамилии которых начинаются с одной буквы?

Решение: в алфавите всего 33 буквы, из них две буквы «Ъ» и «Ь», не могут являться начальными буквами, следовательно остается 31 буква. Пусть «клетками» будут начальные буквы, тогда «зайцами» - количество учеников. Значит на каждую букву алфавита придет по , то есть в 33 «клетках», по одному «кролику» и в четырех «клетках» - по 2 «кролика». Ответ «Да».

  1. В бригаде 7 человек и их суммарный возраст – 332 года. Доказать, что из них можно выбрать 3 человека, сумма возрастов которых не меньше 142 года.

Решение: средний возраст трех самых старших не меньше среднего возраста по бригаде, который равен  . Поэтому сумма из возрастов по меньшей мере  года.

  1.  Инвариант

Инвариант значит "неизменный".

Инвариантом некоторого преобразования называется величина или свойство, не изменяющееся при этом преобразовании. Главная трудность при решении задач на инварианты состоит в его поиске. Нахождение инварианта является самым важным шагом на пути к решению задачи.

В  качестве инварианта  чаще всего рассматриваются  следующие способы решения олимпиадных задач:

  • раскраска
  • игры

«Вспомогательная раскраска»

Говорят, что фигура покрашена в несколько цветов, если каждой точке фигуры приписан определённый цвет. Бывают задачи, где раскраска уже дана, например, для шахматной доски, бывают задачи, где раскраску с данными свойствами нужно придумать, и бывают задачи, где раскраска используется как идея решения.

Суть данного метода состоит в следующем. Раскрасив некоторые ключевые элементы, которые фигурируют в задаче в несколько цветов, исследовать, что будет происходить, если выполнять условия задачи. Цвет позволяет значительно упростить понимание процесса, фигурируемого в условии, и зачастую приводит к решению. Этот метод позволяет эффективно решать ряд задач, в частности, игровые и шахматные задачи.

Задачи

1. Из шахматной доски вырезали две противоположные угловые клетки. Докажите, что оставшуюся фигуру нельзя разрезать на «домино» из двух клеток

Решение. Каждая фигура «домино» содержит одну белую и одну чёрную клетку. Но в нашей фигуре 32 чёрных и 30 белых клеток (или наоборот).

2. Можно ли все клетки доски 9 × 9 обойти конем по одному разу и вернуться в исходную клетку?

Решение. Каждым ходом конь меняет цвет клетки, поэтому, если существует обход, то число чёрных клеток равно числу белых, что неверно.

3. Дан куб 6 × 6 × 6. Найдите максимально возможное число параллелепипедов 4× 1 × 1 (со сторонами параллельными сторонам куба), которые можно поместить в этот куб без пересечений.

Идея решения. Легко поместить 52 параллелепипеда внутрь куба. Докажем, что нельзя больше. Разобьем куб на 27 кубиков 2× 2 × 2. Раскрасим их в шахматном порядке. При этом образуется 104 клетки одного цвета (белого) и 112 другого (чёрного). Осталось заметить, что каждый параллелепипед содержит две чёрных и две белых клетки.

Ответ: 52.

4. Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.

Решение. Рассмотрим равносторонний треугольник со стороной 1. По принципу Дирихле по крайней мере две из его трёх вершин должны быть покрашены в один цвет.

  1. В каждой клетке доски 5×5 клеток сидел жук. Затем каждый жук переполз на соседнюю (по стороне) клетку. Докажите, что осталась хотя бы одна пустая клетка

Решение:  раскрасим доску в 2 цвета. Черных клеток-13, а белых 12. При переползании с черных клеток жуки переползали на  белые и наоборот. Так как  белых клеток 12, а черных на одну больше и все жуки с белых переползают на черные, то 1 черная клетка останется. Ответ: останется 1 черная клетка.

«Математические игры»

Дети любят играть! Поэтому, особенно у школьников, большой интерес вызывают задачи-игры. С их помощью можно внести в изучение элемент развлечения: устроить турнир, сеанс одновременной игры, наконец, просто поиграть.

При изложении решения игровых задач школьники испытывают большие трудности. Ведь необходимо, во-первых, грамотно сформулировать стратегию, а во-вторых, доказать, что она действительно ведет к выигрышу. Поэтому задачи-игры очень полезны для развития разговорной математической культуры и четкого понимания того, что означает «решить задачу».

Под понятием математической игры мы понимаем игру двух соперников, обладающих следующим свойством. В каждый момент игры состояние характеризуется позицией, которая может изменяться только в зависимости от ходов игроков. Для каждого из игроков некоторые позиции объявляются выигрышными. Добиться выигрышной для себя позиции и есть цель каждого. Иногда игры допускают ничью. Это означает, что ни один из игроков не может добиться выигрышной для него позиции, или некоторые позиции объявлены ничейными.

Например, шахматы, шашки, крестики-нолики являются математическими играми. А игры в кости, домино, большинство карточных игр математическими играми не являются, так как состояние игры зависит не только от ходов соперника, но и от расклада и результата бросания кости.

В математических играх существуют понятия выигрышной стратегии, т.е. набора правил (можно сказать, интуиции и алгоритма), следуя которым, один из игроков обязательно выиграет (независимо от того как играет его соперник), и ничейной стратегии, следуя которой один из игроков обязательно добьется либо выигрыша, либо ничьей. Например, крестики-нолики являются ничейной игрой. К какому из перечисленных случаев относится шахматы и шашки неизвестно. Хотя стратегия в этих играх существует, она не найдена поэтому соревнования по этим играм пока представляют интерес.

Соответствие. Наличие удачного ответного хода.

Решение с конца. Последовательно определяются позиции, выигрышные и проигрышные для начинающего.

Передача хода. Если мы можем воспользоваться стратегией противника, то наши дела не хуже, чем у него. Например, выигрыш (или ничья) обеспечивается, когда можно по своему желанию попасть в некоторую позицию либо заставить противника попасть в нее.  

Задачи

1.Двое кладут по очереди пятаки на круглый стол. Проигрывает тот, кто не сможет положить очередной пятак. Кто выигрывает?

Решение. Выигрывает первый. Он кладёт пятак в центр стола, после чего на любой ход второго у первого всегда есть симметричный ответ.

2. В куче 25 камней. Игроки берут по очереди 2, 4 и 7 камней. Проигрывает тот, у кого нет хода. Кто победит?

Идея решения. Случаи 0 и 1 камня проигрышны для начинающего. Поэтому случаи 2, 3, 4, 5, 7, 8 камней для начинающего выигрышны: своим ходом он переводит игру в позицию, проигрышную для противника. Аналогично, 6 и 9 камней проигрышны для начинающего, поскольку из них можно перейти только в позицию, выигрышную для противника. Рассуждая аналогично, легко установить периодичность выигрышных и проигрышных позиций и получить ответ.

3. Докажите, что в игре «крестики-нолики» на бесконечной доске у ноликов отсутствует выигрышная стратегия.

Решение. Пусть у ноликов есть выигрышная стратегия. Тогда этой стратегией могут с тем же успехом воспользоваться крестики, игнорируя свой начальный знак. (Когда крестикам приходится ходить на поле, где крестик уже стоит, они ходят куда угодно.)

4. Две компании A и B получили право освещать столицу международной шахматной мысли Нью-Васюки, представляющую собой прямоугольную сетку улиц.

Они по очереди ставят на неосвещённый перекресток прожектор, который освещает весь северо-восточный угол города (от нуля до 90_). Премию О. Бендера получит та компания, которой на своем ходе нечего будет освещать. Кто выиграет при правильной игре?

Решение. Самый северо-восточный квартал города будет освещён в любом случае после первого хода. Допустим, у B есть выигрышная стратегия. Тогда у неё есть выигрышный ответ на ход A, состоящий в освещении только северо-восточного квартала. Но с этого же хода может начать игру A и затем воспользоваться выигрышной стратегией B! Противоречие. Значит, выигрышная стратегия есть у A.

Выводы: данная работа позволяет ученику самостоятельно выбирать для изучения различные способы решения, и выбирать именно те задачи, которые более интересны, что в свою очередь развивает у обучающегося интерес к задачам повышенной сложности.

Когда ученик сам самостоятельно работает над проблемой нахождения пути решения задачи у него пропадает страх перед сложностями, которыми обычно   обладают олимпиадные задачи, а самая главная цель – это не заставить ученика решать задачи, а развить в нем свое собственное желание.  

Преимущество заключается в том, что математика дает безграничные возможности развития интеллекта через огромное количество задач, через огромное количество методов и способов решения этих задач, показывая тем самым, что нет предела совершенству. И научиться решать задачи можно всегда, а учиться решать задачи можно постоянно, приобретая тем самым внутреннюю уверенность в своих силах.

     

  1. Обзор литературы

Были изучены различные книги, в которых идет описание методов решения олимпиадных задач, дается их классификация задач.

        С данных книг были выбраны задачи для прорешивания по тем методам,  которые здесь рассмотрены. А именно по книге Севрюкова П.Ф. "Подготовка к решению олимпиадных задач по математике", были изучены методы «Принцип Дирихле», «Игры». Из книги  Фаркова А.В. "Математические олимпиады в школе 5-11 классы", Дориченко С.А., Ященко И.В., "LVII Московская математическая олимпиада" ,   Васильева Н.Б., Егоров А.А. "Сборник подготовительных задач к Всеросийской олимпиаде юных математиков", Горбачева Н.В. "Сборник олимпиадных задач по математике",  были выбраны задачи.


Предварительный просмотр:

Предварительный просмотр:

Предварительный просмотр: