внеклассная работа по математике

Помыткина Елена Васильевна

занимательные задания

Скачать:


Предварительный просмотр:

Зачем человеку нужны измерения

owal

Измерения - одно из  важнейших дел в современной жизни. Но не всегда

было так. Когда  первобытный  человек  убивал  медведя  в неравном  поединке он, конечно, радовался, если тот  оказывался  достаточно большим. Это обещало сытую жизнь  ему и всему племени на долгое время. Но он не тащил тушу медведя на весы: в то время  никаких весов не было. Не было особой нужды в измерениях и когда человек делал каменный топор: технических условий на такие топоры не существовало  и все определялось  размером  подходящего камня, который  удавалась  найти. Все делалось на глаз, так, как  подсказывало чутье мастера.

Позднее люди стали жить большими группами. Начался  обмен товарами, перешедшими потом в торговлю, возникли первые государства. Тогда появилась  нужда в измерениях. Царские песцы должны были знать, какова площадь поля у каждого крестьянина. Этим определялось, сколько зерна он должен отдать царю. Надо было измерить урожай с каждого поля, а при продаже льняного мяса, вина и других жидкостей – объем  проданного товара. Когда начали строить корабли, нужно было заранее наметить правильные  размеры: иначе корабль затонул бы. И уж, конечно, не могли обойтись без измерений древние строители пирамид, дворцов и храмов, до сих пор поражают  нас своей соразмерностью  и красотой.

 СТАРИННЫЕ РУССКИЕ МЕРЫ.

  Русский народ создал свою собственную систему мер. Памятники X века говорят не только о существовании системы мер в Киевской Руси, но и государственном надзоре за их правильностью. Надзор этот был возложен на духовенство. В одном из уставов князя Владимира Святославовича говорится:  

« …еже искони установлено есть и поручено есть епископам градские и везде всякие мерила и спуды и весы... блюсти без пакости, ни умножити, ни умалити...» (...издавна установлено и поручено епископам наблюдать за правильностью мер ... не допускать ни умаления, ни увеличения их...).  Вызвана была эта необходимость надзора потребностями торговли как внутри страны, так и со странами Запада (Византия, Рим, позднее германские города) и Востока (Средняя Азия, Персия, Индия). На церковной площади происходили базары, в церкви стояли лари для хранения договоров по торговым сделкам, при церквах находились верные весы и меры, в подвалах церквей хранились товары. Взвешивания производились в присутствии представителей духовенства, получавших за это пошлину в пользу церкви

Меры длины

Древнейшими из них являются локоть и сажень. Точной первоначальной длинны той и другой меры мы не знаем; некий англичанин, путешествовавший по России в 1554 году, свидетельствует, что русский локоть равнялся половине английского ярда. Согласно «Торговой книге», составленной для русских  купцов на рубеже XVI  и XVII  веков, три локтя были равны двум аршинам. Название «аршин» происходит от персидского слова «арш», что значит локоть.

        Первое упоминание сажени встречается  в  летописи  ХI  века, составленной киевским монахом Нестором.

        В более позднее времена установилась мера расстояния верста, приравненная к 500 саженям. В древних памятниках верста называется поприщем и приравнивается иногда к 750 саженям. Это может быть объяснено существованием в древности более короткой сажени. Окончательно верста к 500 саженей установилась только в XVIII веке.

        В эпоху раздробленности  Руси не было единой системы мер. В ХV и XVI веках происходит объединение русских земель вокруг Москвы. С возникновением и ростом общегосударственной торговли и с установлением для казны  сборов со всего населения объединенной  страны встает вопрос о единой  системе мер для всего государства. Мера аршин, возникшая при торговли  с восточными народами, входит в употребление.

        В XVIII веке меры уточнялись. Петр 1 указом установил равенство трехаршинной  сажени семи английским футам. Прежняя русская система мер длины, дополненная новыми мерами, получила окончательный   вид:

Миля = 7 верстам (= 7,47 километра);

Верста = 500 саженям (= 1,07 километра);

Сажень = 3 аршинам = 7 футам (= 2,13 метра);

Аршин = 16 вершкам = 28 дюймам (= 71,12 сантиметр);

Фут = 12 дюймам (= 30,48 сантиметра);

Дюйм = 10 линиям (2,54 сантиметра);

Линия = 10 точкам (2,54 миллиметра).

        Когда говорили  о росте человека, то указывали лишь, на сколько вершков он превышает 2 аршина. Поэтому слова «человек 12 вершков роста» означали,  что его рост равен 2 аршинам 12 вершкам, то есть 196 см.

        Меры площадей 

        В «Русской правде» - законодательном памятнике, который относиться к  ХI - XIII векам, употребляется  земельная  мера  плуг. Это была мера земли, с которой платили дань. Есть некоторые основания считать плуг равным 8-9 гектарам. Как и во многих странах, за меру  площади часто принимали количество  ржи необходимой для засева этой площади. В ХIII- ХV веках основной единицей площади была кадь-площадь, для засева каждой нужно была примерно 24 пуда (то есть 400 кг. ) ржи . Половина   этой площади, получившая название  десятины стала основной мерой  площади в дореволюционной  России. Она ровнялась примерно 1,1 гектара. Десятина иногда называлась коробьей.

        Другая единица для измерений площадей, равная половине десятины  называлась (четверть) четь. В дальнейшем размер десятины был приведен  в соответствие не с мерами объема и массы, а с мерами длины. В «Книге сонного письма» в качестве руководства для учета налогов с земли устанавливается десятина ровная 80*30=2400 квадратным саженям.

        Налоговой единицы земли была с о х а (это количество пахотной земли, которое был в состоянии обработать один пахарь).

        МЕРЫ   ВЕСА (МАССЫ ) и ОБЪЕМА

Древнейшей  русской весовой единицей была гривна. Она упоминается  еще в договорах  Х века между киевскими  князьями и византийскими  императорами. Путем  сложных   расчетов ученые узнали, что гривна весила 68,22 г. Гривна  ровнялась арабской единице веса  ротль. Потом основными единицами при взвешивании стали фунт и пуд. Фунт ровнялся 6 гривнам, а пуд - 40 фунтам. Для взвешивания золота применялись золотники, составлявшие 1,96 доли  фунта  (отсюда происходит пословица «мал золотник да дорог»). Слова «фунт» и «пуд» происходят от одного и того же латинского слова «пондус»  означавшего  тяжесть. Должностные лица, проверявшие весы, назывались «пундовщиками»  или «весцами». В одном из рассказов Максима Горького в описании амбара кулака читаем: «На одном засове два замка - один другого пудовее   (тяжелее)».

        К концу XVII века сложилась система русских мер веса в следующем  виде:

Ласт =72 пудам (= 1,18 т.);

Берковец = 10 пудам (= 1,64 ц);

Пуд = 40 большим гривенкам (или фунтам), или 80 малым гривенкам, или 16  безменам (= 16,38 кг.);

        Первоначальные  древние меры жидкости -  бочка и ведро – остаются неустановленными в точности. Есть основание полагать, что ведро вмещало   33 фунта  воды, а бочка – 10 ведер. Ведро делили на 10 штофов.                                                        

                                                                                                                Денежная система русского народа

 

Денежными единицами у многих народов  служили кусочки серебра или золота  определенного веса. В Киевской Руси такими единицами  были гривны серебра. В «Русской правде» - древнейшем  своде  русских законов говорится, что за убийство или кражу коня полагается штраф в 2 гривны, а за вола - 1 гривна. Гривну делили на 20  ногат или на 25 кун, а куну – на 2 резаны. Название «куна» (куница) напоминает о  временах, когда  на Руси не было металлических денег, а  вместо них употреблялись меха, а позднее – кожаные деньги – четырехугольные кусочки кожи с клеймами. Хотя гривна как денежная единица давно вышла из употребления, однако слово «гривна» сохранилось. Монету достоинством 10 копеек называли гривенником. Но это, конечно,  не то же самое, что старая гривна.

         Чеканные русские монеты известны со времен князя Владимира Святославовича. Во времена ордынского ига русские князья были обязаны указывать на выпускаемых монетах имя правившего в Золотой Орде хана. Но после Куликовской битвы, принесшей победу войскам Дмитрия Донского над полчищами хана Мамая, начинается и освобождение русских монет от ханских имен. Сначала эти имена стали заменяться неразборчивой вязью из восточных букв, а потом совсем исчезли с монет.

        В летописях, относящихся к 1381 году, впервые встречается слово  «деньга». Слово это происходит от индусского названия серебряной монеты танка, которую греки называли данака, татары – тенга.

        Первое употребление слова «рубль» относится к XIV веку. Слово это происходит от глагола «рубить». В XIV веке гривну стали рубить пополам, и серебряный слиток в половину гривны (= 204,76 г) получил название рубля или рублевой гривенки.

        В 1535 году были выпущены монеты – новгородки с рисунком всадника  с копьем в руках, получившие название  копейных денег. Летопись отсюда производит слово «копейка».

        

Дальнейший надзор за мерами в России.

С оживлением внутренней и внешней торговли надзор за мерами от духовенства перешел к специальным органам гражданской власти – приказу большой казны. При Иване Грозном предписывается взвешивать товары только у пудовщиков.

В XVI и XVII веках усердно вводились единые государственные, или таможенные меры. В XVIII и  XIX веках проводились мероприятия по усовершенствованию системы мер и весов.

   Закон о мерах и весах 1842 года закончил продолжавшиеся свыше 100 лет мероприятия правительства по упорядочению системы мер и весов.

Д. И. Менделеев – метролог.

В 1892 году гениальный  русский химик Дмитрий Иванович  Менделеев стал во главе Главной палаты  мер и весов.  

        Руководя  работой Главной палаты мер и весов, Д.И. Менделеев полностью преобразовал дело измерений в России, наладил научно- исследовательскую работу и решил все вопросы о мерах, которые вызывались ростом науки и техники в России. В 1899 году был издан разработанный  Д.И. Менделеевым новый закон о мерах и весах.

        В первые годы после революции Главная палата мер и весов, продолжала традиции Менделеева, провела колоссальную работу по подготовке  введения метрической системы в СССР. После некоторых перестроек и переименований бывшая Главная палата мер и весов в настоящее время существует в виде Всесоюзного научно – исследовательского института метрологии имени Д.И. Менделеева.

                

Французские меры

        

Первоначально во Франции, да и во всей культурной Европе, пользовались латинскими мерами веса и длины. Но феодальная раздробленность вносила свои коррективы. Скажем, иному сеньору приходила фантазия слегка увеличить фунт. Никто из его подданных не возразит, не восставать же из-за таких мелочей. Но если посчитать, в общем, все оброчное зерно, то какая выгода! Также и с городскими цехами ремесленников. Кому-то было выгодно уменьшать сажень, кому-то увеличивать. В зависимости от того продают они сукно или покупают. По слегка, по чуть-чуть, и вот вам уже и рейнский фунт, и амстердамский, и нюренбергский и парижский и т. д. и т. п.

А с саженями и того обстояло хуже, только на юге Франции вращалось более десятка разных единиц длины.

 Правда, в славном городе Париже в крепости Ле Гран Шатель еще со времен Юлия Цезаря в крепостную стену был вделан эталон длины. Он представлял собой железный кривоколенный циркуль, ножки которого заканчивались двумя выступами с параллельными гранями, между которыми должны точно входить все имевшиеся в употреблении сажени. Сажень Шателя пробыл официальной мерой длины до 1776 года.

     

  С первого взгляда меры длины выглядели так:

      Лье морское – 5, 556 км.

      Лье сухопутное = 2 милям = 3,3898 км

      Миля (от лат. тысяча) = 1000 туазов.

      Туаз (сажень) =1,949 метров.

      Фут (ступня) =1/6 туаза = 12 дюймов = 32,484 см.

      Дюйм (палец) =12 линиям = 2,256 мм.

      Линия = 12 точкам = 2,256 мм.

      Точка = 0,188 мм.

На самом деле, поскольку феодальные привилегии никто не отменял, все это касалось города Парижа, ну дофине, в крайнем случае.  Где-нибудь в глубинке фут запросто мог определяться, как размер ступни сеньора, или как средняя длина ступней 16 человек, выходящих с заутрени в воскресенье.

       

Парижский фунт = ливр = 16 унциям = 289,41 гр.

Унция (1/12 фунта) = 30,588 гр.

Гран (зерно) = 0,053 гр.

А вот артиллерийский фунт до сих пор равнялся 491,4144 гр., то есть просто соответствовал нюренбегскому фунту, которым пользовался еще в 16 веке господин Гартман, один из теоретиков – мастеров артиллерийского цеха. Соответственно с традициями гуляла и величина фунта в провинциях.

Меры жидких и сыпучих тел, тоже не отличались стройным однообразием , ведь    Франция была все-таки страной, где население в основном выращивало хлеб и вино.

Мюид вина = около 268 литров

Сетье – около 156 литров

Мина = 0,5 сетье = около 78 литров

Мино = 0,5 мины = около 39 литров

Буассо = около 13 литров

Английские меры

Английские меры, меры, применяемые в Великобритании, США. Канаде и др. странах. Отдельные из этих мер в ряде стран несколько различаются по своему размеру, поэтому ниже приводятся, в основном, округленные метрические эквиваленты английских мер, удобные для практических расчетов.  

Меры длины

Миля морская (Великобритания) = 10 кабельтовых = 1,8532 км

Миля морская (США, с 1 июля 1954 г.) = 1,852 км

Кабельтов (Великобритания) = 185,3182 м

Кабельтов (США) = 185,3249 м

Миля уставная = 8 фарлонгам = 5280 футам = 1609,344 м

Фарлонг = 10чейнам = 201,168 м

Чейн = 4 родам = 100 линкам = 20,1168 м

Род (поль, перч) = 5,5 ярдам = 5,0292 м

Ярд = 3 футам = 0,9144 м

Фут = 3 хэндам = 12 дюймам = 0,3048 м

Хэнд = 4 дюймам = 10,16 см

Дюйм = 12 линиям = 72 точкам = 1000 милам = 2,54 см

Линия = 6 точкам = 2,1167 мм

Точка = 0,353 мм

Мил = 0,0254 мм

Меры площади

Кв. миля = 640 акрам = 2,59 км2

Акр = 4 рудам = 4046,86 м2

Руд = 40 кв. родам = 1011,71 м2

Кв. род (поль, перч) = 30,25 кв. ярдам = 25,293 м2

Кв. ярд = 9 кв. футам = 0,83613 м2

Кв. фут = 144 кв. дюймам = 929,03 см2

Кв. дюйм = 6,4516 см2

Меры массы

Тонна большая, или длинная = 20 хандредвейтам = 1016,05 кг

Тонна малая, или короткая (США, Канада и др.) = 20 центалам = 907,185 кг

Хандредвейт = 4 квортерам = 50,8 кг

Центал = 100 фунтам = 45,3592 кг

Квортер = 2 стонам = 12,7 кг

Стон = 14 фунтам = 6,35 кг

Фунт = 16 унциям = 7000 гранам = 453,592 г

Унция = 16 драхмам = 437,5 грана = 28,35 г

Драхма = 1,772 г

Гран = 64,8 мг

Единицы объема, вместимости.

Куб. ярд = 27 куб. футам = 0,7646 куб. м

Куб. фут = 1728 куб дюймам = 0,02832 куб. м

Куб. дюйм = 16,387 куб. см

Единицы объема, вместимости

для жидкостей.

Галлон (английский) = 4 квартам = 8 пинтам = 4,546 л

Кварта (английская) = 1,136 л

Пинта (английская) = 0,568 л

Единицы объема, вместимости

для сыпучих тел

Бушель (английский) = 8 галлонам (английским) = 36,37 л

17878563_1

pencil-764322

Развал древних систем мер

        В I-II нашей эры римляне овладели почти всем известным тогда миром и ввели Вов всех завоеванных странах свою систему мер. Но через несколько столетий Рим был завоеван германцами  и созданная римлянами империя распалась на множество мелких государств.

После этого и начался развал введенной системы мер. Каждый король, а то  и герцог, пытался ввести свою систему мер, а если удавалось то и денежных единиц.

        Развал системы мер достиг наивысшей точки в XVII-XVIII веках, когда Германия оказалось раздробленной на столько государств, сколько дней в году, в результате этого в ней насчитывалось 40 различных футов и локтей, 30 различных центнеров, 24 различных мили.

        Во Франции было 18 единиц длины, называвшихся лье, и т.д.

        Это вызывало затруднение и в торговых делах, и при взимании налогов, и в развитии промышленности. Ведь действовавшие одновременно единицы меры не были связаны  друг с другом, имели различные подразделения на более мелкие. В этом было трудно разобраться многоопытному купцу, а что уж тут говорить о неграмотном крестьянине. Разумеется, этим пользовались купцы и чиновники, чтобы грабить народ.

        В России в разных местностях почти все меры имели различные значения, поэтому в учебниках арифметики до революции помещали подробные таблицы мер. В одном распространенном дореволюционном справочнике можно было найти до 100 различных футов, 46 различных миль, 120 различных фунтов и т.д.

        Потребности  практики заставили начать поиски единой системы мер. При этом было ясно, что надо отказаться от установления между единицами измерения и размерами человеческого тела. И шаг у людей бывает разный и длина ступни у них неодинакова, и пальцы у них разной ширины. Поэтому надо было искать новые единицы измерения в окружающей природе.

        Первой попытки найти такие единицы были сделаны еще в древности в Китае и в Египте. Египтяне в качестве единицы массы выбрали массу 1000 зерен. Но и зерна бывают неодинаковы! Поэтому идея одного из китайских министров, предложившего задолго до нашей эры выбрать в качестве единицы 100 расположенных в ряд зерен красного сорго, тоже была неприемлемой.

        Ученые выдвигали разные идеи. Кто предлагал взять за основы мер размеры, связанных с пчелиными сотами, кто путь, проходимый за первую секунду, свободно падающим телом, а знаменитый ученный XVII века Христиан Гюйгенс предложил взять третью часть длины маятника, делающегося одно качание в секунду. Эта длина весьма близка к двойной длине вавилонского локтя.

        Еще до него польский ученый Станислав Пудловский предложил взять за единицу измерения длину самого секундного маятника.

Рождение   метрической  системы мер.

kenguru_5

        Не удивительно, что когда в восьмидесятых годах  XVIII  купцы нескольких  французских  городов обратились к  правительству  с просьбой  об установлении единой для всей страны системы мер, ученые тут же вспомнили о предложении  Гюйгенса. Принятию этого предложения помешало то, что длина  секундного маятника  различна в различных местах  земного шара. На Северном полюсе она больше, а на экваторе меньше.

        В это время во Франции произошла буржуазная революция. Было созвано Национальное собрание, которое создало при Академии наук комиссию, составленную из крупнейших французских ученых того времени. Комиссии предстояло выполнять работу по созданию новой системы мер.

        Одним из членов комиссии был знаменитый математик и астроном Пьер Симон Лаплас. Для его научных изысканий было весьма важно знать точную длину земного меридиана. Кто-то из членов комиссии вспомнил о предложении астронома Мутона взять за единицу длины часть меридиана, равную одной 21600–й части меридиана. Лаплас тут же поддержал это предложение (а может  быть, и сам натолкнул на это мысль остальных членов комиссии). Сделали только одно измерение. Для удобства решили принять за единицу длины одну сорокамиллионную часть земного меридиана. Это предложение было внесено на рассмотрение национального собрания и принято им.

        Все остальные единицы были согласованы с новой единицей, получившей название метра. За единицу площади был принят квадратный метр, объем – кубический метр, массы – масса кубического сантиметра воды при определенных условиях.

        В 1790 году Национальное собрание приняло декрет о реформе систем мер. В представленном Национальному собранию докладе отмечалось, что в проекте реформы нет ничего произвольного,  кроме десятичной основы, и нет ничего местного. «Если память об этих работах утратилось и сохранились лишь  одни результаты, то в них не нашлось бы никакого признака, по которому можно было узнать, какая нация затеяла план этих работ, и осуществила их», - говорилось в докладе. Как  видно, комиссия Академии, стремилась к тому,  чтобы новая система мер не дала повода какой –нибудь нации отвергать систему, как французскую. Она стремилась оправдать лозунг: «На все времена, для всех народов», который был провозглашен позднее .

        Уже в апреле 17956 года был утвержден закон о новых мерах, для всей Республики введен единый эталон : платиновая линейка на которой начертан метр .

        Комиссия Парижской Академии наук с самого начала работ по разработке н6овой системы установила, что отношения соседних единиц должно равняться 10 .Для каждой величины (длина, масса, площадь, объем) от основной единицы этой величины образуются другие, большие и меньшие меры одинаковым образом (за исключением,  названий «микрон», «центнер», «тонна»). Для образования названий мер, больших основной единицы, к названию последней с переде прибавляются греческие слова: «дека»-«десять», «гекто»- «сто», «кило»-«тысяча», «мириа»-«десять тысяч»; для образования названия мер , меньших основной единицы, прибавляются, также спереди частицы : «деци»-«десять», «санти»-«сто», «милли»-«тысяча».

     

Архивный метр.

Linejki

        Закон  1795 года, установив временный метр, указывает, что работы комиссии будут продолжаться. Измерительные работы были закончены  лишь к осени 1798 года и дали окончательную длину метра в 3 фута 11,296 линии вместо 3футов 11,44 линии, каковую длину имел временный метр 1795 года (старинный французский фут равнялся 12 дюймам, дюйм-12 линиям).

        Министром иностранных дел Франции был в те годы выдающийся дипломат Талейран, который еще раньше занимался проектом  реформы, он предложил созвать представителей союзных с Франции и нейтральных стран для обсуждения новой системы мер и предания ее международного характера. В 1795 году делегаты съехались на международной конгресс; на нем было объявлено об окончании работ по проверке определения длины основных эталонов. В том же году изготовлены окончательные прототипы метры и килограммы. Они были изданы в Архив Республики на хранение, по этому получили названия архивный .  

        Временный метр был отменен и вместо него единицы длины признан архивный метр. Он имел вид стержня, поперечное сечение которого напоминает букву Х. Архивные эталоны лишь через 90 лет уступили свое место новым, получившим название международных.

Причины, мешавшие проведению в жизнь

метрической системы мер.

Население Франции встретило новые меры без особого энтузиазма. Причиной такого отношения были отчасти самые новые единицы мер не соответствовавшие вековым привычкам, а также новые, непонятные населению название мер.

        Среди лиц, относившихся к новым мерам без восторга, был и Наполеон. Декретом 1812 года он наряду  с метрической системой  ввел «обиходную» систему мер для употребления в торговле.

         Восстановление во Франции в 1815 году королевской власти содействовало забвенью метрической системы. Революционное происхождение метрической системы мешало распространению ее в других странах.

        С 1850 года передовые ученные начинают энергичную агитацию в пользу метрической системы .Одной из причин этого были начавшиеся тогда международные выставки, показавшие все удобства существовавших различных национальных систем мер. Особенно плодотворно в этом направлении была деятельность Петербургской Академии наук и ее члена Бориса Семеновича Якоби. В семидесятых годах эта деятельность увенчалась действительным превращением метрической системы в международную.

Метрическая система мер в России.

        В России ученые с начала XIX века поняли назначение метрической системы и пытались ее широко внедрить в практику.

В годы от 1860 до 1870 после энергичных выступлений Д.И.Менделеева  компанию в пользу метрической системы ведут академик Б.С.Якоби, профессор математики А.Ю.Давидов автор распространенных в свое время школьных учебников математики, и академик А.В. Гадолин. К ученым присоединялись и русские фабриканты и заводчики. Русское техническое общество поручило специальной комиссии под председательством академика А.В. Гадолина разработать этот вопрос. В эту комиссию поступило много предложений от ученных и технических организаций, единогласно поддерживающих предложения о переходе на  метрическую систему.

        Изданный в 1899 году закон о мерах и весах разработанный Д.Т.Менделеевым включал  параграф № 11:

        «Международный метод и килограмм, их подразделения, а равно и иные метрические меры дозволяется применять в России, наверняка с основными российскими мерами, в торговых и иных сделках, контрактах, сметах, подрядах, и тому подобных – взаимному соглашению договаривающихся сторон, а также в пределах деятельности отдельных казенных ведомств…с разращения или по распоряжению подлежащих министров…».

        Окончательное решение вопроса о метрической системы в России получил уже после Великой Октябрьской социалистической революции. В 1918 году Советом Народных Комиссаров под председательством В.И.Ленина было издано постановление, в котором предлагалось :

        «Положить в основание всех измерений международную метрическую систему мер и весов десятичными подразделениями и производными.

        Принять за основу единицы длины - метр, а за основу единицы веса (массы) - килограмм. За образцы единиц метрической системы принять копию международного метра, носящую знак № 28, и копию международного килограмма, носящую знак № 12, изготовленные из иридистой платины, переданные России Первой международной конференцией мер и весов в Париже в 1889 году и хранимые ныне в Главной палате мер и весов в Петрограде».

        С 1 января 1927 года, когда переход промышленности и транспорта на метрическую систему был подготовлен, метрическая система мер стала единственно допускаемой в СССР системой мер и весов.                              

 

Старинные русские меры

в пословицах и поговорках.

Аршин да кафтан, да два на заплатки.
Борода с вершок, а слов с мешок.
 Врать - семь верст до небес и все лесом.
За семь верст комара искали ,а комар на носу.
На аршин бороды, да ума на пядь.
На три аршина в землю видит!
Ни пяди не уступлю.
От мысли до мысли пять тысяч верст.
Охотник за семь верст ходит киселя хлебать.
Писать (говорить) о чужих грехах аршинными, а о своих  - строчными буквами.
Ты от правды (от службы) на пядень, а она от тебя – на сажень.
Тянись верстой, да не будь простой.
За это можно и пудовую (рублевую) свечку поставить.
Зернышко пуд бережет.
Не худо, что булка с полпуда. 
Одно зерно пуды приносит.
Свой золотник чужого пуда дороже.
Съел полпуда – сыт покуда.
Узнаешь почем пуд лиха.
 
У него в голове ни ползолотника мозга (ума).
Худое валит пудами, а хорошее золотниками.

8

ТАБЛИЦА СРАВНЕНИЯ МЕР

  • Меры длины

 1 верста = 1,06679 километра
    1 сажень = 2,1335808 метра
    1 аршин = 0,7111936 метра
    1 вершок = 0,0444496 метра
    1 фут = 0,304797264 метра
    1 дюйм = 0,025399772 метра     

    1 километр = 0,9373912 версты      
    1 метр = 0,4686956 сажени
    1 метр = 1,40609 аршина
    1 метр = 22,4974 вершка
    1 метр = 3,2808693 фут
    1 метр = 39,3704320 дюйма

  • 1 сажень = 7 футов
    1 сажень = 3 аршина
    1 сажень = 48 вершков
    1 миля = 7 верст 
    1 верста = 1,06679 километра

  • Меры объема и площади

     1 четверик = 26,2384491 литра
     1 четверть = 209,90759 литра
     1 ведро = 12,299273 литра
     1 десятина = 1,09252014 гектара  

     1 литр = 0,03811201 четверика
     1 литр = 0,00952800 четверти
     1 литр = 0,08130562 ведра
     1 гектар = 0,91531493 десятины

  • 1 бочка = 40 ведер
    1 бочка = 400 штофов
    1 бочка = 4000 чарок

      1 четверть = 8 четвериков
     1 четверть = 64 гарнца

  • Меры веса

      1 пуд = 16,3811229 килограмма  

      1 фунт = 0,409528 килограмм
      1 золотник = 4,2659174 грамма
      1 доля = 44,436640 миллиграмма 

  •  1 килограмм = 0,9373912 версты
      1 килограмм = 2,44183504     фунта
      1 грамм = 0,23441616 золотника
      1 миллиграмм = 0,02250395 доли
  • 1 пуд = 40 фунтов
    1 пуд = 1280 лотов
    1 берков = 10 пудов
    1 ласт = 2025 и 4/9 килограмм

  • Денежные меры
  •      рубль = 2 полтинам
        полтина = 50 копейкам
        пятиалтынный = 15 копейкам
        алтын = 3 копейкам
        гривенник = 10 копейкам
  •  2 деньги =1копейке
        грош = 0.5 копейки
        полушка = 0.25 копейки

рои




Предварительный просмотр:

Золотое сечение

Если разделить любой отрезок на две части так, чтобы отношение большей части отрезка к целому было равно отношению меньшей части к большей, получим сечение, которое называют золотым

Золотое сечение

На рисунке отрезок АВ разделен точкой С так, что АС : АВ = СВ : АС. Обозначим это отношение Ф. Если принять длину отрезка АВ за a, а большую часть отрезка (АС) за b, то a:b = b:(a-b). 

Отношение большей части отрезка к меньшей и всей длины отрезка к большей его части (Ф) равно приблизительно 1,618... Обратная величина - отношение меньшей части отрезка к большей и большей части к всему отрезку - составляет примерно 0,618...

Эти числа получили название "золотых". Они действительно замечательные. Везде, где человек ощущает гармонию - в звуках, в цвете, в размерах, - всюду присутствует "Золотое число". Глаз радуется отрезку, разделенному не строго пополам, а именно в пропорции 0,618:0,382. Может, поэтому так часто находят золотое сечение в памятниках античной архитектуры, в пропорциях идеальных человеческих фигур, вылепленных великими Фидием и Поликлетом, в классических музыкальных произведениях (еще пифагорейцы заметили, что музыкальный звукоряд построен по закону частот, равных "золотому числу"), живописи, поэзии, формах скрипок Страдивари, а также в природе – химии, ботанике, зоологии...

Соразмерность, выражаемая числом Ф, по свидетельству многих исследователей, наиболее приятна для глаза. Леонардо да Винчи считал, что идеальные пропорции человеческого тела должны быть связаны с числом Ф. Именно он назвал деление отрезка в отношении Ф золотым сечением. Этот термин сохранился до наших дней. В эпоху Возрождения золотое сечение было очень популярно среди художников, скульпторов и архитекторов. Например, в большинстве живописных пейзажей линия горизонта делит полотно по высоте в отношении, близком к Ф. А выбирая размеры самой картины, старались, чтобы отношение ширины к высоте тоже равнялось Ф. Такой прямоугольник стали называть "золотым".

История Золотого сечения

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей» посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида. Во 2-й книге «Начал» дается геометрическое построение золотого деления После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.

В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась «О перспективе в живописи». Его считают творцом начертательной геометрии.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли «Божественная пропорция» с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее «божественную суть» как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок – бога отца, а весь отрезок – бога духа святого).

Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.

В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. «Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать».

Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица – ртом и т.д. Известен пропорциональный циркуль Дюрера.

Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).

Кеплер называл золотую пропорцию продолжающей саму себя «Устроена она так, – писал он, – что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности».

Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).

Если на прямой произвольной длины, отложить отрезок m, рядом откладываем отрезок M. На основании этих двух отрезков выстраиваем шкалу отрезков золотой пропорции восходящего и нисходящего рядов:

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы «вместе с водой выплеснули и ребенка».

Вновь «открыто» золотое сечение было в середине XIX в. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой».

Построение золотого сечения.

    Для того, чтобы разделить отрезок АВ в "золотом" отношении, достаточно выполнить следующие построения с помощью циркуля и линейки:

Из точки В восстанавливается перпендикуляр, равный половине АВ.

Полученная точка С соединяется линией с точкой А.

На полученной прямой от точки С откладывается отрезок CD, равный ВС.

На прямой AB откладывается отрезок AE=AD. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Деление отрезка в золотом отношении при помощи циркуля и линейки

     Золотое сечение можно найти, рассматривая некоторые геометрические фигуры.

Пятиконечная звезда, получаемая при последовательном соединении через одну всех вершин правильного пятиугольника (пентаграмма), всегда привлекала внимание людей совершенством формы. Пифагорейцы именно ее выбрали символом своего союза. В этой фигуре наблюдается удивительное постоянство отношений составляющих ее отрезков.

Пентаграмма и золотое сечение

На рисунке AD:AC = AC:CD = AB:BC = AD:AE = AE:EC. Пользуясь симметрией звезды, этот ряд равенств можно продолжить. Все эти отношения равны числу Ф (1,618...).

Для построения "золотого прямоугольника" в качестве смежных сторон возьмем длины сторон АВ и АК треугольника АВК.
Если от "золотого прямоугольника" отрезать квадрат, то опять получится "золотой прямоугольник"; так можно продолжать до бесконечности. На рисунке видно, что если провести диагонали первого и второго прямоугольников, то их точка пересечения О будет принадлежать всем получаемым "золотым прямоугольникам".

Золотой прямоугольник

Бывает и "золотой треугольник". На рисунке с пентаграммой это равнобедренные треугольники FEG, EAC, BEC, у которых отношение длины боковой стороны к длине основания равняется Ф. Одно из замечательных свойств такого треугольника состоит в том, что длины биссектрис углов при его основании равны длине самого основания.

Золотой треугольник

Есть и "золотой кубоид" - это прямоугольный параллелепипед с ребрами Ф (1,618...), 1 и ф (0,618...). Площадь его поверхности равна 4Ф, а диагональ - 2. Отсюда следует, что описанная вокруг него сфера имеет радиус 1, и, значит, ее площадь равна 4. Поэтому отношение поверхности этой сферы к поверхности "золотого кубоида" равно :Ф.

Представление о золотом сечении и "золотых" фигурах будет неполным, если не сказать о спирали. Если посмотреть на раковину улитки, можно заметить, что она закручена по очень красивой спирали, которая близка к так называемой логарифмической спирали. Логарифмическая спираль в полярных координатах описывается уравнением r=aw, где r - расстояние от точки до полюса, w - угол поворота, a - некоторая константа. Графическое приближение "золотой спирали" можно построить, соединив дугами точки квадратов, отсеченных от золотого прямоугольника при построении новых золотых прямоугольников.

Раковина - золотая спиральПостроение золотой спирали с помощью золотого прямоугольника

Золотое сечение в архитектуре

В книгах о «золотом сечении» можно найти замечание о том, что в архитектуре, как и в живописи, все зависит от положения наблюдателя, и что, если некоторые пропорции в здании с одной стороны кажутся образующими «золотое сечение», то с других точек зрения они будут выглядеть иначе. «Золотое сечение» дает наиболее спокойное соотношение размеров тех или иных длин.

Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.).

Парфенон (фотография)

Золотое сечение в архитектуре. Парфенон (пропорции)

На рисунках виден целый ряд закономерностей, связанных с золотым сечением. Пропорции здания можно выразить через различные степени числа Ф=0,618...

На плане пола Парфенона также можно заметить "золотые прямоугольники":

Золотое сечение: план пола Парфенона

Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. выступы сделаны целиком из квадратов пентилейского мрамора. Благородство материала, из которого построен храм, позволило ограничить применение обычной в греческой архитектуре раскраски, она только подчеркивает детали и образует цветной фон (синий и красный) для скульптуры. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по «золотому сечению», то получим те или иные выступы фасада.

Золотое сечение в пирамиде Хеопса

Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Что касается пирамид, не только египетские пиpамиды постpоены в соответствии с совеpшенными пpопоpциями золотого сечения; то же самое явление обнаpужено и у мексиканских пиpамид. Hа попеpечном сечении пиpамиды видна фоpма, подобная лестнице. В пеpвом яpусе 16 ступеней, во втоpом 42 ступени и в тpетьем - 68 ступеней.
Эти числа основаны на соотношении Фибоначчи следующим обpазом:
16 x 1.618 = 26

16 + 26 = 42

26 x 1.618 = 42

42 + 26 = 68

Числа Фибоначчи и золотое сечение

Одним из наиболее известных математиков эпохи Средневековья по праву считается Леонардо Фибоначчи. По иронии судьбы Фибоначчи, который внес выдающийся вклад в развитие математики, стал известным в современной математике только лишь как автор интересной числовой последовательности, называемой числами Фибоначчи. Эта числовая последовательность была получена Фибоначчи при решении знаменитой "задачи о размножении кроликов". Формулировка и решение этой задачи считается основным вкладом Фибоначчи в развитие комбинаторики. Именно с помощью этой задачи Фибоначчи предвосхитил метод рекуррентных соотношений, который считается одним из мощных методов решения комбинаторных задач. Рекуррентная формула, полученная Фибоначчи при решении этой задачи, считается первой в истории математики рекуррентной формулой.

Сущность своей "задачи о размножении кроликов" Фибоначчи сформулировал предельно просто:

"Пусть в огороженном месте имеется пара кроликов (самка и самец) в первый день января. Эта пара кроликов производит новую пару кроликов в первый день февраля и затем в первый день каждого следующего месяца. Каждая новорожденная пара кроликов становится зрелой уже через месяц и затем через месяц дает жизнь новой паре кроликов. Возникает вопрос: сколько пар кроликов будет в огороженном месте через год, то есть через 12 месяцев с начала размножения?"

Месяц

Количество
взрослых
пар

Кол-во
новорожденных
пар

Общее
кол-во
пар

1

1

0

1

2

1

1

2

3

2

1

3

4

3

2

5

5

5

3

8

6

8

5

13

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21 : 34 = 0,617, а 34 : 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение – 0,618 : 0,382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

Изучая последовательности чисел, обозначающих количество пар кроликов, можно установить следующую закономерность в этих числовых последовательностях: каждый член последовательности, начиная с некоторого номера, равен сумме двух предыдущих. Если теперь обозначить n-й член последовательности, удовлетворяющей этому правилу через Fn , тогда указанное выше общее правило может быть записано в виде следующей математической формулы:

Fn = Fn-1 + Fn-2.

Такая формула называется рекуррентной формулой.

В математике под числами Фибоначчи, как правило, понимается числовая последовательность:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

Если в ряду чисел Фибоначчи взять отношение последующего члена к предыдущему или наоборот, то получим уже знакомые нам числа: 1,618 и 0,618. Причем, чем больше порядковые номера членов, тем точнее выполняется "золотое" соотношение.

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления.

Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта. Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.

Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений.

Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд гирь 1, 2, 4, 8, 16... на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой 2 = 1 + 1; 4 = 2 + 2..., во втором – это сумма двух предыдущих чисел 2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2.... Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи? А может быть, эта формула даст нам новые числовые множества, обладающие какими-то новыми уникальными свойствами?

Золотое сечение в живописи

 

Переходя к примерам «золотого сечения» в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность – одна из загадок истории. Сам Леонардо да Винчи говорил: «Пусть никто, не будучи математиком, не дерзнет читать мои труды».

Он снискал славу непревзойденного художника, великого ученого, гения, предвосхитившего многие изобретения, которые не были осуществлены вплоть до XX в.

Нет сомнений, что Леонардо да Винчи был великим художником, это признавали уже его современники, но его личность и деятельность останутся покрытыми тайной, так как он оставил потомкам не связное изложение своих идей, а лишь многочисленные рукописные наброски, заметки, в которых говорится «обо всем на свете».

Он писал справа налево неразборчивым почерком и левой рукой. Это самый известный из существующих образец зеркального письма.

Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. Существует очень много версий об истории этого портрета. Вот одна из них.

Однажды Леонардо да Винчи получил заказ от банкира Франческо де ле Джокондо написать портрет молодой женщины, жены банкира, Монны Лизы. Женщина не была красива, но в ней привлекала простота и естественность облика. Леонардо согласился писать портрет. Его модель была печальной и грустной, но Леонардо рассказал ей сказку, услышав которую, она стала живой и интересной.

Мона Лиза (Джоконда) Леонардо да Винчи и золотые треугольники

Еще в эпоху Возрождения художники открыли, что любая картина имеет определенные точки, невольно приковывающие наше внимание, так называемые зрительные центры. При этом абсолютно неважно, какой формат имеет картина - горизонтальный или вертикальный. Таких точек всего четыре, они делят величину изображения по горизонтали и вертикали в золотом сечении, т.е. расположены они на расстоянии примерно 3/8 и 5/8 от соответствующих краев плоскости.

Золотое сечение кадра

Данное открытие у художников того времени получило название "золотое сечение" картины. Поэтому, для того чтобы привлечь внимание к главному элементу фотографии, необходимо совместить этот элемент с одним из зрительных центров.

На картине И.И. Шишкина "Сосновая роща" просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины приблизительно в золотом сечении. Справа от сосны - освещенный солнцем пригорок. Он делит в золотом сечении правую часть картины по горизонтали. Слева от главной сосны находится множество сосен - при желании можно с успехом продолжить деление картины в пропорциях золотого сечения.

Безымянный

Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении золотого сечения, придает ей характер уравновешенности и спокойствия, в соответствии с замыслом художника. Когда художник создает картину с бурно развивающимся действием, подобная геометрическая схема композиции (с преобладанием вертикалей и горизонталей) становится неприемлемой.

Ощущение динамики, волнения проявляется, пожалуй, сильней всего в другой простой геометрической фигуре - спирали. Многофигурная композиция, выполненная в 1509 - 1510 годах Рафаэлем, когда прославленный живописец создавал свои фрески в Ватикане, отличается динамизмом и драматизмом сюжета. Рафаэль так и не довел свой замысел до завершения, однако, его эскиз был гравирован неизвестным итальянским графиком Маркантинио Раймонди, который на основе этого эскиза и создал гравюру "Избиение младенцев".

Эскиз Рафаэля к картине Избиение младенцев

Если на подготовительном эскизе Рафаэля мысленно провести линии, идущие от смыслового центра композиции - точки, где пальцы воина сомкнулись вокруг лодыжки ребенка, - вдоль фигур ребенка, женщины, прижимающей его к себе, воина с занесенным мечом и затем вдоль фигур такой же группы в правой части эскиза (на рисунке эти линии проведены красным цветом), а после этого соединить эти куски кривой пунктиром, то с очень большой точностью получается золотая спираль. Это можно проверить, измеряя отношение длин отрезков, высекаемых спиралью на прямых, проходящих через начало кривой.

Неизвестно, рисовал ли на самом деле Рафаэль золотую спираль при создании композиции "Избиение младенцев" или только "чувствовал" ее. Однако с уверенностью можно сказать, что гравер Раймонди эту спираль увидел. Об этом свидетельствуют добавленные им новые элементы композиции, подчеркивающие разворот спирали в тех местах, где она у нас обозначена лишь пунктиром. Эти элементы можно увидеть на окончательной гравюре Раймонди: арка моста, идущая от головы женщины, - в левой части композиции и лежащее тело ребенка - в ее центре.

Золотая пропорция применялась многими античными скульпторами. Известна золотая пропорция статуи Аполлона Бельведерского: рост изображенного человека делится пупочной линией в золотом сечении.

Статуя Аполлона Бельведерского

Золотое сечение в шрифтах и бытовых предметах:

Золотой шрифт Дюрера. Древнегреческие сосуды

Золотое сечение в живой природе

В биологических исследованиях 70-90 гг. показано, что, начиная с вирусов и растений и кончая организмом человека, всюду выявляется золотая пропорция, характеризующая соразмерность и гармоничность их строения. Золотое сечение признано универсальным законом живых систем. Можно отметить два вида проявлений золотого сечения в живой природе: иррациональные отношения по Пифагору - 1.62 и целочисленные, дискретные - по Фибоначчи.

Было установлено, что числовой ряд чисел Фибоначчи характеризует структурную организацию многих живых систем. Например, винтовое листорасположение на ветке составляет дробь (число оборотов на стебле/число листьев в цикле, напр. 2/5; 3/8; 5/13), соответствующую рядам Фибоначчи. Хорошо известна "золотая" пропорция пятилепестковых цветков яблони, груши и многих других растений. Носители генетического кода - молекулы ДНК и РНК - имеют структуру двойной спирали; ее размеры почти полностью соответствуют числам ряда Фибоначчи.

Еще Гете подчеркивал тенденцию природы к спиральности. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гете называл спираль "кривой жизни". Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Цветки и семена подсолнуха, ромашки, чешуйки в плодах ананаса, хвойных шишках "упакованы" по логарифмическим ("золотым") спиралям, завивающимся навстречу друг другу, причем числа "правых "и "левых" спиралей всегда относятся друг к другу, как соседние числа Фибоначчи.

Приглядимся внимательно к побегу цикория. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс.

Цикорий. Золотое сечение

Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

У многих бабочек соотношение размеров грудной и брюшной части тела отвечает золотой пропорции. Сложив крылья, ночная бабочка образует правильный равносторонний треугольник. Но стоит развести крылья, и вы увидите тот же принцип членения тела на 2,3,5,8. Стрекоза также создана по законам золотой пропорции: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста.

Бабочка

Стрекоза

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 62 к 38.

И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы – симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста.

Золотые пропорции тела ящерицы

Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого

Великий Гете, поэт, естествоиспытатель и художник (он рисовал и писал акварелью), мечтал о создании единого учения о форме, образовании и преобразовании органических тел. Это он ввел в научный обиход термин морфология.

Пьер Кюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.

Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

Можно заметить золотые пропорции, если внимательно посмотреть на яйцо птицы.

Золотые пропорции куриного яйца

Золотое сечение в анатомии.

Закон золотого сечения просматривается в количественном членении человеческого тела, соответствующем числам ряда Фибоначчи. Примером может быть число костей туловища, черепа и конечностей. Так, в скелете туловища различают 3 костных системы: позвоночник, реберный его отдел и грудину. Грудина включает 3 кости (рукоятку, тело и мечевидный отросток). Позвоночник состоит из 33 (34) позвонков; от них отходят 12-13 пар ребер.

Мозговой череп состоит из 8 костей. В верхней и нижней челюстях с каждой стороны имеется по 8 альвеол и соответственно - корни 8 зубов.

Скелет верхней конечности состоит из 3 частей (плечевой, костей предплечья и костей кисти). Кисть включает 8 костей запястья, 5 пястных костей и кости 5 пальцев. Каждый палец, кроме большого, имеет по 3 фаланги. Таким образом, морфогенез кисти, включающей два соседних члена числового ряда Фибоначчи - в частности, 8 костей запястья и 5 костей пясти - приближается к золотому сечению 1.618, поскольку 8/5=1.6.

Сопоставляя длины фаланг пальцев и кисти руки в целом, а также расстояния между отдельными частями лица, также можно найти "золотые" соотношения:

Золотое сечение: лицо человека и кисть руки

Скульпторы утверждают, что талия делит совершенное человеческое тело в отношении золотого сечения. Измерения нескольких тысяч человеческих тел позволили обнаружить, что для взрослых мужчин это отношение равно в среднем примерно 13/8 = 1,625, а для взрослых женщин оно составляет 8/5 = 1,6. Так что пропорции мужчин ближе к "золотому сечению", чем пропорции женщин (однако женщина в обуви на каблуках может оказаться ближе к "золотым" пропорциям). У новорожденного пропорция составляет отношение 1 : 1, к 13 годам она равна 1,6, а к 21 году у мужчин равняется 1,625. Пропорции золотого сечения проявляются и в отношении других частей тела - длина плеча, предплечья и кисти, кисти и пальцев и т.д.

Золотые пропорции в фигуре человека

Золотые пропорции в литературе. Поэзия и золотое сечение.

Многое в структуре поэтических произведений роднит этот вид искусства с музыкой. Четкий ритм, закономерное чередование ударных и безударных слогов, упорядоченная размерность стихотворений, их эмоциональная насыщенность делают поэзию родной сестрой музыкальных произведений. Каждый стих обладает своей музыкальной формой - своей ритмикой и мелодией. Можно ожидать, что в строении стихотворений проявятся некоторые черты музыкальных произведений, закономерности музыкальной гармонии, а следовательно, и золотая пропорция.

Начнем с величины стихотворения, то есть количества строк в нем. Казалось бы, этот параметр стихотворения может изменяться произвольно. Однако оказалось, что это не так. Например, проведенный Н. Васютинским анализ стихотворений А.С. Пушкина с этой точки зрения показал, что размеры стихов

распределены весьма неравномерно; оказалось, что Пушкин явно предпочитает размеры в 5, 8, 13, 21 и 34 строк (числа Фибоначчи).

Многими исследователями было замечено, что стихотворения подобны музыкальным произведениям; в них также существуют кульминационные пункты, которые делят стихотворение в пропорции золотого сечения. Рассмотрим, например, стихотворение А.С. Пушкина "Сапожник":

Картину раз высматривал сапожник
И в обуви ошибку указал;
Взяв тотчас кисть, исправился художник,
Вот, подбочась, сапожник продолжал:
"Мне кажется, лицо немного криво ...
А эта грудь не слишком ли нага?
Тут Апеллес прервал нетерпеливо:
"Суди, дружок, не выше сапога!"

Есть у меня приятель на примете:
Не ведаю, в каком бы он предмете
Был знатоком, хоть строг он на словах,
Но черт его несет судить о свете:
Попробуй он судить о сапогах!

Проведем анализ этой притчи. Стихотворение состоит из 13 строк. В нем выделяется две смысловые части: первая в 8 строк и вторая (мораль притчи) в 5 строк (13, 8, 5 - числа Фибоначчи).

Одно из последних стихотворений Пушкина "Не дорого ценю я громкие права..." состоит из 21 строки и в нем выделяется две смысловые части: в 13 и 8 строк.

Не дорого ценю я громкие права,
От коих не одна кружится голова.
Я не ропщу о том, что отказали боги
Мне в сладкой участи оспаривать налоги
Или мешать царям друг с другом воевать;
И мало горя мне, свободно ли печать
Морочит олухов, иль чуткая цензура
В журнальных замыслах стесняет балагура.
Все это, видите ль, слова, слова, слова.
Иные, лучшие, мне дороги права:
Иная, лучшая, потребна мне свобода:
Зависеть от царя, зависеть от народа -
Не все ли нам равно? Бог с ними.
Никому
Отчета не давать, себе лишь самому
Служить и угождать; для власти, для ливреи
Не гнуть ни совести, ни помыслов, ни шеи;
По прихоти своей скитаться здесь и там,
Дивясь божественным природы красотам,
И пред созданьями искусств и вдохновенья
Трепеща радостно в восторгах умиленья,
Вот счастье! Вот права ...

Характерно, что и первая часть этого стиха (13 строк) по смысловому содержанию делится на 8 и 5 строк, то есть все стихотворение построено по законам золотой пропорции.

Представляет несомненный интерес анализ романа "Евгений Онегин", сделанный Н. Васютинским. Этот роман состоит из 8 глав, в каждой из них в среднем около 50 стихов. Наиболее совершенной, наиболее отточенной и эмоционально насыщенной является восьмая глава. В ней 51 стих. Вместе с письмом Евгения к Татьяне (60 строк) это точно соответствует числу Фибоначчи 55!

Н. Васютинский констатирует:

"Кульминацией главы является объяснение Евгения в любви к Татьяне - строка "Бледнеть и гаснуть ... вот блаженство!". Эта строка делит всю восьмую главу на две части - в первой 477 строк, а во второй - 295 строк. Их отношение равно 1,617! Тончайшее соответствие величине золотой пропорции! Это великое чудо гармонии, совершенное гением Пушкина!".

Знаменитое стихотворение Лермонтова "Бородино" делится на две части: вступление, обращенное к рассказчику и занимающее лишь одну строфу ("Скажите, дядя, ведь недаром..."), и главную часть, представляющее самостоятельное целое, которое распадается на две равносильные части. В первой из них описывается с нарастающим напряжением ожидание боя, во второй - сам с постепенным снижением напряжения к концу стихотворения. Граница между этими частями является кульминационной точкой произведения и приходится как раз на точку деления его золотым сечением.

Главная часть стихотворения состоит из 13 семистиший, то есть из 91 строки. Разделив ее золотым сечением (91:1,618 = 56,238), убеждаемся, что точка деления находится в начале 57-го стиха, где стоит короткая фраза: "Ну ж был денек!". Именно эта фраза представляет собой "кульминационный пункт возбужденного ожидания", завершающей первую часть стихотворения (ожидание боя) и открывающий вторую его часть (описание боя).

Таким образом, золотое сечение играет в поэзии весьма осмысленную роль, выделяя кульминационный пункт стихотворения.

Золотое сечение в музыке

Еще в 1925 году искусствовед Л.Л.Сабанеев, проанализировав 1770 музыкальных произведений 42 авторов, показал, что подавляющее большинство выдающихся сочинений можно легко разделить на части или по теме, или по интонационному строю, или по ладовому строю, которые находятся между собой в отношении золотого сечения. Причем, чем талантливее композитор, тем в большем количестве его произведений найдено золотых сечений. У Аренского, Бетховена, Бородина, Гайдна, Моцарта, Скрябина, Шопена и Шуберта золотые сечения найдены в 90% всех произведений. По мнению Сабанеева, золотое сечение приводит к впечатлению особой стройности музыкального сочинения. Этот результат Сабанеев проверил на всех 27 этюдах Шопена. Он обнаружил в них 178 золотых сечений. При этом оказалось, что не только большие части этюдов делятся по длительности в отношении золотого сечения, но и части этюдов внутри зачастую делятся в таком же отношении.

Композитор и ученый М.А.Марутаев подсчитал количество тактов в знаменитой сонате "Аппассионата" и нашел ряд интересных числовых соотношений. В частности, в разработке – центральной структурной единице сонаты, где интенсивно развиваются темы и сменяют друг друга тональности, - два основных раздела. В первом 43,25 такта, во втором – 26,75. Отношение 43,25:26,75=0,618:0,382=1,618 дает золотое сечение.

Золотое сечение и восприятие изображений

О способности зрительного анализатора человека выделять объекты, построенные по алгоритму золотого сечения, как красивые, привлекательные и гармоничные, известно давно. Золотое сечение дает ощущение наиболее совершенного единого целого. Формат многих книг соответствует золотому сечению. Оно выбирается для окон, живописных полотен и конвертов, марок, визиток. Человек может ничего не знать о числе Ф, но в строении предметов, а также в последовательности событий он подсознательно находит элементы золотой пропорции.

Проводились исследования, в которых испытуемым предлагалось выбирать и копировать прямоугольники различных пропорций. На выбор предлагалось три прямоугольника: квадрат (40:40 мм), прямоугольник "золотого сечения" с отношением сторон 1:1,62 (31:50 мм) и прямоугольник с удлиненными пропорциями 1:2,31 (26:60 мм).

Квадрат, золотой прямоугольник и вытянутый прямоугольник

При выборе прямоугольников в обычном состоянии в 1/2 случаев предпочтение отдается квадрату. Правое полушарие предпочитает золотое сечение и отвергает вытянутый прямоугольник. Наоборот, левое полушарие тяготеет к удлиненным пропорциям и отвергает золотое сечение.

При копировании этих прямоугольников наблюдалось следующее. Когда активно правое полушарие, пропорции в копиях выдерживались наиболее точно. При активности левого полушария пропорции всех прямоугольников искажались, прямоугольники вытягивались (квадрат срисовывался как прямоугольник с отношением сторон 1:1,2; пропорции вытянутого прямоугольника резко увеличивались и достигали 1:2,8). Наиболее сильно искажались пропорции "золотого" прямоугольника; его пропорции в копиях становились пропорциями прямоугольника 1:2,08.

При рисовании собственных рисунков преобладают пропорции, близкие к золотому сечению, и вытянутые. В среднем пропорции составляют 1:2, при этом правое полушарие отдает предпочтение пропорциям золотого сечения, левое полушарие отходит от пропорций золотого сечения и вытягивает рисунок.

А теперь нарисуйте несколько прямоугольников, измерьте их стороны и найдите соотношение сторон. Какое полушарие у Вас преобладает?

«Необходимо прекрасному зданию быть построенным подобно хорошо сложенному человеку»

(Павел Флоренский)

Можно ли “поверить алгеброй гармонию”? “Да”, – считал Леонардо и указал, как это сделать. “Золотое сечение” – не середина, а пропорция – несложное математическое соотношение, содержащее в себе “закон звезды и формулу цветка”, рисунок на хитиновом покрове животных, длину ветвей дерева, пропорции человеческого тела. Видишь гармоничную композицию, пропорциональное телосложение или здание, радующее глаз, – измерь и придешь к одной и той же формуле. Во времена Возрождения для проверки “закона гармонии” измеряли античные статуи, полтора века назад пропорции “золотого сечения” проверяли, соотнося длину ноги и туловища гвардейских солдат, – все совершенно точно.

Художник Александр Панкин исследует законы красоты… на знаменитых квадратах Казимира Малевича.

– В начале 80-х на лекции о Малевиче просят показать слайд “Черного квадрата”. После того как изображение появляется на экране, лектор строго произносит: “Переверните, пожалуйста”. Мы смеялись: трудно понять простому человеку, зачем такое рисовать. Это красиво?

– Исследуя картины Малевича с циркулем и с линейкой, я пришел к выводу, что они удивительно гармоничны. Здесь нет ни одного случайного элемента. Взяв единственный отрезок, – скажем, размер холста или сторону квадрата, – можно по одной формуле выстроить всю картину. Есть квадраты, все элементы которых соотносятся в пропорции “золотого сечения”, а знаменитый “Черный квадрат” нарисован в пропорции квадратного корня из двух.

– А вы рисуете эти пропорции на полях для полного сходства со школьной задачей по геометрии?

– То, чем я занимаюсь, можно назвать “объективным искусством”. На первый взгляд какое же это творчество, если не ставится задача выразить свою индивидуальность? Существует даже такое выражение – “художник узнаваем”. Но я обнаружил удивительную закономерность: чем меньше стремления самовыразиться, тем больше творчества. Там, где рамки слишком широки, где все можно, мы постепенно приходим к тому, что люди начинают портить полотна (скажем, Бренер подошел к картине Малевича с баллончиком краски), некоторые иконы режут и говорят: “А я так вижу”. Важен канон. Не случайно в иконописи он так строго соблюдается. Для творчества лучше не настежь открытые двери, а чтобы надо было пролезать в щель. Меня интересует форма, как она образуется и развивается сама по себе.

– Это же компьютерный алгоритм, при чем тут живопись?

– В 1918 году Малевич сказал, что живопись кончилась, – осталась только геометрия. В том году он нарисовал белый квадрат на белом фоне. Но потом случилось “возвращение Малевича на Землю”, его живопись опредметилась. Наука не поглотила искусство, но в те исторические периоды, когда геометрия и искусство сближались, это давало импульс к развитию того и другого. Так было во времена Возрождения, когда Леонардо исследовал пропорции “золотого сечения”, и в начале ХХ века, когда Поль Сезанн сказал: “Трактуйте природу посредством цилиндра, шара, конуса”. Если импрессионисты рисовали нечто личное, изменчивое, то кубистов, наоборот, интересовал формообразующий элемент – каркас. Сейчас проходят конференции “Математика и искусство” и семинары, где встречаются ученые и художники, случаются настоящие открытия. Со времен Леонардо известен так называемый числовой ряд Фибоначчи: 0,1,1,2,3,5,8,13,21,34... Это “золотая” последовательность чисел, по этому закону располагаются листья цветка и семечки в подсолнухе. Я изобразил этот ряд на плоскости в виде треугольников. Получилась удивительная вещь. Члены ряда Фибоначчи очень быстро растут: треугольник превращался в стрелу, две стороны уходят в бесконечность, а один из катетов все время остается равным пяти! До этого я не понимал, что такое “конечная бесконечность”! Посмотрев на эту картину, профессор Александр Зенкин математически доказал: такая система треугольников – это ядро ряда Фибоначчи. Обнаружился новый математический объект!

– Треугольники Панкина?

– На одном семинаре были предложения так их и назвать, потому что эту математическую закономерность почему-то раньше никто не замечал.

– Может быть, вы исследуете гармонию Малевича не потому, что видите в его творчестве особый смысл, а потому, что другие картины сложнее под формулу подогнать?

– Почему же! Последнее время мне хочется так же исследовать “Незнакомку” Крамского. Я посмотрел: там тоже в основе лежит “золотое сечение”. Те же правила и закономерности, которые я нащупал в картинах Малевича, можно приложить и к другим картинам, очень интересные вещи получатся. Картины Малевича – это краеугольный камень формообразования, мимо него нельзя пройти. “Черный квадрат” – точка отсчета, космическая воронка, куда искусство попадает и выходит измененным. Появляются новые пространства. У передвижников или у натуралистов типа Шилова картина – это окно, за которым в обычной прямой перспективе располагаются трехмерные объекты. У Сезанна пространства лежат на холсте. В иконах одновременно присутствуют две точки зрения: смотришь со своего места и одновременно будто находишься внутри происходящего. Пространство опредмечивается, не зря иконам не нужны рамки. Мне кажется, в будущем пространство картины будет лежать не за холстом, а перед ним…

– Недавно в магазине я увидела плакат с “Черным квадратом”. Обрадовалась и купила, хотела повесить дома, а потом передумала. Неуютно спать, когда над кроватью “Черный квадрат” висит. А вы хотели бы у себя над кроватью повесить квадрат Малевича?

– Честно говоря, у меня над кроватью мои картины висят, они у меня всюду висят. А хотел бы… наверное, Иванова – “Явление Христа народу”. Удивительная композиция – фигура Христа в центре и от нее будто лучи расходятся. Раньше я почему-то этого не замечал…



Предварительный просмотр:

Из истории появления лабиринтов

Смотрите, не заблудитесь

Чтобы уяснить, что же такое ЛАБИРИНТ, лучше сначала обратить взоры к его предтечам и истокам, которые лежат в далеком прошлом.

Вообще, само слово "лабиринт" имеет несколько значений. Правильнее было бы сказать даже – существует несколько различных сущностей, называющихся этим словом.   Обратимся к словарям:

Лабиринт - от немецкого Labyrinth (лат.labyrinthos, греч.labyrinthos)

        1.чего. Запутанная сеть ходов, переходов, улиц, сообщающихся друг с другом помещений, откуда трудно выбраться.

        2.перен. чего. Запутанные отношения, положения, из которых трудно найти выход. Лабиринт мыслей. В лабиринте противоречий.

         3.В регулярных парках XVII – XVIII вв.: участок с затейливым расположением узких дорожек между высокими стенками стриженых кустов.

В словаре Ожегова: ЛАБИРИНТ -   запутанные дорожки, переходы, место, откуда трудно найти исход, произошло от древних зданий в Египте и на Крите.

Прежде всего, это сам образ лабиринта. Лабиринт - это не просто совокупность запутанных коридоров, это странное, вечно меняющееся место, причудливое переплетение иных времён и измерений. Лабиринт принимает всё и всех, все найдут в нём себе место, но нити Ариадны в нём не существует: выйти из него невозможно, т.к. Лабиринт, по сути, не имеет границ. Лабиринт - нечто иррациональное, таинственное, мистическое.

Очень многие считают, что название «лабиринт» произошло от слова «лаброс» - такая обоюдоострая секира, часто изображаемая на фресках Кносского дворца. Это трудно доказать и трудно оспорить. Но самое забавное в том, что именно кносский дворец и считают лабиринтом, ссылаясь на то, что там много комнат, запутанные переходы, коридоры, лестницы… Ну, если бы это было так, то Минотавр, который по легендам, жил именно в лабиринте, должен был бы бродить беспрепятственно в покоях дворца в поисках своих жертв. А это нонсенс.
Древние легенды рассказывают, что Лабиринт спроектировал и построил знаменитый ученый, скульптор, зодчий и механик того времени – Дедал, которого все помнят как создателя крыльев. Упоминается, что Дедал строил Кносский Лабиринт по образцу египетского, описанного Геродотом. Египетский лабиринт насчитывал 3000 подземных и наземных комнат, однако считается, что Дедал воспроизвёл лишь одну сотую его часть.


Дедал, талантом своим в строительном славен искусстве,
Зданье воздвиг; перепутал значки и глаза в заблужденье

Ввел кривизною его, закоулками всяких проходов. 
Овидий


Найденные при раскопках критские монеты подтверждают то, что Лабиринт был самостоятельным сооружением, (подобные по конфигурации, правда каменные лабиринты, найдены во многих частях света, начиная от Англии, Норвегии, Соловецкого архипелага и заканчивая Южной Америкой). Более того, на критских монетах изображен так называемый «правильный или классический» лабиринт, в котором отсутствуют тупики, карманы, ложные хода, и в котором невозможно сбиться с пути.
http://nanoworld.org.ru/data/01/data/images/photos/museums/labirynt.jpg

Многие древние легенды и сказания народов мира говорят о лабиринтах как о «входах» в подземное (потустороннее) царство, открывающихся тем, кто знал соответствующие заклятия, или оказывался поблизости в тот момент, когда этот вход открывался. Вот в подземном лабиринте и было самое место для Минотавра.
        А вот описание Геродота: "Я видел этот  лабиринт: он выше всякого описания. Ведь если бы собрать все стены и великие сооружения, воздвигнутые эллинами, то в общем оказалось бы, что на них затрачено меньше труда и денежных средств, чем на один этот лабиринт. Конечно, пирамиды - это огромные сооружения, и каждая из них по величине стоит многих творений (эллинского строительного искусства), вместе взятых, хотя и они также велики. Однако лабиринт превосходит (размерами) и эти пирамиды. В нем двенадцать дворов с вратами, расположенными одни против других, причем шесть обращены на север, а шесть на юг, прилегая друг к другу. Снаружи вокруг них проходит одна-единственная стена. Внутри этой стены расположены покои двух родов: одни подземные, другие над землею, числом 3000, именно по 1500 тех или других. По наземным покоям мне самому пришлось проходить и осматривать их, и я говорю о них как очевидец. О подземных же покоях знаю лишь по рассказам: смотрители ни за что не желали показать их, говоря, что там находятся гробницы царей, воздвигших этот лабиринт, а также гробницы священных крокодилов. Поэтому-то я говорю о нижних покоях лишь понаслышке. Верхние же покои, которые мне пришлось видеть, превосходят (все) творения рук человеческих. Переходы через покои и извилистые проходы через дворы, будучи весьма запутанными, вызывают чувство бесконечного изумления: из дворов переходишь в покои, из покоев в галереи с колоннадами, затем снова в покои и оттуда опять во дворы." (Геродот. История)

Если спросить у любого нашего современника, что такое лабиринт, то ответ наверняка будет такой: лабиринт — это сложная путаница ходов. Однако в пралабиринте — прадедушке всех лабиринтов — нет ничего подобного. Заблудиться в нем невозможно, поскольку нет ни перекрестков, ни развилок. Начиная со входа, путь неизбежно ведет к центру. Уместно возникает вопрос: а лабиринт ли это вообще? Ответить на него не так просто. В чем смысл понятия "лабиринт", которым пользовался Геродот, говоря о сложном и запутанном архитектурном сооружении? И что было главным в сооружении: красота или путаница? Древние греки (в Греции, как считается, хотя этот факт и оспариваемый, впервые и появился лабиринт) обозначали им и то, и другое. Правда, есть основания полагать, что эта фигура была известна людям давно — так, в местечке Лудзанас на острове Сардиния на одной из скал высечен пралабиринт, датируемый III тысячелетием до н.э.

Впрочем, в древних источниках лабиринт называется не иначе как "хорос", то есть "круг". Однако это понятие можно трактовать по разному — не только как форму здания – цирка но и как форму движения, "хоровод". Не случайно в мифах повествуется о том, что Дедал, научивший людей летать, построил этот самый лабиринт на острове Крит для дочери царя Миноса Ариадны. Это уже у Гомера в "Иллиаде". Там он повествует о пути, который есть не что иное, как преодоление одного за другим концентрических ходов лабиринта, что, по сути, напоминает танцплощадку, где девушки обучались танцам, — и там, где были всего лишь размечены основные па. Может быть, эта гипотеза не лишена смысла потому, что из все тех же мифов известно, что Тезей, выбравшись из лабиринта при помощи нити Ариадны, привез на остров Делос танец под названием "Геранос" (Журавлиный), движения которого повторяли ходы лабиринта.
px20        Но это обстоятельство нисколько не приближает нас к истине и соответственно к решению загадки: зачем придуман символ лабиринта? Одно из предположений — первоначально его узор фиксировал движения ритуального танца. Так или иначе, но вскоре сам символ перекочевал в Европу, Индию, на Яву и Суматру... Но тут возникает другой вопрос: для того, чтобы символ стал востребованным другими народами нужно, чтобы он стал для них важным. Иначе, зачем в своих святилищах воспроизводить чужие ритуалы? Какой от этого прок?!
px20        Значит, лабиринт и связанный с ним танец — часть ритуала, а чему был посвящен сам ритуал? Ответа опять нет, хотя догадок предостаточно. Одна из них: лабиринт — схема орбит Солнца и планет. Но самое интересное предположение, пожалуй, такое: лабиринт — магический символ некоего посвящения. Он якобы символизирует проникновение в иной мир, более совершенный по сравнению с нашим, а путь к центру — путь постижения, путь к познанию. Достигнув этого центра, "посвященный" возвращался обратно в свой мир. У многих архаичных народов, а в более поздние времена и в некоторых тайных обществах существовали подобные ритуалы, означавшие смерть и возрождение — то есть воскресение в конце времен. Так, для индейцев хопи лабиринт — символ духовного возрождения, мистического посвящения и спасения.
px20        Понятно, почему его не было в иудаизме и в исламе. А вот в христианском мире наоборот, это важнейший мотив веры. Нет, не случайно во многих церквях Европы вплоть до XV века лабиринт служил важнейшим элементом интерьера, а до середины XVIII — элементом монастырских садов и парков. Изображение лабиринта помещалось обычно у самого входа, что как бы защищало данное место от проникновения злых духов.

Особенно много сохранилось лабиринтов в Скандинавских странах: в Швеции их около 300, в Норвегии — более 20, в Финляндии — 141, в Дании — 31. И на островах Северной Балтии их хватает.

Но последним местом, где помнили «хоровод лабиринта», была, видимо, Страна Басков, где в районе От-Суль еще меньше ста лет назад на деревенских праздниках танцевали так называемую "Улитку", во время которой танцующие становились цепочкой и двигались, выполняя определенные "повороты" и "проходы". Цель этого танца-игры в том, чтобы, постепенно формируя узор, сбить вожака с толку, чтобы он "потерял нить" и, загнанный в угол, оказался внутри цепочки. Но и в то время уже никто не знал, откуда пошла эта традиция, и что она означала.

Знаменитые лабиринты древности

Древние люди изображали окружающий их мир в виде круга или концентрических окружностей, а мир мертвых - в виде спирали или лабиринта. Например, аборигены Австралии изображали на могилах лабиринты как символ переселения умершего в иной непостижимый мир.

1. Пирамида фараона Аменемхета III.

В центре Фаюмской области на севере Египта один из правителей XVIII династии египетских фараонов Аменемхет III (ок. 1456-1419 до н. э.) возвел пирамиду, заупокойный храм при которой был построен в виде лабиринта.

2. Первые рисунки лабиринтов в Египте.

Первые известные рисунки лабиринтов в Египте сохранились на печатях из Мемфиса, относящихся к эпохе строительства великих пирамид (3000 лет до н. э). Справа в лабиринте изображен фараон IV династии. Выходит, что идея лабиринта существовала в Египте задолго до сооружения лабиринта Аменемхета III.

3. Кносский лабиринт на острове Крит.

Знаете ли вы один из самых прекрасных древнегреческих мифов о победе Тесея над Минотавром?Кносский лабиринт

Критский царь Минос приказал знаменитому художнику и архитектору Дедалу построить лабиринт. В этот лабиринт, с бесконечными коридорами, тупиками и переходами, Минос поселил Минотавра (кровожадное существо с человеческим телом и головой быка) и потребовал у афинян, убивших его сына, раз в девять лет присылать на съедение чудовищу семерых сильнейших юношей и семерых красивейших девушек. Их отводили в лабиринт, и юные афиняне, блуждая там, становясь жертвами минотавра. Когда афиняне готовили кровавую дань в третий раз, сын афинского царя Эгея, Тесей, задумал освободить родной город от позорной обязанности. Вместе с очередной группой жертв Минотавра он отправился на Крит с целью убить чудовище. Дочь Миноса, Ариадна, полюбила мужественного Тесея и решила помочь ему. Она дала Тесею волшебный клубок, который помог ему найти выход из лабиринта. Привязав конец нити у входа, Тесей пошел на поиски Минотавра. Поединок закончился победой юноши, который затем, идя обратно по нити Ариадны, вышел из лабиринта и вывел оттуда всех обреченных.Кносский лабиринт Тессей и Минотавр

В 1900 году 48-летний англичанин Артур Эванс начал раскопки на острове Крит. Гораздо больше, чем доводы науки, бывшего корреспондента газеты «Манчестер Гардиан» воодушевляли герои греческих мифов и строки из «Одиссеи»: «Остров есть Крит посреди виноцветного моря прекрасный... Разные слышатся там языки: там находишь пеласгов, в городе Кноссе живущих... Там уж царем был Минос...». Гомер однажды уже помог археологии: Генрих Шлиман, воспользовавшись «Илиадой» как «путеводителем», сумел раскопать Трою и Микены. Эванс жаждал повторить его успех на Крите. Конечно, никто тогда не мог предположить, что под толстым слоем выжженной солнцем земли лежат руины древнейшей в Европе цивилизации. Эванс назвал ее «минойской» в честь легендарного Миноса. После сенсационных раскопок на Крите мифы не обрели плоть и кровь, как, возможно, хотелось Эвансу. Но многое в них перестало казаться только литературной случайностью. Например, то, что Зевс — отец богов и людей — родился на Крите, воспринимается теперь как вполне закономерное событие.Кносский лабиринт остров Крит

  Эванс не был первым, кто пытался отыскать Кносс. Лет за 20 до него археолог-любитель Минос Калокэринос заложил несколько глубоких траншей в 5 километрах от Кандии (ныне — Ираклион). Именно здесь, на Целепи Кефала, что в переводе означает «Холм Господина», критские предания размещали Кносс. В толще земли обозначились контуры громадного сооружения. Найденные в земле предметы Калокэринос хранил в здании британского консульства в Кандии, где он работал переводчиком. Коллекция удачливого грека привлекла внимание археологов, но, заметив возросший интерес к раскопкам, турецкие хозяева Кносса резко подняли цену на землю — все работы пришлось прервать на неопределенный срок.

 Лабиринт раскапывался с головокружительной для археологии скоростью. Десятки тысяч найденных предметов лежали на складах — разобраться со всеми этими сокровищами у Эванса так и недостало ни времени, ни сил. За последующие десятилетия большинство находок исчезло, на оставшихся крысы и насекомые съели этикетки, но в годы раскопок Эванс мало думал о будущем: им владело вдохновение. К его чести, надо сказать, что он не вывозил сделанные находки за пределы Греции: бесценные шедевры древнего искусства остались в музеях Крита и Афин. Не чуждый тщеславия и эпикурейского образа жизни, Эванс тем не менее тратил громадные личные средства на расширение и благоустройство раскопок, пытаясь соединить в Кноссе археологическую ценность с туристической привлекательностью. Он умер в 1935-м, в почтенном возрасте, завершив фундаментальный 4-томный труд «Дворец Миноса» и предъявив человечеству удивительную культуру, которую собственноручно извлек из исторического небытия.

 Реальный облик Дворца-Лабиринта вполне оправдывал тот миф, который сложился вокруг него. Это было колоссальное сооружение общей площадью 22 тыс. м2, имевшее как минимум 5—6 надземных уровней-этажей, соединенных проходами и лестницами, и целый ряд подземных склепов.
Количество помещений в нем достигало тысячи — в них можно было запросто спрятать добрый десяток Минотавров.
Кносский лабиринт Крит

Архитектурный комплекс с такой сложной планировкой свидетельствовал не только о способностях «дедалов» — минойских инженеров-строителей, но и о высоком уровне развития точных и прикладных наук.
         Чтобы уберечь ветхие стены Дворца от губительного воздействия солнца и дождя, Эванс, не задумываясь, укреплял их бетоном; те стены, что казались позднейшими, ломал, другие надстраивал, формируя облик Дворца в соответствии со своими представлениями. С одной стороны, он, конечно, спас Кносс, но с другой — никто теперь не знает, каким был Лабиринт на самом деле...
 Минойская цивилизация не была «импортирована» на Крит и не возникла на пустом месте. Неолитический «пласт» на островах Эгейского моря — один из самых глубоких в Европе, на Крите он прослеживается до 6000 года до н.э. В 1380 году до н.э. сильнейший пожар, разбушевавшийся в Кноссе, уничтожил Лабиринт и словно поставил точку в более чем 600-летнем процветании минойской цивилизации.

         Было ли это несчастным случаем, поджогом или набегом варваров — неизвестно, но Лабиринт выгорел окончательно, и вместе с ним в огне пожара как будто исчезли все те знания и мастерство, что накапливались на Крите веками. Да и сами минойцы словно растворились во мраке бесконечного Лабиринта, оставив лишь напоминание о том, что цивилизации не только рождаются, но и умирают.

4. Лабиринты в Европе.

Как уже сказано выше,  лабиринт — это, возможно, часть ритуала, а чему был посвящен сам ритуал? Ответа опять нет, хотя догадок предостаточно. Самое интересное предположение, пожалуй, такое: лабиринт — магический символ некоего посвящения. Не случайно во многих церквях Европы вплоть до XV века лабиринт служил важнейшим элементом интерьера, а до середины XVIII — элементом монастырских садов и парков. Изображение лабиринта помещалось обычно у самого входа, что как бы защищало данное место от проникновения злых духов.

Мозаиками   в   форме   лабиринтов   украшены   полы   многих средневековых соборов Европы, например

           

                                        

   Шартрского,                             Сиенского,                         святого Квентина и других.

Интересно отметить, что в средневековье для лабиринтов находили вполне мирные и практические применения: разбивали грядки огородов в форме лабиринтов.

В Англии знаменитым архитектурным лабиринтом была беседка Розамунды.

Надеюсь, для вас будет нетрудно найти путь к беседке, расположенной в парке, изображенном на рисунке. Быть может, для сокращения времени вам не бесполезен будет совет начать поиски от хижины, и найти лучше выход из этого коварного парка, чем начинать со входа.

                                Классификация лабиринтов

I. Подковообразные лабиринты - лабиринты так называемого «классического типа»:

(1) Швеция;

(2) Финляндия;

(3) Англия;

(4) Карельский полуостров, РФ.

К этой группе относятся дерново-растительные лабиринты:

 (5) Англия;

(6-8) Соловецкие острова;

(9) ГДР. В центре таких сооружений непременно помещалась каменная пирамидка.

П. Круглоспиральные лабиринты:

(10), (13) Соловецкие острова;

(11) Греция;

(12) Югославия;

(14) Англия.

III.  Почкообразные лабиринты - взаимно вписанные спирали:

(15) Соловецкие острова;

(16), (17) Кольский полуостров.

IV.   Концентрически-круговые  лабиринты:  

(18)   Кольский полуостров;

(19), (20) Соловецкие острова.             

На этом же рисунке представлены аналоги каменных лабиринтов:

(21) подковообразный лабиринт на кносских серебряных монетах III-I вв.   до н. э.;

(22) лабиринт в одном из соборов на территории Финляндии;

(23) лабиринт на северорусском скальне, Архангельская область.

 

        

        

Методы прохождения лабиринтов

 

Исследуя замысловатые лабиринтные маршруты, вы испытаете прекрасное чувство их первооткрывателя.

        Первый метод – МЕТОД ПРОБ И ОШИБОК. Выбирайте любой путь, а если он заведет вас в тупик, то возвращайтесь назад и начинайте все сначала.

        Второй метод – МЕТОД ЗАЧЕРКИВАНИЯ ТУПИКОВ. Начнем последовательно зачеркивать тупики, т.е. маршруты, не имеющие ответвлений и заканчивающиеся перегородкой. Незачеркнутая часть коридора будет выходом или маршрутом от входа к выходу или к центру.

        Третий метод – ПРАВИЛО ОДНОЙ РУКИ. Оно состоит в том, что по лабиринту надо двигаться не отрывая одной руки (правой или левой) от стены. Это правило не универсальное, но часто полезное. Им пользуются тогда, когда все стены хотя и имеют сложные повороты и изгибы, но составляют  непрерывное продолжение наружной стены. Лабиринты не должны содержать замкнутых маршрутов.

                 

Лабиринт как игра

Лабиринты были слишком загадочным и заманчивым объектом, чтобы оказаться вне волшебного мира игр. Неизвестно только, кто раньше начал использовать их в играх. Во всяком случае, дети древних греков и римлян уже увлекались ими. Это доказывает сохранившийся на стене одного из домов Помпеи детский рисунок лабиринта и надпись возле него на латинском языке: «Лабиринт. Здесь живет Минотавр».

           

Перед вами несколько лабиринтов, нарисованных на бумаге. Пройти их будет не так-то просто.  Захвати с собой в дорогу свою смекалку и находчивость. А еще тебе пригодятся ... твои знания по МАТЕМАТИКЕ.

  1. Только одна дорога может привести Дональда и племянников к дядюшке Скруджу, бабушке Дак или Дэйзи. Что это за дорога? К кому именно она их приведет? Кружок на дороге означает, что Дональд должен повернуть направо, а звездочка – что он должен повернуть налево.

http://www.home-edu.ru/user/f/00000660/labirinty/labir/donald.gif

  1. Около дома Ежа растет в 4 раза больше деревьев, чем около дома Кролика, и на 2 дерева больше, чем около берлоги медведя. Покажи разными цветами, как попасть к своему дому:

     красным – Ежу,
синим – Кролику,
зеленым – Медведю.

Раскрась зверей, около домов которых хвойных деревьев в 2 раза              меньше, чем лиственных. Нарисуй шишку рядом с домиками, над которыми хвойных деревьев на 2 меньше, чем лиственных.

http://www.home-edu.ru/user/f/00000660/labirinty/labir/zvery.gif

  1. На рисунке изображена замкнутая ломаная линия, которая образовала лабиринт. Раскрась цветным карандашом область, границей которой является этот лабиринт. Какие мыши находятся внутри области, а какие снаружи? Покажи путь, по которому должна пройти мышь А, чтобы выбраться из лабиринта. Какие еще мыши могут выбраться из лабиринта?http://www.home-edu.ru/user/f/00000660/labirinty/labir/zamkn_loman.gif

В настоящее время  лабиринты очень широко применяются на уроках математики. А еще это очень полезное и увлекательное занятие, которое помогает развитию воображения, логического мышления и просто смекалки!



Предварительный просмотр:

Магические квадраты

Что такое «магический квадрат»?

Магическим квадратом n-го порядка называется квадратная таблица размером n х n, заполненная натуральными числами от 1 до n2, суммы которых по всем строкам, столбцам и обеим диагоналям одинаковы. Различают магические квадраты четного и нечетного порядка (в зависимости oт четности n), Поля таблицы, в которые записывают числа, называются клетками магического квадрата, а сумма чисел, стоящих в любой строке, столбце или на диагонали, - его постоянной.

Из истории развития магических квадратов

Священные, волшебные, загадочные, таинственные, совершенные… Как только их не называли. - ”Я не знаю ничего более прекрасного в арифметике, чем эти числа, называемые некоторыми планетными, а другими - магическими»” - писал о них известный французский математик, один из создателей теории чисел Пьер де Ферма. Привлекающие естественной красотой, наполненные внутренней гармонией, доступные, но по-прежнему непостижимые, скрывающие за кажущейся простотой множество тайн... Знакомьтесь: магические квадраты - удивительные представители воображаемого мира чисел. 

                                                                 Рисунок 1.1

 Название «магические» квадраты получили от арабов, которые усмотрели в их свойствах нечто мистическое и потому принимали квадраты за своеобразные талисманы, защищавшие тех, кто их носит, от многих несчастий. К удивительным квадратам проявляли интерес и средневековые арабские математики, приводившие их примеры в своих сочинениях.                                                                    

Древние греки были знакомы с простейшим (3-го порядка) магическим квадратом. В одном из арабских манускриптов конца VIII в. упоминается его автор (который па самом деле лишь открыл заново то, что было известно за много веков до него) – философ-новопифагорец Апполон из Тиана, живший в начале нашей эры.

Европейцев с удивительными числовыми квадратами познакомил византийский писатель и языковед Мосхопулос. Его работа была первым специальным сочинением на эту тему и содержала примеры магических квадратов разного порядка, составленных самим автором.

В средневековой Европе, как и на Востоке, магическим квадратам часто приписывали различные мистические свойства. Поэтому не удивительно, что они пользовались особой популярностью у прорицателей, астрологов и врачевателей. Бытовало даже поверье, что выгравированный на серебряной пластине магический квадрат защищает от чумы.

В начале XVI в знаменитый немецкий художник Альбрехт Дюрер увековечил магический квадрат в искусстве, изобразив

его на гравюре «Меланхолия» (рис. 1.1).

Квадрат Дюрера имеет размер 4 х 4 и составлен из шестнадцати первых натуральных чисел, сумма которых в каждой строке, столбце и на диагонали равна 34. Оказывается, 34 равны и суммы других четверок чисел: расположенных в центре, в угловых клетках, по бокам центрального квадрата (рис. 1.2, а), а также образующих четыре равных квадрата, на которые можно разделить исходный квадрат (рис. 1.2, б). А вот числа 15 и 14 в нижней строке квадрата указывают дату создания гравюры - 1514 г.

16

3

2

13

5

10

11

8

9

6

7

12

4

15

14

1

6

3

2

13

5

10

11

8

9

6

7

12

4

15

14

1

                    а)                                              б)

Рисунок 1.2

В середине XVI в. в Европе появились первые сочинения, в которых магические квадраты предстали в качестве объектов математического исследования. Так было положено начало их новой жизни. Затем последовало множество других работ, в частности таких известных математиков, как Штифель, Баше, Паскаль, Ферма, Бесси, Эйлер, Гаусс.

Например, Баше де Мезириак* описал простой графический способ построении квадратов нечетного порядка. Последний не раз переоткрывался и, вероятно, был изобретен еще в древности. Отметим, что в XVI-XV1I вв. составлением магических квадратов занимались с таким же увлечением, с каким сегодня придумывают и разгадывают кроссворды. Любопытно, что именно в одной из книг Баше магические квадраты впервые предстали как математическая забава.

Примерно в то же время Пьер де Ферма разработал общий метод построения квадратов четного порядка, а Френикль де Бесси** вычислил и построил все различные квадраты 4-го порядка (всего их насчитывается 880). Дальнейшее развитие теории магических квадратов оказалось связано с развитием теории чисел и комбинаторики.

В наше время магические квадраты продолжают привлекать к себе внимание не только специалистов, но и любителей математических игр и развлечений. За последнее столетие значительно возросло число книг по занимательной математике, в которых содержатся головоломки и задачи, связанные с необычными квадратами. Для их успешного решения требуются не столько специальные знания, сколько смекалка и умение подмечать числовые закономерности. Решение таких задач не только доставит удовольствие тем, кто интересуется математикой, но и послужит прекрасной «гимнастикой для ума».

 Магические квадраты возникли в глубокой древности в Китае. Вероятно, самым «старым» из дошедших до нас магических квадратов является таблица Ло Шу (ок. 2200 г. до н. э.). Она имеет размер 3x3 и заполнена натуральными числами от 1 до 9. В этом квадрате сумма чисел в каждой строке, столбце и диагонали равна 15 (рис. 1.3, а). Согласно одной из легенд, прообразом Ло Шу стал узор из связанных черных и белых точек (рис. 1.3, б), украшавший панцирь огромной черепахи, которую встретил однажды на берегу реки Ло-Шуй мифический прародитель китайской цивилизации Фуси. Жители Поднебесной считали таблицу Ло Шу священной, у них даже не возникало мысли о составлении аналогичных квадратов большего размера, поэтому последние стали появляться только три тысячелетия спустя.

      Рисунок 1.3Черепаха (магический квадрат на панцыре)

Название «магические» квадраты получили от арабов, Из Китая магические квадраты распространились сначала в Индию, затем в Японию и другие страны. На востоке их считали волшебными, полными тайного смысла символами, и использовали при заклинаниях.

7

12

1

14

2

13

8

11

16

3

10

5

9

6

15

4

На рис. 1.4 изображен магический квадрат 4-го порядка, известный еще древним индусам.

Он интересен тем, что сохраняет свойство

быть магическим после последовательной

перестановки строк (столбцов).            

                                                                                              Рисунок 1.4

                                                                               

Разновидности магических квадратов.

Среди множества магических квадратов некоторые выделяются особыми свойствами: числа, из которых они составлены, удовлетворяют различным дополнительным условиям. 

Так, у изображенного на рис. 1.5 магического квадрата 5-го порядка суммы пятерок чисел в клетках, расположенных на «разломанных» диагоналях (клетки закрашены одним и тем же цветом), равны постоянной магического квадрата - числу 65. Квадрат с таким свойством называется совершенным.

Рисунок 1.5

Легко убедиться в том, что квадрат останется совершенным, если подвергнуть его таким преобразованиям, как поворот и симметрия. Оказывается, существуют и другие преобразования, сохраняющие это свойство. Так, квадрат останется совершенным после того, как его верхнюю строку переставить вниз или левый столбец перенести к правой стороне (либо наоборот, нижнюю строку поместить сверху, а правый столбец - слева).

Отметим другое, следующее отсюда свойство: если расположить рядом два одинаковых квадрата так, чтобы у них была общая сторона, получится своеобразный паркет, в котором числа, оказавшиеся в любой группе клеток размером 5x5, образуют совершенный квадрат (рис. 1.6).

Рисунок 1.6

Кстати, упоминавшийся ранее древнеиндийский квадрат также является совершенным.

Некоторые магические квадраты отличаются симметричным рисунком. Рассмотрим следующий квадрат 5-го порядка (рис. 1.7). Что интересного можно заметить и расстановке образующих его чисел? Во-первых, четные и нечетные числа располагаются симметрично как относительно центра квадрата, так и относительно каждой из его осей симметрии. 

Рисунок 1.7

Во-вторых, суммы пар чисел, занимающих центрально - симметричные клетки, одинаковы и вдвое больше числа, стоящего в центре* (рис. 1.8).

И это не случайно. Натуральные числа   1, 2… 25 являются членами арифметической прогрессии. Как известно, суммы членов, равноудаленных от концов прогрессии, равны:

а1 + аn = а2 + аn-1 = ... .

Но именно по этому принципу построены все двенадцать пар чисел.

Имеем:

1 + 25= 2 + 24 = ... = 12 + 14 = 26 = n2 + 1.

Наконец, оставшееся число 13 - непарное и помещается в центре квадрата. Кроме того, это единственное из двадцати пяти чисел, которое совпадает с номером своей клетки (если пронумеровать все клетки по порядку построчно сверху вниз). 

Рисунок 1.8

Аналогичными свойствами обладают таблица Ло  Шу и квадрат Дюрера. Вообще квадрат, в котором любые два числа, расположенные симметрично относительно его центра, дают в сумме одно и то же число, называется симметрическим. (Причем неважно, какого он порядка: четного или нечетного.) Неверно было бы говорить о том, что именно симметрия строения является основным признаком магического квадрата. Вместе с тем она часто определяет его свойства и широко используется при построении магических квадратов.

Укажем, наконец, еще одну интересную особенность выбранного для примера магического квадрата. Все пятерки чисел, стоящих на его «разломанных» диагоналях (рис. 1.9), являются членами арифметических прогрессий с одной и той же разностью d=5, совпадающей с порядком квадрата (кстати, их суммы обладают таким же свойством).

11

24

7

20

3

4

12

25

8

16

17

5

13

21

9

10

18

1

14

22

23

6

19

2

15

Рисунок 1.9

Найдите на рис.1.9 еще две пятерки расположенных рядом чисел, из которых можно составить арифметические прогрессии с разностями d1и d2, отличными от 1. Как связаны между собой числа d, d1 и d2?

Многими интересными свойствами обладает и изображенный на рис. 1.10 магический квадрат 8-го порядка. Например, он делится па четыре равные части - квадраты 4-го порядка, у каждого из которых суммы чисел по всем строкам, столбцам и обеим диагоналям одинаковы и равны 130, что вдвое меньше постоянной магического квадрата.

Его можно разбить также на четыре пары прямоугольников размером 4x2 каждый, расположенных симметрично относительно центра квадрата (на рис. 1.10 они закрашены одним и тем же цветом). Суммы пар чисел в соответствующих столбиках таких прямоугольников одинаковы и равны 57 или 73 (например, 1 + 56 = 54 + 3, 46 + 27 = 25 + 48), что дает в сумме 130. А если составить из полученных чисел прямоугольную таблицу, они распределятся в ней симметрично (рис. 1.11).

Рисунок 1.10

57

73

73

57

57

73

73

57

73

57

57

73

73

57

57

73

73

57

57

73

73

57

57

73

57

73

73

57

57

73

73

57

Рисунок 1.11

Рассмотрим теперь левый верхний квадрат 4-го порядка (рис. 1.10). Сложим числа, расположенные симметрично относительно его горизонтальной, а также вертикальной осей симметрии. Суммы снова повторяются и закономерно располагаются в таблицах (рис. 1.12), «скрывая в себе» числа130 и 260.

43

47

83

87

87

83

47

43

56

74

58

72

72

58

74

56

                                                           

Аналогичными свойствами обладают и остальные квадраты, получающиеся при разбиении исходного квадрата на четыре равные части. Причем с каждым из них связан свой набор из восьми чисел, принадлежащих множеству; (43, 47, 51, 55, 56, 58. 72, 74, 75, 79, 83, 87). Легко видеть, что сумма двух любых чисел, «равноудаленных» от его концов, раина   130,   а сумма четверок чисел - 260. Все отмеченные свойства данного магического квадрата, включая рассмотренные выше разбиения на квадраты и прямоугольники, являются проявлением особенностей его внутреннего строения, подчиненного закону центральной симметрии.

Теперь вы и сами можете найти немало интересных свойств этого магического квадрата, разбивая его на другие фигуры, например на шестнадцать квадратов размером 2x2, складывая числа, расположенные не в столбик, а по диагонали, и т.д.

Возникают самые разные вопросы, связанные с магическими квадратами. На одни из них ответы давно найдены, на другие только предстоит найти. Остановимся подробнее на некоторых проблемах.

Ранее отмечалось, что квадрат 3-го порядка является самым простым. А почему не существует магический квадрат 2-го порядка?

Квадрат размером 2x2 должен был бы состоять из чисел 1, 2, 3, 4, а его постоянная - равняться 5. У такого квадрата по две строки, столбца и диагонали. Итого шесть. Чтобы квадрат стал магическим, надо представить число 5 в виде суммы двух данных чисел шестью различными способами*, но это сделать невозможно! Ведь таких комбинаций всего две: 1+4 и 2 + 3. Как ни расставляй числа в клетках таблицы, их сумма будет равна 5 либо в каждой строке, либо в обоих столбцах, либо по диагоналям (рис. 1.13), но никак не одновременно.      

Рисунок 1.13

Рассматривая магические квадраты разного порядка, мы указывали их постоянные, которые, как легко догадаться, однозначно определяются размером соответствующей таблицы. Конечно, при наличии квадрата для небольших значений n заветную сумму можно вычислить непосредственно. Но даже нескольких приведенных ранее примеров достаточно, чтобы понять, с увеличением n она быстро растет. А что делать в том случае, когда квадрат еще не построен? Или если нужно проверить, является ли данный квадрат магическим? Да и как составить сам квадрат, не зная его постоянной?

Выведена  общая  формул, позволяющую вычислить её для квадрата любого порядка. Пусть в таблице размером n х n располагаются натуральнее числа от 1 до n!. Их сумма S равна

1+2+3+…+n=((1+n2)* n2)/2

Обозначим постоянную магического квадрата буквой s. Тогда

S=s*n= ((1+n2)* n2)/2

откуда

s= ((1+n2)* n2)/2

С давних пор математики стремились решить две основные задачи, связанные с магическими квадратами: найти общий метод их построения и описать все возможные магические квадраты.

Первая задача предполагает более подробное рассмотрение, и не является вопросом, рассматриваемым в данной работе. Отметим лишь, что основы математической теории построения магических квадратов были заложены французскими учеными в XVII в. Позже она стала излюбленной темой исследований многих авторов. И хотя для каждого вида квадрата были найдены свои способы решения задачи, пока не известен общий, пригодный для квадратов любого порядка, метод их построения.

Вторая задача также до сих пор не решена, Отчасти это связано с тем, что с увеличением n число магических квадратов стремительно растет. Например, доказано, что для n = 4 существует 880 различных магических квадратов, для n = 5 - уже около четверти миллиона, а для больших значений n их общее число не найдено.

Не менее удивительно то, что существует всего один; магический квадрат 3-го порядка! Общее число квадратов, которые можно составить из девяти чисел, равно

9! = 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 = 362 880. Среди них есть такие, которые получаются один из другого с помощью поворота на 900, 1800, 2700 вокруг центра квадрата или при симметрии относительно четырех осей. Если найден один магический квадрат, то каждый из семи квадратов, полученный из него любым из указанных способов, не следует рассматривать как новый вариант искомого квадрата. Как известно, от перестановки мест слагаемых сумма не меняется. В данном случае важна сумма, а не порядок расстановки слагаемых. Так что все восемь квадратов представляют по сути один квадрат. Отбросив все «ложные» варианты, получим интересующее нас число расстановок чисел в таблице размером 3 х 3, а именно 362 880: 8 = 45 360, и только одна из комбинаций соответствует магическому квадрату!

Как же ее найти? Оказывается, это не такая уж сложная задача. Для начала представим число 15 в виде сумм троек натуральных чисел от 1 до 9. Получим следующие восемь комбинаций.

1+5+9     2+6+7

1+6+8     3+4+8

2+4+9     3+5+7

 2+5+8   4+5+6

Теперь тройки чисел надо разместить соответствующим образом в клетках квадрата. Замечаем, что число 5 входит сразу в четыре суммы. Значит, содержащая его клетка должна находиться на пересечении четырех прямых рядов. В квадрате размером 3x3 этому условию удовлетворяет только одна клетка - центральная (рис. 1.14, а).

Нетрудно сообразить: любые два числа, попавшие в одну тройку с числом 5, должны размещаться симметрично относительно центра квадрата. Осталось выяснить, как именно располагается конкретная числовая пара: по горизонтали, вертикали или по диагонали?

Рисунок 1.14

Будем рассуждать так же, как и раньше. Каждое четное число встречается сразу в трех суммах, поэтому четные числа должны попасть в клетки, лежащие на пересечении трех рядов, то есть в углах таблицы (рис. 1.14, б). Наконец, каждое из оставшиеся нечетных чисел входит в суммы  дважды, их место - в средних клетках по краям квадрата (рис. 1.14 ,в).

Следуя найденным принципам, легко распределить все девять чисел.

Интересны и другие задачи на построение магических квадратов: состоящих из заданных чисел, обладающих определенными свойствами и т.д. Такова, например, задача на составление квадратов из простых чисел,

Ее возможное решение приведено на рис. 1.15. Любопытно, что все подобранные числа заканчиваются цифрой 7. Сумма чисел, стоящих, в каждой строке, столбце и на обеих диагоналях таблицы, равна 798. Ее нельзя вычислить с помощью формулы постоянной s магического квадрата, поскольку числа не являются членами арифметической прогрессии, и это осложняет поиски решения.

3

61

19

37

43

31

5

41

7

11

73

29

67

17

23

13

17

317

397

67

307

157

107

227

127

277

257

137

347

47

37

367

Рисунок 1.15 Рисунок 1.16

На рис. 1.16 изображен ещё один квадрат из простых чисел: одно- и двузначных. Его постоянная выглядит «скромнее» и равна всего 120. -Трудней построить магический квадрат из первых п2 простых чисел. В начале XX в. было доказано, что наименьший такой квадрат имеет размер 12 х 12. Правда, при его составлении било сделано исключение: число 2 заменено единицей.

Иногда рассматривают магические квадраты не с суммами, а с произведениями чисел. Например, изображенный на рис. 17 квадрат 3-го порядка составлен из первых девяти членов геометрической прогрессии 1, 2, ... . В нем произведения чисел по всем строкам, столбцам и обеим диагоналям одинаковы и равны 4096. Легко видеть, что данный квадрат является симметрическим: произведение двух любых чисел из центрально-симметричных клеток равно 256.

Рисунок 1.17

Задачу можно обобщить на случай магического квадрата, составленного из чисел а, аq, аq2,..., aq8. Как его построить с помощью полученных ранее знаний? Обращает на себя внимание показатель степени qm он последовательно принимает целые значения от 0 до 8. Сравните их с числами из таблицы Ло шу. Отличие только одно - вместо числа 9 присутствует 0, но оно приводит к следующему предположению: квадраты аналогичны по структуре и должны строиться одним и тем же способом. А он нам уже известен. Составим сначала таблицу из чисел 0, 1, ..., 8 (рис. 1.18, а), затем соответствующий квадрат из чисел а, аq, аq2, ..., aqs (рис. 1.18, б). Убедитесь в том, что он магический.
           

 Рисунок 1.18

Отметим, что задачу можно было решить иначе. Сначала, опираясь на свойства геометрической прогрессии   п),  а именно,

b1*bn=b2*bn-1=…и

b2n=bn-m*bn+m, где 1 ≤ m n – 1

вычислить постоянную s квадрата:

               

Затем, используя правило умножения степеней с одинаковым основанием, представить выражение а3q12 восемью способами в виде произведения трех из множителей а, аq, aq2, ..., aq8 и распределить последние в клетках квадрата, рассуждая подобно тому, как это делалось при построении таблицы Ло Шу.

Помимо квадратов, существуют и другие магические фигуры. Одна из них - магический шестиугольник 3-го порядка (на каждой его стороне по три числа), составленный из первых девятнадцати натуральных чисел (рис. 1.19). В нем пять рядов и десять диагоналей (по пять в каждом направлении), все пятнадцать сумм чисел одинаковы, постоянная шестиугольника S0=(1+2+…+19)/5=3

                                               Рисунок 1.19

Интересно, что магический шестиугольник 3-го порядка существует в единственном экземпляре (с точностью до поворотов и отражений), как и его «младший брат» квадрат. Более того, нельзя построить такой шестиугольник никакого другого  порядка!

Наконец, можно рассматривать трехмерные фигуры из чисел, в частности магический куб – пространственный аналог магического квадрата. Подобный куб размером n х n х n должен быть заполнен натуральными числами от 1 до n3, суммы которых к каждой строке и каждом столбце произвольного слоя, а также на любой из четырех диагоналей куба одинаковы.

Один из магических кубов 3-го порядка построил Леонард Эйлер. На рис. 1.20 показано, как распределены натуральные числа 1, 2, …, 27 в слоях куба.

           Верхний слой        Средний слой        Нижний слой

Рисунок 1.20



Предварительный просмотр:

                                     Простые числа

Натуральные числа можно поделить на простые и составные числа.

Каждое натуральное число, большее единицы, делится, по крайней мере, на два числа: на 1 и на само себя.

Числа, которые не имеют других делителей кроме 1 и самого себя, называются простыми. Если у числа есть делители, отличные от 1 и самого себя, то это представители составных чисел.

Сама единица особое число. Она не является простым или составным, поскольку имеет только один делитель, саму себя.

                                    Эратосфен Киренский

eratos1

            

Вопросом изучения простых чисел, закономерности их появления и поиском самого большого простого числа математики занимаются очень давно. Первые сведения о простых числах, встречаются в трудах древне - греческого математика

 Эратосфена Киренского (276 год до н.э. – 194 год до н.э.).

Один из самых разносторонних ученых античности. Особенно прославили Эратосфена труды по астрономии, географии и математике, однако он успешно трудился и в области филологии, поэзии, музыки и философии, за что современники дали ему прозвище Пентатл, т.е. Многоборец. Другое его прозвище Бета, т.е. «второй», возможно, также не содержит ничего уничижительного: им желали показать, что во всех науках Эратосфен достигает не высшего, но превосходного результата. Эратосфен родился в Африке, в Кирене. Учился сначала в Александрии, а затем в    Афинах. Вероятно, именно благодаря столь широкому образованию и разнообразию интересов Эратосфен получил от Птолемея III Эвергета приглашение вернуться в Александрию, чтобы стать воспитателем наследника престола и возглавить Александрийскую библиотеку. Эратосфен принял это предложение и занимал должность библиотекаря вплоть до своей кончины. Его научные таланты удостоились высокой оценки современника Эратосфена, Архимеда, который посвятил ему свою книгу Эфодик (т.е. метод).

                                       Решето Эратосфена

Сочинения Эратосфена не сохранились, мы имеем от них лишь фрагменты. Самым знаменитым математическим открытием Эратосфена стало так называемое «решето», с помощью которого находятся простые числа.

prime.gif (9768 bytes)

Сначала вычеркнем все четные числа, кроме двойки, это три столбика с желтым фоном. Потом вычеркнем числа, кратные трем, кроме самой тройки - это голубой столбик. Столбик под шестеркой уже вычеркнут как четный. Теперь избавляемся от чисел, кратных пяти, проводя синие пунктирные линии, впрочем, надо будет отметить только 25,35,55,65,85 и 95, так как остальные числа вычеркнуты ранее. Также делаем и с 7 - проводим розовую пунктирную линию, вычеркивая оставшиеся числа 49,77 и 91. Больше ничего вычеркивать не надо - числа кратные 8, 9 и 10 вычеркнуты при удалении соответственно четных и кратных трем. Оставшиеся числа и есть все простые числа, меньшие 102.

                  Теорема о бесконечности множества простых чисел

       Следующий, заинтересовавший математиков вопрос был о количестве простых чисел. Можно ли, вторя поэту, сказать, что простых чисел «столько, сколько звезд на небе, столько, сколько рыб в воде»? Ответ находится в девятой книге знаменитого сочинения Евклида «Начала» - нетленного памятника древнего мира. Двадцатая теорема в этой книге утверждает:

« Первых простых чисел существует больше любого указанного числа их».

Вот доказательство этой теоремы.

Предположим, что существует некое наибольшее простое число p. Тогда перемножим все простые числа, начиная с числа 2 и заканчивая числом p, и увеличим полученное произведение на единицу. Результат этих действий обозначим M.

                             2*3*5*…*P+ 1=M

Если число M составное, то оно должно иметь  по крайне мере один простой делитель. Но этим делителем не может быть ни одно из простых чисел 2, 3, 5, 7, … p. Поскольку при делении M на каждое из них получаем в остатке один. Следовательно, число M либо само простое, либо делится на простое число большее p. Значит предположение, что существует наибольшее простое число p, неверно и множество простых чисел бесконечно.



Предварительный просмотр:

СОФИЗМЫ

Понятие софизма.

Софизм - (от греческого sophisma – уловка, ухищрение, выдумка, головоломка), умозаключение или рассуждение, обосновывающее какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям. Каким бы ни был софизм, он всегда содержит одну или несколько замаскированных ошибок.

Что же такое математический софизм? Математический софизм - удивительное утверждение, в доказательстве которого кроются незаметные, а подчас и довольно тонкие ошибки. История математики полна неожиданных и интересных софизмов, разрешение которых порой служило толчком к новым открытиям. Математические софизмы приучают  внимательно и настороженно продвигаться вперед, тщательно следить за точностью формулировок, правильностью записи чертежей, за законностью математических операций. Очень часто понимание ошибок в софизме ведет к пониманию математики в целом, помогает развивать логику и навыки правильного мышления. Если нашел ошибку в софизме, значит, ты ее осознал, а осознание ошибки предупреждает от ее повторения в дальнейших математических рассуждениях. Софизмы не приносят пользы, если  их не понимать.

Что касается типичных ошибок в софизмах, то они таковы: запрещенные действия, пренебрежение условиями теорем, формул и правил, ошибочный чертеж, опора на ошибочные умозаключения. Нередко, ошибки, допущенные в софизме, настолько умело скрыты, что даже опытный математик не сразу их выявит. Именно в этом и проявляется связь математики и философии в софизмах. На самом деле,  софизм- гибрид не только математики и философии, но и логики с риторикой. Основные создатели софизмов – древнегреческие ученые-философы, но тем не менее, они создавали  математические  софизмы, основываясь на элементарных аксиомах, что еще раз подтверждает связь математики и философии в софизмах. Кроме того, очень важно правильно преподнести софизм, так, чтобы докладчику поверили, а значит, необходимо владеть даром красноречия и убеждения. Группа древнегреческих ученых, начавшая заниматься софизмами как отдельным математическим явлением, назвала себя софистами. Об этом подробнее в следующем разделе.

Экскурс в историю.

Софистами называли группу древнегреческих философов 4-5 века до н.э., достигших большого искусства в логике. В период падения нравов древнегреческого общества (5 век) появляются так называемые учителя красноречия, которые целью своей деятельности считали и называли приобретение и распространения мудрости, вследствие чего они именовали себя софистами. Наиболее известна деятельность старших софистов, к которым относят Протагора из Абдеры, Горгия из Леонтип, Гиппия из Элиды и Продика из Кеоса. Но суть деятельности софистов много больше, чем простое обучение искусству красноречия. Они обучали и просвещали древнегреческий народ, старались способствовать достижению нравственности, присутствия духа, способности ума ориентироваться во всяком деле. Но софисты не были учеными. Умение, которое должно было быть достигнуто с их помощью, заключалось в том, что человек учился иметь в виду многообразные точки зрения. Основным направление деятельности софистов стала социально-антропологическая проблема. Они рассматривали самопознание человека, учили сомневаться, но все же, это очень глубокие философские проблемы, которые стали основой для мыслителей Европейской культуры. Что касается самих софизмов, то они стали как бы дополнением к софистике в целом, если рассматривать ее как истинно философское понятие.

        Исторически сложилось, что с понятием софизма связывают идею о намеренной фальсификации, руководствуясь признанием Протагора, что задача софиста - представить наихудший аргумент как наилучший путем хитроумных уловок в речи, в рассуждении, заботясь не об истине, а об успехе в споре или о практической выгоде. Там не менее, в Греции софистами называли и простых ораторов.

        Известнейший ученый и философ Сократ по началу был софистом, активно участвовал в спорах и обсуждениях софистов, но вскоре стал критиковать учение софистов и софистику в целом. Такому же примеру последовали и его ученики (Ксенофонт и Платон). Философия Сократа была основана на том, что мудрость приобретается с общением, в процессе беседы. Учение Сократа было устным. Кроме  того, Сократа и по сей день считают самым мудрым философом.

         Что касается самих софизмов, то, пожалуй, самым популярным на тот момент в Древней Греции был софизм Евбулида : «Что ты не терял, ты имеешь. Рога ты не терял. Значит у тебя рога». Единственная неточность, которую возможно было допустить, то это - двусмысленность высказывания. Данная постановка фразы является нелогичной, но логика возникла намного позже, благодаря Аристотелю, поэтому, если бы фраза строилась так: «Все, что ты не терял. . .», то вывод стал бы логически безупречным.

        

nemec

 «Математические софизмы»

Разбор и решение любого рода математических задач, а в особенности нестандартных, помогает  развивать смекалку и логику. Математические софизмы относятся именно к таким задачам. В этом разделе работы я рассмотрю три типа математических софизмов: алгебраические, геометрические и арифметические.

           

Геометрические софизмы.

1. «Через точку на прямую можно опустить два перпендикуляра»

10_2 Возьмем треугольник АВС. На сторонах АВ и ВС этого треугольника, как на диаметрах, построим полуокружности. Пусть эти полуокружности пересекаются со стороной АС в точках Е и Д. Соединим точки  Е и Д прямыми с точкой В. Угол АЕВ прямой, как вписанный, опирающийся на диаметр; угол ВДС также прямой. Следовательно, ВЕ  перпендикулярна АС и ВД перпендикулярна АС. Через точку В проходят два перпендикуляра к прямой АС.

Где ошибка??? 

Рассуждения, о том, что из точки на прямой можно опустить два перпендикуляра, опирались на ошибочный чертеж. В действительности полуокружности пересекаются со стороной АС в одной точке, т.е. ВЕ совпадает с ВD. Значит, из одной точки на прямой нельзя опустить два перпендикуляра.

2. « Спичка вдвое длиннее телеграфного столба»

 Пусть  а дм- длина спички и b дм - длина столба. Разность между b и  a  обозначим через c .

Имеем 
b - a = c, b = a + c.
Перемножаем два эти равенства по частям, находим:
b
2 - ab = ca + c2.
Вычтем из обеих частей bc. Получим:
b
2- ab - bc = ca + c2 - bc, или b(b - a - c) = - c(b - a - c),
откуда:
b = - c, но c = b - a,
поэтому b = a - b, или a = 2b.

Где ошибка??? 

В выражении b(b-a-c )= -c(b-a-c) производится деление на (b-a-c), а этого делать нельзя, так как b-a-c=0.Значит, спичка не может быть вдвое длиннее телеграфного столба.

3. Катет равен гипотенузе

06_2Угол С равен 90о, ВД - биссектриса угла СВА, СК = КА, ОК перпендикулярна СА, О - точка пересечения прямых ОК и ВД, ОМ перпендикулярна АВ, ОL перпендикулярна ВС. Имеем: треугольник LВО равен треугольнику МВО, ВL = ВМ, ОМ = ОL = СК = КА, треугольник КОА равен треугольнику ОМА (ОА - общая сторона, КА = ОМ, угол ОКА и угол ОМА - прямые), угол ОАК = углу МОА, ОК = МА = СL, ВА = ВМ + МА, ВС = ВL + LС, но ВМ = ВL, МА = СL, и потому ВА = ВС.

Где ошибка???

Рассуждения, о том, что катет равен гипотенузе, опирались на ошибочный чертеж. Точка пересечения прямой, определяемой биссектрисой ВD и серединного  перпендикуляра к катету АС, находится вне треугольника АВС.

4. Все треугольники равносторонние 

Рассмотрим произвольный треугольник ABC. Проведем биссектрису угла B и серединный перпендикуляр к стороне AC; точку их пересечения назовем O. Опустим из нее перпендикуляры EO и OF на стороны AB и BC соответственно. triankg

Т.к. DO одновременно и высота и медиана треугольника AOC, то он равнобедренный и AO = OC.
Т.к. BO - биссектриса, то, из равенства треугольников EBO и OBF (откуда EB = BF), EO = OF.
Следовательно, треугольник AEO равен треугольнику FCO, т.е. AE = FC.
Отсюда, т.к. AB = AE + EB и BC = BF + FC, AB = BC.

Из этого следует, что все треугольники на свете - равносторонние.

Где ошибка???

Арифметические софизмы.

1.Неравные числа равны

Возьмем два неравных между собой произвольных числа а и b. Пусть их разность равна с, т. е. а-Ь = с. Умножив обе части этого равенства на а-b, получим (а-b)2 = = c(a-b), a раскрыв скобки, придем к равенству a2-2ab + b2 = = ca-cb,  из которого следует равенство  а2- аb - ас = аb -b2 -bc.  Вынося общий множитель а, слева и общий множитель b справа за скобки, получим

а(а-b-с) = b(а-b-с).       (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

Разделив последнее равенство на (а-Ь-с),  получаем, что a=b, значит, два неравных между собой произвольных числа равны.

2.Единица равна нулю

Возьмем уравнение

х-а = 0.     (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

Разделив обе его части на х-а, получим

откуда сразу же получаем требуемое равенство

1=0.

3.Всякое число равно своему удвоенному значению

Запишем очевидное для любого числа а тождество

а22 = а22.

Вынесем а в левой части за скобку, а правую часть разложим на множители по формуле разности квадратов, получив

а(а - а) = (а + а)(а - а).       (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

Разделив обе части на а-а, получим а = а + а, или

а =2а.

 Итак, всякое число равно своему удвоенному значению.

4.Единица равна минус единице.

Пусть число х равно 1. Тогда можно записать, что х2=1, или х2-1 = 0. Раскладывая х2-1 по формуле разности квадратов, получим

(х+1)(х-1) = 0.    (1)

Разделив обе части этого равенства на х-1, имеем

х + 1 = 0 и х = -1.          (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

Поскольку по условию х = 1, то отсюда приходим к равенству

1 = -1.

5.Если одно число больше другого, то эти числа равны

Возьмем два произвольных числа т и п, такие, что т>п, и другие три произвольных числа а, b и с, сумма которых равна d, т. е. a + b + c = d.

Умножив обе части этого равенства на m, а затем на n, получим

ma + mb + mc = md, na + nb + nc = nd.

Сложив почленно равенства      та + mb + тс = md        , nd = na + nb + nc,    получим

ma + mb + mc + nd = na + nb + nc + md.    Перенося здесь nd вправо, a md влево, имеем

та + mb + mc- md= na + nb + nc- nd,

а вынося слева число т, а справа число п за скобки, придем к соотношению

т(а + b + с - d) = п (а + b + с - d),    (1)

откуда, разделив обе части последнего равенства на (а + b + c-d), находим, что

m= n.

6.Все натуральные числа ,большие единицы, равны между собой.

Рассмотрим известные алгебраические формулы

x2-l = (x-l)(х+l), х3-1 = (х-1)(х2 + х + 1) и вообще для любого натурального п имеем

хп -1 = (х - 1)(хп-1 + хп-2 + ... + x2 + x + l).

Разделив обе части этих формул на х-1, получим

При х = 1 левые части этих равенств принимают одно и то же значение , поэтому должны быть равны и их правые части, откуда получаем, что

2 = 3 = ••• = n.

7.Любое число равно

Возьмем два произвольных положительных действительных и равных друг другу числа х и z. Поскольку по условию x = z> то . Поэтому с полным основанием мы можем записать следующие два тождества:

x- = z-     (1)

-z = -z       (2)

Сложив эти два равенства почленно, получим

х-г = - (3)

Прибавив и отняв в левой части равенства (3) величину    вместо равенства (3) получим

x + --z = - или, что, очевидно, то же самое,

х +  - -z = - (4) 

В левой части последнего равенства первый и второй члены представим в виде ( +)а третий и четвертый — в виде ( + ). В результате этих преобразований равенство (4) примет вид

( +)- ( + )=-                             (5)

и окончательно может быть записано так:

( +) (- )=   -                                         (6)

(если вынести за скобки общий множитель ( +) в левой части равенства).

Для того чтобы равенство (6) имело место, необходимо выполнение условия

 += l,              (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

а так как в силу исходного равенства x = z, заключаем, что

2 = 1, или  =, откуда х =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

т. е. произвольное число равно .

8.Единица не равна единице

Возьмем две равные дроби     ,для которых справедливо следующее правило:

=               (1)

легко проверяемое приведением к общему знаменателю.

 Возьмем теперь равенство

которое, очевидно, удовлетворяется при х = а-b. Тогда применение соотношения (1) дает

               (2)

В дроби, стоящей в правой части последнего равенства, числитель и знаменатель равны, поэтому эта дробь равна единице. В то же время дробь в левой части, конечно, отлична от единицы. Следовательно,

1-1.

9. «Все числа равны между собой»

Возьмем два произвольных неравных между собой числа а и b и запишем для них очевидное тождество:

а-2ab+b= b-2ab+ а

Слева и справа стоят полные квадраты, т. е. можем записать

(а-b)2 = (b-а)2.        (1)

Извлекая из обеих частей последнего равенства квадратный корень, получим:

a-b = b-a        (2)

или 2а = 2b, или окончательно

a=b.

10.«Единица равна двум»

Простым вычитанием легко убедиться в справедливости равенства

1-3 = 4-6.

Добавив к обеим частям этого равенства число , получим новое равенство

1-3 +  = 4-6+,

в котором, как нетрудно заметить, правая и левая части представляют собой полные квадраты, т. е.

(1-)=(2-)

Извлекая из правой и левой частей предыдущего равенства квадратный корень, получаем равенство:

1-=2-

откуда следует, что 1=2.

11. Любые два неравных числа равны

Возьмем два произвольных, не равных друг другу числа х и z и обозначим их сумму числом а, т. е. x + z = a. Умножив  обе части этого  равенства на x-z,  получим (x + z)(x-z) = a(x-z), раскроем в обеих частях равенства скобки: x2-z2 = ax- az.

Перенесем ах из правой части равенства в левую, a z2 из левой части в правую. В результате получим

 x2-ax = z2-az.

Прибавляя к обеим частям последнего равенства число , будем иметь

х2-ах+  = z2-az+,

или, замечая, что слева и справа стоят полные квадраты, получим

а извлекая из обеих частей последнего равенства квадратные корни, придем к выражению

Так как вторые члены слева и справа в этом равенстве равны, то заключаем, что

x=z.

12.Половина любого числа равна половине ему противоположного.

Возьмем произвольное число а и положим х =-|. Тогда

2х + а  = 0 или после умножения на а получим 2ах + а2 = 0. Прибавляя к обеим частям этого равенства х2, имеем

х2 + 2ах + а2 = х2.

Так как х2 + 2ах+а2 = (х + а)2, то предыдущее равенство можно записать в виде

(х + а)2 = х2,             (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

а после извлечения квадратного корня из обеих частей последнего равенства получаем

х + а = х.                  (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

Поскольку по условию х =-, то из равенства (2) имеем  -+ а= -, и поэтому  получаем окончательно

-=.

13.Чётное число равно нечётному.

Возьмем произвольное четное число 2n, где п — любое целое число, и запишем тождество

(2n)2-2n(2(2п) + 1) = (2n + 1)2-(2n + 1)(2(2n)+1), в справедливости которого нетрудно убедиться, раскрыв скобки.

Прибавив к обеим частям этого тождества      , перепишем его в следующем виде:

(2n)2- 2(2n) +=(2n+1)2- 2(2n+1) +

или в таком:

(2n-)2=(2n+1-))2                               (1)

откуда следует, что

2n-=2n+1-

 или

2n=2n+1,

что означает равенство четного числа нечётному.

14.Сумма любых двух одинаковых чисел равна нулю.

Возьмем произвольное не равное нулю число а и напишем уравнение х = а. Умножая обе его части на (-4а), получим -4ах = -4а2. Прибавляя к обеим частям последнего равенства х2 и перенеся член -4а2 влево с противоположным знаком, получим х2-4ах + 4a2 = х2, откуда, замечая, что слева стоит полный квадрат, имеем

(х-2а)2 = х2,           (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

или

х-2а = х.          (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

Заменяя в последнем равенстве х на равное ему число а, получим а-2а = а, или -а = а, откуда

0 = a + a,

т. е. сумма двух произвольных одинаковых чисел а равна 0.

15.Всякое отрицательное число больше положительного, имеющего туже абсолютную величину.

Нижеследующее рассуждение основано на утверждении: Если две дроби  равны и в первой дроби числитель больше знаменателя, то и во второй числитель должен быть больше знаменателя, т. е. если а>в то и c>d.

Запишем теперь очевидные равенства (число А0)

Из предыдущего видно, что оба отношения равны (-1), и поэтому мы можем записать

                 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

Но как известно, если две дроби равны, а в первой дроби числитель больше знаменателя (так как +А >-А), то, следовательно, и во второй дроби числитель должен быть больше знаменателя, таким образом необходимо, чтобы выполнялось неравенство

-А>+А.

 Итак, мы пришли к выводу, что отрицательное число больше положительного.

16.Семь равно тринадцати.

Рассмотрим уравнение

              (1)

Оно может быть решено следующим образом. Приведя левую часть уравнения к общему знаменателю, будем иметь:

, откуда - или

Поскольку числители дробей в левой и правой частях уравнения равны, то, для того чтобы имело место равенство обеих частей уравнения, необходимо, чтобы были равны и знаменатели дробей. Таким образом, приходим к равенству

7=13.

17.Восемь равно шести

Решим систему двух уравнений

подстановкой у из второго уравнения в первое. Получаем х+ 8-х = 6, откуда

8=6.

18.Один рубль не равен ста копейкам

1р=100коп

10р=1000коп

Умножим обе части этих верных равенств, получим:

10р=100000коп, откуда следует:

1р=10000коп., т.е. 1р.100коп.

19.Всякое положительное число является отрицательным

Пусть п — положительное число. Очевидно,

2n-1< 2n.     (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

Возьмем другое произвольное положительное число а и умножим обе части неравенства на (-а):

-2ап + а<-2ап.   (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

Вычитая из обеих частей этого неравенства величину (-2аn), получим неравенство а<0, доказывающее, что

всякое положительное число является отрицательным.

20.Число, равное другому числу, одновременно и больше и меньше его.

Возьмем два произвольных положительных равных числа а и b и напишем для них следующие очевидные неравенства:

а>-b и b>-b.     (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

Перемножив оба эти неравенства почленно, получим неравенство ab>b2 ,а после его деления на b, что вполне законно, так как по условию b>0, придем к выводу, что

а>b.      (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

Записав же два других столь же бесспорных неравенства

b>-а и а>-а, (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

аналогично предыдущему получим, что bа>а2, а разделив на а>0, придем к неравенству

а  (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

Итак,

число а, равное числу b, одновременно и больше.

и меньше его.

     «Ахиллес никогда не догонит черепаху»

Древнегреческий философ Зенон доказывал, что Ахиллес, один из самых сильных и храбрых героев, осаждавших древнюю Трою, никогда не догонит черепаху, которая, как известно, отличается крайне медленной скоростью передвижения…

Вот примерная схема рассуждений Зенона. Предположим, что Ахиллес и черепаха начинают свое движение одновременно, и Ахиллес стремится догнать черепаху. Примем для определенности, что Ахиллес движется в 10 раз быстрее черепахи, и что их отделяют друг от друга 100 шагов.

Когда Ахиллес пробежит расстояние в 100 шагов, отделяющее его от того места, откуда начала двигаться черепаха, то в этом месте он туже ее не застанет, так как  она пройдет вперед расстояние в 10 шагов. Когда Ахиллес минует и эти 10 шагов, то и там черепахи уже не будет, поскольку она успеет перейти на 1 шаг вперед. Достигнув и этого места, Ахиллес опять не найдет там черепахи, потому что она успеет пройти расстояние, равное 1/10 шага, и снова окажется несколько впереди его. Это рассуждение можно продолжать до бесконечности, и придется признать, что быстроногий  Ахиллес никогда не догонит медленно ползающую черепаху.

Где ошибка???

Рассматриваемый софизм Зенона даже на сегодняшний день далек от своего окончательного разрешения, поэтому здесь я обозначу только некоторые его аспекты.

Сначала определим время t, за которое Ахиллес догонит черепаху. Оно легко находится из уравнения a+vt=wt, где а - расстояние между Ахиллесом и черепахой до начала движения, v и w – скорости черепахи и Ахиллеса соответственно. Это время при принятых в софизме условиях  (v=1 шаг/с и w=10 шагов/с) равно 11, 111111… сек.

Другими словами, примерно через 11, 1 с. Ахиллес догонит черепаху. Подойдем теперь к утверждениям софизма с точки зрения математики, проследим логику Зенона. Предположим, что Ахиллес должен пройти столько же отрезков, сколько их пройдет черепаха. Если черепаха  до момента встречи с Ахиллесом пройдет m отрезков, то Ахиллес должен пройти те же m отрезков плюс еще один отрезок, который разделял их до начала движения. Следовательно, мы приходим к равенству m=m+1, что невозможно. Отсюда следует, что Ахиллес никогда не догонит черепаху!!!

Итак, путь, пройденный Ахиллесом, с одной стороны, состоит из бесконечной последовательности отрезков, которые принимают бесконечный ряд значений, а с другой стороны, эта бесконечная последовательность, очевидно не имеющая конца, все же завершилась, и завершилась она своим пределом, равном сумме геометрической прогрессии.

Трудности, которые возникают при оперировании понятиями непрерывного и бесконечного и столь мастерски вскрываются парадоксами и софизмами Зенона, до сих пор не преодолены, а разрешение противоречий, содержащихся в них, послужило более глубокому осмыслению основ математики.



Предварительный просмотр:

МАТЕМАТИЧЕСКИЕ ФОКУСЫ

mq

Фокусы развивают творческие начала личности, артистические способности, стимулируют потребность в творческом самовыражении. Математические фокусы способствуют концентрации внимания и активизации учащихся на уроках математики. Магия фокуса способна разбудить сонных, растормошить ленивых, заставить думать тугодумов. Ведь не разгадав секрета фокуса, невозможно понять и оценить всей его прелести. А секрет фокуса чаще всего имеет математическую природу.

Миллионы людей во всех частях света увлекаются математическими фокусами, которые являются очень своеобразной формой демонстрации математических закономерностей. И это не удивительно. “Гимнастика ума” полезна в любом возрасте, она тренируют память, обостряют сообразительность, вырабатывают настойчивость, способность логически мыслить, анализировать и сопоставлять.

Еще в Древней Элладе без игр не мыслилось гармоническое развитие личности. И игры древних не были только спортивными. Наши предки знали шахматы и шашки, не чужды им были ребусы и загадки. Таких игр во все времена не чуждались ученые, мыслители, педагоги. Они и создавали их. С древних времен известны головоломки Пифагора и Архимеда, русского флотоводца С.О. Макарова и американца С. Лойда.

На огромную познавательную и воспитательную ценность интеллектуальных игр неоднократно указывали К.Д. Ушинский, А.С. Макаренко, А.В. Луначарский. Среди тех, кто увлекался ими, были К.Э. Циолковский, К.С. Станиславский, И.Г. Эренбург и многие другие выдающиеся люди.

Отдельно хочется отметить американского математика, фокусника, журналиста, писателя и популяризатора науки Мартина Гарднера (Gardner).

Он родился 21 октября 1914 г. Окончил математический факультет Чикагского университета. Основатель (середина 50-х гг.), автор и ведущий (до 1983) рубрики "Математические игры" журнала «Scientific American» ("В мире науки"). От этого талантливого учёного и популяризатора науки читатели узнают о флексагонах, математических фокусах, поиске фальшивых монет, проблеме 3х+1, парадоксе узника и, конечно же, об изобретённой Джоном Конуэем игре "Жизнь", компьютерную модель которой хотя бы один раз создавали все, кто учился программированию. Гарднер трактует занимательность как синоним увлекательного, интересного в познании, но чуждого праздной развлекательности. Среди произведений Гарднера есть философские эссе, очерки по истории математики, математические фокусы и «комиксы», научно-популярные этюды, научно-фантастические рассказы, задачи на сообразительность.

Особую популярность снискали статьи и книги Гарднера по занимательной математике. В нашей стране было издано семь книг Мартина Гарднера, которые увлекают читателя и подталкивают к самостоятельным исследованиям «Гарднеровский» стиль характеризуют доходчивость, яркость и убедительность изложения, блеск и парадоксальность мысли, новизна и глубина научных идей.

Ниже приведены примеры 12 математических фокусов.

Фокус “Феноменальная память”.

Для проведения этого фокуса необходимо заготовить много карточек, на каждой из которых поставить ее номер (двузначное число) и записать семизначное число по особому алгоритму. “Фокусник” раздает карточки участникам и объявляет, что он запомнил числа, записанные на каждой карточке. Любой участник называет номер каточки, а фокусник, немного подумав, говорит, какое на этой карточке записано число. Разгадка данного фокуса проста: чтобы назвать число “фокусник” проделывает следующие действия – прибавляет к номеру карточки число 5, переворачивает цифры полученного двузначного числа, затем каждая следующая цифра получается сложением двух последних, если получается двузначное число, то берется цифра единиц. Например: номер карточки – 46. Прибавим 5, получим 51, переставим цифры – получим 15, будем складывать цифры, следующая – 6, затем 5+6=11, т. е. возьмем 1, потом 6+1=7, дальше цифры 8, 5. Число на карточке: 1561785.

Фокус “Угадать задуманное число”.

Фокусник предлагает кому-нибудь из учащихся написать на листе бумаги любое трехзначное число. Далее приписать к нему это же число еще раз. Получится шестизначное число. Передать лист соседу, пусть он разделит это число на 7. Передать листочек дальше, пусть следующий ученик разделит полученное число на 11. Снова передать результат дальше, следующий ученик пусть разделит полученное число на 13. Затем передать листочек “фокуснику”. Он может назвать задуманное число.

Разгадка фокуса:

Когда мы к трехзначному числу приписали такое же число, то мы тем самым умножили его на 1001, а затем, разделив последовательно на 7, 11, 13, мы разделили его на 1001, то есть получили задуманное трехзначное число.

Фокус “Волшебная таблица”.

На доске или экране таблица, в которой известным образом в пяти столбцах записаны числа от 1 до 31. Фокусник предлагает присутствующим задумать любое число из этой таблицы и указать, в каких столбиках таблицы находится это число. После этого он называет задуманное вами число.

12 математических фокусов!

Разгадка фокуса:

Например вы задумали число 27. Это число находится в 1-ом, 2-ом, 4-ом и 5-ом столбиках. Достаточно сложить числа, расположенные в последней строке таблицы в соответствующих столбиках, и получим задуманное число. (1+2+8+16=27).

Фокус “Угадать зачеркнутую цифру”.

Пусть кто-либо задумает какое-нибудь многозначное число, например, число 847. Предложите ему найти сумму цифр этого числа (8+4+7=19) и отнять ее от задуманного числа. Получится: 847-19=828. в том числе, которое получится, пусть он зачеркнет цифру – безразлично какую, и сообщит вам все остальные. Вы немедленно назовете ему зачеркнутую цифру, хотя не знаете задуманного числа и не видели, что с ним проделывалось.

Выполняется это очень просто: подыскивается такая цифра, которая вместе с суммою вам сообщенных цифр составила бы ближайшее число, делящееся на 9 без остатка. Если, например, в числе 828 была зачеркнута первая цифра (8) и вам сообщили цифры 2 и 8, то, сложив 2+8, вы соображаете, что до ближайшего числа, делящегося на 9, т. е. до 18 – не хватает 8. Это и есть зачеркнутая цифра.

Почему так получается?

Потому что если от какого-либо числа отнять сумму его цифр, то останется число, делящееся на 9 без остатка, иначе говоря такое, сумма цифр которого делится на 9. В самом деле, пусть в задуманном числе а – цифра сотен, в – цифра десятков, с – цифра единиц. Значит всего в этом числе единиц 100а+10в+с. Отнимая от этого числа сумму цифр (а+в+с), получим: 100а+10в+с-(а+в+с)=99а+9в=9(11а+в), т. е. число, делящееся на 9. При выполнении фокуса может случиться, что сумма сообщенных вам цифр сама делится на 9, например 4 и 5.Это показывает, что зачеркнутая цифра либо 0, либо 9.Тогда вы должны ответить: 0 или 9.

Фокус “У кого какая карточка?”.

Для проведения фокуса необходим ассистент. На столе лежат три карточки с оценками: “3”, “4”, “5”. Три человека подходят к столу и каждый берет одну из карточек и показывает ее ассистенту “фокусника”. “Фокусник”, не глядя, должен угадать кто что взял. Ассистент говорит ему: “Угадывай” и “фокусник” называет у кого какая карточка.

Разгадка фокуса:

Рассмотрим возможные варианты. Карточки могут располагаться следующим образом: 3, 4, 5 4, 3, 5 5, 3, 4

3, 5, 4 4, 5, 3 5, 4, 3

Так как ассистент видит, какую карточку взял каждый человек, то он будет помогать “фокуснику”. Для этого нужно запомнить 6 сигналов. Пронумеруем шесть случаев:

Первый – 3, 4, 5

Второй – 3, 5, 4

Третий – 4, 3, 5

Четвертый – 4, 5, 3

Пятый – 5, 3, 4

Шестой – 5, 4, 3

Если случай первый, то ассистент говорит: “Готово!”

Если случай второй – то: “Так, готово!”

Если случай третий – то: “Угадывай!”

Если четвертый – то: “Так, угадывай!”

Если пятый – то: “Отгадывай!”

Если шестой – то: “Так, отгадывай!”.

Таким образом, если вариант начинается с цифры 3, то “Готово!”, если с цифры 4, то “Угадывай!”, если с цифры 5, то “Отгадывай!”, а карточки учащиеся берут по очереди.

Фокус “Любимая цифра”.

Любой из присутствующих задумывает свою любимую цифру. Фокусник предлагает ему выполнить умножение числа 15873 на любимую цифру, умноженную на 7. Например, если любимая цифра 5, то пусть умножит на 35. Получится произведение, записанное только любимой цифрой. Возможен и второй вариант: умножить число 12345679 на любимую цифру, умноженную на 9, в нашем случае это число 45. Объяснение этого фокуса достаточно простое: если умножить 15873 на 7, то получится 111111, а если умножить 12345679 на 9, то получится 111111111.

Фокус “Угадать задуманное число, ничего не спрашивая”.

Фокусник предлагает учащимся следующие действия:

Первый ученик задумывает какое-нибудь двузначное число, второй – приписывает к нему справа и слева такое же число, третий – делит полученное шестизначное число на 7, четвертый – на 3, пятый – на 13, шестой – на 37 и передает свой ответ задумавшему, который видит, что к нему вернулось его число. Секрет фокуса: если к любому двузначному числу приписать справа и слева такое же число, то двузначное число при этом увеличится в 10101 раз. Число 10101 равно произведению чисел 3, 7, 13 и 37, поэтому после деления мы и получаем задуманное число.

Конкурс болельщиков – “Веселый счет”. От каждой команды приглашается представитель. На доске две таблицы, на которых в беспорядке отмечены числа от 1 до 25. По сигналу ведущего учащиеся должны найти на таблице все числа по порядку, кто это сделает быстрее, тот и выиграл.

Фокус “Число в конверте”

Фокусник пишет на бумажке число 1089, вкладывает бумажку в конверт и заклеивает его. Предлагает кому-нибудь, дав ему этот конверт, написать на нем трехзначное число такое, чтобы крайние цифры в нем были различны и отличались бы друг от друга больше, чем на 1. Пусть затем он поменяет местами крайние цифры и вычтет из большего трехзначного числа меньшее. В результате пусть он снова переставит крайние цифры и получившееся трехзначное число прибавит к разности двух первых. Когда он получит сумму, фокусник предлагает ему вскрыть конверт. Там он найдет бумажку с числом 1089, которое у него и получилось.

Фокус “Угадывание дня, месяца и года рождения”

Фокусник предлагает учащимся выполнить следующие действия: “Умножьте номер месяца, в котором вы родились, на 100, затем прибавьте день рождения, результат умножьте на 2, к полученному числу прибавьте 2, результат умножьте на 5, к полученному числу прибавьте 1, к результату припишите 0, к полученному числу прибавьте еще 1 и, наконец, прибавьте число ваших лет. После этого сообщите, какое число у вас получилось”. Теперь “фокуснику” осталось от названного числа отнять 111, а потом остаток разбить на три грани справа налево по две цифры. Средние две цифры обозначают день рождения, первые две или одна – номер месяца, а последние две цифры – число лет, зная число лет, фокусник определяет год рождения.

Фокус “Угадать задуманный день недели”.

Пронумеруем все дни недели: понедельник – первый, вторник – второй и т. д. Пусть кто-нибудь задумает любой день недели. Фокусник предлагает ему следующие действия: умножить номер задуманного дня на 2, к произведению прибавить 5, полученную сумму умножить на 5, к полученному числу приписать в конце 0, результат сообщить фокуснику. Из этого числа он вычитает 250 и число сотен будет номером задуманного дня. Разгадка фокуса: допустим, задуман четверг, то есть 4 день. Выполним действия: ((4×2+5)*5)*10=650, 650 – 250=400.

Фокус “Угадать возраст”.

Фокусник предлагает кому-нибудь из учащихся умножить число своих лет на 10, затем любое однозначное число умножить на 9, из первого произведения вычесть второе и сообщить полученную разность. В этом числе “фокусник” должен цифру единиц сложить с цифрой десятков – получится число лет.

25232634



Предварительный просмотр:

Солнечные  часы.Солнечные часы у каменной лестницы в Таганроге.

          Самые первые часы на земле - солнечные.  

Они были гениально простыми: воткнутый в землю шест.  Вокруг него нарисована шкала времени. Тень от шеста, передвигаясь по ней, показывала, который сейчас час.  Позднее такие часы делали из дерева или камня и устанавливали на стенах общественных зданий.

          Затем появились переносные солнечные часы, которые изготавливали из ценных пород дерева, слоновой кости или бронзы.  

                                   b811

          Были даже часы, которые условно можно назвать карманными; их нашли при раскопках древнего города.   Эти солнечные часики, сделанные из посеребренной меди, имели форму окорока, на котором прочерчены линии.   Шпилем - стрелкой часов - служил свиной хвостик.   Часы были небольшие.    Их вполне можно было бы поместить в кармане. Но карманов жители древнего города еще не придумали.    Вот и носили такие часы на шнурке, цепочке или прикрепляли к тросточкам из дорогого дерева.

Первый простейший прибор для измерения времени — солнечные часы — был изобретен вавилонянами примерно 3,5 тысячи лет назад. На плоском (кадран), разграфленном линиями, камне, служившим циферблатом, укрепляли небольшой стержень (гномон), а часовой стрелкой служила тень от него. Время по таким часам можно было узнавать только днем, поэтому ночью им на замену приходили водяные часы, названные греками клепсидра. Металлический, глиняный или стеклянный сосуд наполняли водой, которая медленно, по капле, вытекала, уровень ее понижался, и по делениям на сосуде определяли который час. Не менее распространенными в Европе и Китае были так называемые «огненные» часы — в виде свечей с нанесенными на них делениями.

Солнечные часы имели один существенный недостаток: они могли «ходить» только на улице, да и то на освещенной солнцем стороне. Это, конечно, было крайне неудобно.   Видимо, поэтому изобрели водяные часы.

 Водяные  часы

         По капелькам вода перетекала из одного сосуда в другой, и по тому, сколько воды вытекало, определяли, сколько прошло времени.  Водяные часы - `клепсидры` - были известны уже египтянам и некоторым культурным народам Дальнего Востока. Их наименование происходит от сочетания двух греческих слов klepto – брать    и udor - вода.    В Китае, например, ими пользовались 4,5 тысячи лет назад.  Кстати, первый будильник на земле тоже был водяным - и будильником, и школьным звонком  одновременно.  Его изобретателем считают древнегреческого философа Платона, жившего за 400 лет до нашей эры.  Этот прибор, придуманный Платоном для созыва своих учеников на занятия, состоял из двух сосудов.    В верхний наливалась вода, откуда она понемногу вытекала в нижний, вытесняя оттуда воздух. Воздух по трубке устремлялся к флейте, и она начинала звучать. Причем будильник регулировался в зависимости от времени года. 8-1

Клепсидры были очень распространены в древнем мире.

Кроме водяных часов были известны еще часы песочные и огневые (чаще всего будильники).  На Востоке последние представляли собой палочки или шнуры,  сделанные из медленно горящего состава.

Песочные  часы.

Первые песочные часы появились более тысячи лет назад. При помощи этих часов можно было измерять лишь небольшие промежутки времени, обычно не более получаса.

           песочные  часы9

                         

          Особенно большое значение имели песочные часы на кораблях: в пасмурную погоду, когда по небесным светилам нельзя было определить время, его узнавали по песочным часам. А в конце XVI века было сделано новое открытие. Молодой ученый Галилео Галилей, наблюдая за движением самых разных лампад в  Пизанском соборе во время богослужения, установил, что ни вес, ни форма лампад, а лишь длина цепей, на которых они подвешены, определяет периоды их колебаний от ветра, врывающегося в окна.   Ему и принадлежит идея создания часов с маятником.

  Механические  часы.

Знаменитый голландский ученый Христиан Гюйгенс в 1656г. создал довольно совершенные механические часы с маятником.

                                             часы  гюйгенса 7

          В этих часах гиря поворачивала колесо, и его вращение передавалось верхнему - храповидному колесу. Маятник проходил между зубьями вилки, и при каждом качании вилка заставляла поворачивать то вправо, то влево стержень с двумя пластинками. Эти пластинки были расположены так, что поочередно упирались то в один, то в другой зубец  храповидного  колеса.

Теперь  в  механических  часах  маятник   и  груз,  какие  были  в  громоздких  напольных  часах,  заменили  тоненькие  витки  пружин.  Пружины  приводят  механизм  в  действие  и  регулируют  скорость  вращения  шестеренок,  двигающих  стрелки.  Современные  пружинные  часы – одно  из  самых  точных  механических  устройств,  когда  либо,  созданных  человеком.

 Конструкция  часов

Первые механические часы имели лишь одну часовую стрелку и грубый немецкий или итальянский (древнечешский) циферблат, т.е. с 12-часовой или 24-часовой шкалой.

          У однострелочных часов на  циферблате  преобладали гравированные римские цифры. У напольных часов с квадратным латунным циферблатом мы часто встречаемся со шкалой, выгравированной в самом латунном кольце, прикрепленном к некруглой циферблатной плите. Видимые части циферблатной плиты вокруг кольца украшались гравированными орнаментами или же литыми латунными рельефными аппликациями, расположенными прежде всего в углах циферблата.

          С маятниковыми часами пришла в хронометрию повышенная точность измерения времени, а с этим появилась и минутная стрелка на циферблате. Для этой стрелки изготовляли и специальную минутную шкалу, расположенную на внешней окружности прежней часовой шкалы.

Для обозначения пятиминутных интервалов на этой шкале сначала служили лишь арабские цифры, которые у небольших циферблатов были по соображениям экономии пространства непосредственно частями шкалы, а у больших часов их выгравировывали или рисовали над часовой шкалой.

          Интересны изменения формы стрелок. У однострелочных часов стрелки надевались на четырехгранный часовой вал, а для облегчения проворачивания их рукой они имели на противоположном              удлиненном   конце носик или опору для пальца.
         Во второй половине XVIII в., когда у часов стали встречаться все чаще неразборные серебряные или посеребренные циферблаты, часовщики стали делать часовые и минутные стрелки одинаковой формы, но различающиеся по величине. Многие изобретатели старались усовершенствовать часы, и в конце XIX века они стали вещью обыденной и необходимой.  Очередная  революция  в  способах  измерения  времени  произошла  в  конце  60  годов – с  изобретением  кварцевых  часов.  Кварц  обычный  минерал,  довольно  распространенный. Если  через  него  пропустить  от  батарейки  ток  небольшого  напряжения,  кварц  начинает  вибрировать  со  строго  определенной  частотой.  Микросхемы,  подобные  компьютерным,  подсчитывают  количество  колебаний  и  показывают  время  на  циферблате.  Такие  часы  могут   иметь  цифровой  дисплей, который  в  отличие  от  механических  показывает  время  одними  цифрами,  без  стрелок.  Их  циферблат  сделан  из  жидких  кристаллов.   Атомные  часы  отличаются  невероятной  точностью,  они  идут  с  погрешностью  лишь  в  одну  секунду,  за  два  или  три  миллиона  лет!  Атомные  часы  основаны  на  высвобождении  энергии  в  результате  процессов  происходящих  в  атоме.

Интересно о часах.

* 1485 год. Леонардо да Винчи сделал эскиз устройства fusee для башенных часов. Как выяснилось, карманные часы от башенных отличаются только размерами - принцип тот же.

* Часы, в основе работы которых лежит механизм с колеблющимся маятником, создал голландец Христиан Гюйгенс. Однако это стало возможным благодаря экспериментам и исследованиям, проводимым знаменитым математиком и астрономом Галилео Галилеем в 1580-м году.

* Изобретение маятника примерно в начале 15-го века способствовало появлению и первых домашних часов, которые изготавливали местные кузнецы и мастера. Первое время домашние часы вешались на стену, поскольку их маятники были действительно огромными. С дальнейшим усовершенствованием часовых механизмов часы становились все легче и компактнее, и вскоре была создан их настольный вариант.

* Благодаря изобретению Галилея, погрешность измерения времени снизилась с 20-30 минут в день до 3 минут, а изобретение анкерного механизма позволило снизить эту погрешность до 3 с в неделю , что считалось большой точностью.

* Для производства механических часов, какими были первые образцы, требовались гораздо более точные станки, чем весь прежний инструментарий. Современное точное машиностроение родилось из мастерства механиков часовщиков.

* Самая ранняя дата, которую можно достоверно назвать, говоря о применении шпиндельных механических часов, относится приблизительно к 1340 г. или несколько позже (с точностью до нескольких лет). С тех пор они быстро вошли в общее употребление и стали предметом гордости городов и соборов. В 1450 г. появились пружинные часы, а к концу XV столетия — переносные часы, но еще слишком крупные, чтобы их можно было назвать карманными или наручными.



Предварительный просмотр:

ЧИСЛА РАССКАЖУТ О СЕБЕ

4308_122347_2

Число – одно из основных понятий математики, позволяющее выразить результаты счета или измерения. Понятие числа служит исходным для многих математических теорий. Числа находят широкое применение В физике, механике, астрономии, химии и многих других науках. Числами постоянно пользуются в повседневной жизни.

В школьном курсе мы будем постепенно знакомиться со всеми числами, в том числе с натуральными, действительными, рациональными и иррацинальными. Но в данной работе мы будем говорить о мало знакомых нам числам, а именно совершенных, дружественных и фигурных числах.

Согласно учению Пифагора, числа являются мистической сущностью вещей, математические абстракции таинственно руководят миром, устанавливая в нем определенный порядок. Пифагорейцы высказывали предположение о том, что все закономерности мира можно выразить с помощью чисел. Числа признавались не просто выражениями закономерного порядка, но и основой материального мира.

Сами пифагорейцы высоко ценили результаты, полученные ими в теории гармонии, ибо они подтверждали их идею, что числа определяют все. Число для пифагорейцев – это собрание единиц (только целое положительное число). Единицы, составляющие число, считались неделимыми и изображались точками, которые располагались в виде правильных геометрических тел. При этом получали ряды «треугольных», «квадратных», «пятиугольных» и других «фигурных» чисел. Одинаковые шары можно укладывать на плоскости так, чтобы они образовывали различные фигуры – треугольники, квадраты, шестиугольники и т. д.

«Треугольные» числа это числа 1; 1+2=3; 1+2+3=6; 1+2+3+4=10, общее выражение для них 1+ 2+ 3+…+=.

Рассмотрим «упаковки» шаров в равностороннем треугольнике. Числа, которые показывают, сколько шаров содержится в треугольниках, называют треугольными.

«Квадратные» числа это числа 1; 1+3=4; 1+3+5=9; 1+3+5+7=16; …; 1+3+5+….

Пифагорейцы определили также «кубические» числа 1; 8; 27;…. Отметим, что наши выражения «квадрат» для числа  и куб для числа  являются пережитком пифагорейской терминологии.

Пифагорейцы рассматривали «пятиугольные» числа 1; 1+4=5; 1+4+7=12; 1+4+7+…+

Совершенным числом называют натуральное число, равное сумме всех его собственных деталей, т.е. делителей, отличных от самого числа. Так, совершенными числами являются числа 6 и 28, ибо 6=1+2+3, 28=1+2+4+7+14.

Знаменитый греческий философ и математик Никомах Герасский, живший в 1 в., отмечал, что совершенные числа красивы, а красивые вещи редки и немногочисленны. Он не знал, сколько имеется совершенных чисел. Не знаем этого и мы. До настоящего времени нет ответов на два важных вопроса:

1) Существует ли наибольшее чётное совершенное число?

2) Существует ли нечетное совершенное число?

До сегодняшнего дня не обнаружено ни одного нечетного совершенного числа, хотя и не доказано, что такого числа не существует. Было обнаружено правило, как искать четные совершенные числа. Это правило состоит в следующем: если число простое, то число  совершенное.

Все совершенное редко встречается в мире. Редко встречаются и совершенные числа.                                                                                                    Пара натуральных чисел называется дружественной, если каждое из них равно сумме всех собственных делителей другого. Например, дружественную пару образует числа 220 и 284, так число 220 имеет делители 1,2,4,5,10,11,20,22,44,55 и 110, а число 284 – делители 1,2,4,71,142 и выполняются следующие равенства:1+2+4+5+10+11+20+22+44+55+110=284 1+2+4+71+142=220

Все известные дружественные пары состоят либо из двух четных чисел, либо

из двух нечетных. До сих пор не обнаружено дружественной смешанной пары, но вместе с тем и не доказано, что такой пары не существует. Неизвестно также, конечно или бесконечно число дружественных пар.

Приведём краткие сведения из интересной истории совершенных чисел и дружественных пар чисел.

Первых прекрасным совершенным числом, о котором знали математики Древней Греции, было число 6. Этому числу уделяли много внимания математике, философы, богословы. В библейских преданиях утверждается, что мир был создан в шесть дней; ведь более совершенного числа среди совершенных чисел, чем 6, нет, так как оно первое из них, Следующим совершенным числом, известным древним грекам до Евклида, было число 28. Евклид сделал первый важный шаг в построение теории совершенных чисел. Он доказал, что всякое число, которое может быть представлено в виде произведения множителей 2p-1 и 2p-1, где 2p-1 простое число, является совершенным числом. Отметим, что для этого необходимо, чтобы p было простым, хотя далеко не для всякого простого числа p число 2p-1 также является простым.

В течение почти двух тысяч лет люди знали только четыре совершенных числа. Неизвестно было, существуют ли другие совершенные числа, которые можно представить в виде 2, и возможны ли совершенные числа, не удовлетворяющие этой формуле. Неразрешимая загадка совершенных чисел, бессилие разума перед их тайной привели к признанию божественности этих удивительных чисел. Церковь учила, что для спасения души достаточно изучать совершенные числа; тому, кто найдёт новое божественное совершенное число, уготовано вечное блаженство. Но даже надежда на такую награду не смогла помочь математикам средневековья. Лишь в ХV в. было обнаружено пятое совершенное число. Им оказалось число 33550336, его можно получить по формуле Евклида при p = 13.

Через двести лет усиленными поисками новых совершенных чисел занялся французский физик, математик и богослов Марен Мерсенн. Он утверждал, что следующие шесть совершенных чисел должны иметь евклидовскую форму со значениями p, равными 17, 19, 31, 67, 127, 257. Долгое время оставалось неизвестным, прав был Мерсенн или нет. Оказалось, что не все утверждения Мерсенна были верны. Он правильно предсказал значения p = 17, p = 19, p = 31, p = 127. Числа, полученные по формуле Евклида 2 при p = 67 и при p = 257, вопреки Мерсенну, не являются совершенными. Мерсенн «пропустил» совершенные числа со значениями p = 61, p = 89, p = 107. Всё это было обнаружено позже.

Л. Эйлер сумел найти новую теорему о таинственных и загадочных совершенных числах: все чётные совершенные числа имеют вид, указанный Евклидом. Вопрос о том, существуют ли нечётные совершенные числа и каков их вид, остаётся открытым до нашего времени. И.М. Первушин нашёл девятое совершенное число – 2305843009213693951 , которое содержит тридцать семь цифр. Он совершил при этом настоящий вычислительный подвиг, так как считал без всяких вычислительных средств. Мерсенн в своё время  заметил, что вечности не хватит для проверки простоты числа, имеющего 15-20 знаков (простое число  Первушина имеет 19 знаков). Последующие совершенные числа находили с помощью вычислительных устройств, включая ЭВМ. В настоящее время известно 23 совершенных числа; последние пять чисел получаются по формуле Евклида соответственно при p = 4253, p = 4423, p = 9689, p = 9941 и p = 11213. Число 2 (2- 1) имеет 2561 знак, а число 2 (2 - 1) – 6751 знак.

Совершенные числа обладают рядом таинственных и вместе с тем замечательных свойств. Все эти числа являются «треугольными» (о таких  числах говорилось  выше). Каждое совершенное  число есть сумма вида 1 + 2 + 3 + … + n. Далее, любое совершенное число, кроме 6, есть частичная сумма ряда из кубов нечётных чисел, т. е. равно 1 + 3 + 5 + … + (2k – 1) . Сумма обратных значений всех делителей  совершенного числа, включая и само число, всегда равна 2. Например, для числа 28 имеем:

Дружественные пары чисел являются обобщением совершенных чисел. Наименьшая дружественная пара чисел 220 и 284 была известна древним грекам. В 1636г. Пьер Ферма указал новую дружественную пару чисел: 17296 и 18146. Рене Декарт нашёл третью дружественную пару чисел: 9363584 и 9437056. Ферма и Декарт независимо друг от друга установили правило образования дружественных пар чисел. Леонард Эйлер опубликовал список 64 дружественных пар. Позже было обнаружено, что в двух случаях он ошибся. В 1830г. Лежандр нашёл ещё одну дружественную  пару чисел. В 1867г. шестнадцатилетний итальянец Б. И. Паганини удивил математический мир своим сообщением о том, что числа 1184 и 1210 образуют дружественную пару. Это вторая по величине дружественная пара, однако её не заметили учёные, интересовавшиеся данным вопросом.

В настоящее время известно более 600 дружественных пар чисел, большинство из них найдено с помощью ЭВМ. Многие числа дружественных пар состоят более чем из 30 цифр.

Приведём некоторые примеры дружественных пар чисел: 2620 и  2924, 5020 и 5564, 6232 и 6363, 10744 и 10856, 12 285 и 14 595, 63020 и 76 084, 66928 и 66992, 67095 и 71145, 69615 и 87633. 

Существуют еще числа близнецы. Два простых числа, разность которых равна 2, называются близнецами. Ученые до сих пор не знают, есть ли самая большая пара чисел-близнецов.

Мистические свойства некоторых чисел.

Магические свойства чисел волновали людей еще в глубокой древности. Хотим мы этого или нет, но где-то глубоко в нас сидит какая-то симпатия к одним числам и осторожность , а порой и совсем неприятные чувства к другим. Особым почитанием окружены были числа в Древней Греции. Философ и математик Пифагор утверждал, что «числа правят миром». Он создал школу единомышленников, которые верили в магию чисел и думали, что за каждым предметом стоит какое-то число. Числа, считали они, несут с собой добро и зло, счастье и несчастье.

Число 0. Это символ абсолюта, бесконечности и является числом непроявленного мира. Это начало всех вещей, это сон или смерть. Графически изображается как кольцо или круг.

Единица. Пифагор и его единомышленники ставили единицу выше всех других чисел, считая, что именно она – начало всех начал, что именно от нее пошел весь мир. Без единицы не состоялось бы самое простое счисление. Графически изображается как вертикальная линия.

Двойка. Это число является символом любви, непостоянства и равновесия. Число 2 – это мягкость и тактичность, стремление сгладить острые углы. Оно находится между добром и злом, теплом и холодом, светом и мраком, богатством и нищетой.

Тройка. У многих народов весьма продолжительное время пределом счета было число 3. Его считали символом полноты, совершенства. Так, у древних греков это число считалось счастливым, а в Древнем Вавилоне стали поклоняться трем божествам: Солнцу, Луне и Венере. Число три стало самым излюбленным числом и в мифах, и в сказках. Еще его магия заключалась в том, что оно складывалось из суммы предыдущих чисел (3=1+2), символизировалось треугольником, который представляет прошлое, настоящее и будущее.

Четвёрка. Древние считали это число символом устойчивости и прочности. Ведь оно представлено квадратом, четыре стороны которого означают четыре стороны света, четыре времени года, четыре стихии- Огонь, Земля, Воздух и Воду.

Геометрическая правильность: квадрат или ромб; в славянской символике - символ Земли.

Тоже очень знаменательное число, как и три.

В японо-китайском мире 4-роковое число.

        Числу 5 Пифагор отводил особое место, считая его самым счастливым из всех чисел. Древние же считали число «пять» символом риска, приписывали ему непредсказуемость, энергичность и независимость.

Числовая правильность: 5-простое число; 5 пальцев - пятеричная система счисление; 5- конечная звезда; 5 чувств ( зрение, слух, обоняние, осязание, равновесие). 5 главных признаков в православие: Обрезание Господне, Рождество Иоанна, Праздник святых Петра и Павла, Усекновение главы Иоанна-Крестителя, Покров пресвятой Богородицы. 5 заветов буддизма; мусульманин молится 5 раз в день.

        Число 6. Неужели и о нём можно что-то порассказать? Конечно. Пифагор считал его удивительным числом, так как оно обладает замечательным свойством: получается в результате сложения или перемножения всех чисел, на которые делится. Шестёрка делится на 1, 2, 3 и если сложить или перемножить эти числа, то вновь получиться 6 (1 + 2 + 3 = 1 х 2 х 3 = 6). Таким свойством не обладает ни одно другое число.

6 - «число творения», Бог создал мир за 6 дней.

Геометрическая правильность: правильная, плоская, выпуклая фигура – правильный 6 - угольник.

        В славянской символике – символ солнца.

        Числовая правильность: 6 – совершенное число.

        6 – число предметов в чайных и столовых сервизах.

        Семь. В египетской и вавилонской философии и астрономии оно рассматривалось как сумма двух «жизненных» чисел: три и четыре. Три человека – отец, мать, ребёнок составляют основу жизни; а четыре – это число стран света и направлений ветра, откуда приходит дождь, живительная влага которого делает землю плодоносящей. По утверждению Пифагора, сумма чисел 3 и 4 (символизирующих собой треугольник и квадрат) считалось проявлением законченности и совершенства. Поэтому-то число 7, сумма тройки и четвёрки, воспринималось как священное.

Семь считали магическим, возможно, ещё и потому, что человек воспринимает окружающий мир (свет, звуки, запахи, вкус) через семь «отверстий» в голове (два глаза, два уха, две ноздри, рот).

Свято почитали число и древние евреи. В Священном писании говорится: «…В шесть дней создал Господь небо и землю, море и всё, что в них, а в день седьмой почил». С тех пор евреи, а затем и все христиане, воспринявшие от них Ветхий Завет, считают 7 священным числом.

С давних пор число 7 имело разное символическое значение. Так, древние греки ежегодно выбирали 7 лучших актёров (комических и трагических), древние римляне почитали семерых мудрецов.

В христианстве говориться о семи грехах и семи таинствах. У мусульман местом «высшего просветления» считается седьмое небо, куда, якобы, попадают все угодные аллаху.

Это волшебное число широко использовалось в сказках, мифах древнего мира. У Атланта, подпиравшего плечами небесный свод, было семь дочерей-плеяд, которых Зевс превратил потом в созвездия. Одиссей семь лет был в плену у нимфы Калипсо. У вавилонян подземное царство окружено семью стенами. Будда сидел под фиговым деревом с семью плодами. У индусов есть обычай дарить на счастье семь слоников. Великий пост у христиан длиться семь недель. В Библии повествуется о семи светильниках, семи ангелах, о семи годах изобилия и семи - голода.

Сказки и загадочное число семь: злодей Синяя Борода имел семь жён; семь путешествий Синбада; Белоснежка жила у семи гномов за семью горами; волк и семеро козлят; семеро из одного стручка; храбрый портняжка убил семь мух одним ударом; царевна жила в лесном тереме у семи богатырей; цветик - семицветик и др.

         Христос: 7 страстей, страстная неделя.

         У японцев: 7 добрых богов; на веку человека случается 7 удач.

         А вообще-то особой геометрической правильностью семёрка не обладает, да и очень неудобное для расчётов это число, но испокон веков почиталось оно как священное число.

        Число 8. Древние считали воплощением надежности, доведенным до совершенства. Символизировалось двойным квадратом. Разделенное пополам, оно имеет равные части. Если его еще разделить, то части тоже будут равными(2, 2, 2, 2).

        Девятка. Таинственную силу приписывали древние и числу 9, причем в одни времена добрую, в другие – злую.

У древних римлян за этим числом установилась добрая слава. Монголы считали девятку совершенством. В японо-китайском мире 9 – несчастливое число; воспринимается как «болезнь».

        Десять. Символом гармонии и полноты выступало число 10. Этим числом, выражающимся суммой 1+2+3+4, символизировался философский камень. Десяток стал основой десятичной системы счета, которую используют во всем мире.

        Одиннадцать. Наши предки относили к нехорошим числам, число 11. Как теперь установлено, изменения активности Солнца влияют на здоровье людей, а такие изменения совершаются периодически через каждые 11 лет. Но это совсем не значит, что число 11 имеет мистическое значение.

        Число 12. Очень почиталось число 12, «дюжина». 12 месяцев в году, 12 знаков Зодиака, 12 делений на циферблатах часов, сервизы на 12 персон. Число 12 замыкало свет, поэтому его считали символом полноты, богатства, счастливым числом. Число 12 имеет собственные делители 2, 3, 4, 6, что при низком уровне вычислений в древности давало большие преимущества.

        Число 13. А вот с числом 13 были одни неприятности. Оно простое и делится только на себя и единицу. Суеверия, связанные с числом 13, оказались наиболее устойчивыми и получили наибольшее распространение. Люди многих стран(Англия, Франция, Польша и др.) считают это число несчастливым, испытывают перед ним панический страх и стараются избегать его. Но интересно заметить, что у наших предков – славян не было суеверий, связанных с числом 13.

        Число 40. Оно играет в преданиях многих восточных народов особую роль. Выступая на определенной стадии предельным при счете, число 40 попадает в категорию счастливых. С числом 40 связан ряд религиозных обычаев и народных поверий.

        Число 60. Во многих вавилонских, персидских и греческих легендах синонимом самого большого представлялось 60. Это число вавилоняне считали «божьим».

        Число 1001. Это число считалось мистическим. Получается оно последовательным умножением трех простых чисел: 7, 11 и 13. А если умножить на него любое трехзначное число, то результат будет состоять из умноженного числа, записанного дважды.

        Число 666. Число 666- число зверя. В разных странах христиане обозначали этим числом неугодных церкви правителей, общественных деятелей, выдавая их за антихристов.

Число 3

В далекие времена люди с большим трудом научились считать сначала до двух и только через много – много лет начали продвигаться в счете. Каждый раз за двойкой начиналось что-то неизвестное, загадочное. Когда считали “один, два, много”, то после двух было “всё”. Поэтому число три, которое при счёте должно было идти за числом два, обозначало “всё”.

Числа – это выражение определённого количества. У всех народов существовал только ручной счет: тройку показывали тремя пальцами. А если надо было записать числа, пальцы заменялись палочками. Какое число, столько и палочек. Иногда их располагали лёжа, порой – стоя. Римские цифры, которые особенно похожи на ручной палочный счет, так и писались – стоя: I, II, III. А в нынешних цифрах, что пришли к нам от арабов, стоит, словно вытянутый палец, только единица, остальные улеглись набок. Тройка – это лежащие палочки с двумя косыми росчерками http://festival.1september.ru/articles/210103/img1.gif.

Писались цифры по-разному. Вот как писали цифру три:

  • в Месопотамии http://festival.1september.ru/articles/210103/img2.gif
  • в Египте    http://festival.1september.ru/articles/210103/img3.gif
  • в Вавилоне http://festival.1september.ru/articles/210103/img4.gif
  • у народов Майя http://festival.1september.ru/articles/210103/img5.gif
  • древние славяне для записи цифр пользовались буквами алфавита со специальными черточками наверху. Такая черточка называлась “титло” http://festival.1september.ru/articles/210103/img6.gif
  • арабская 3.

Цифру три можно изобразить с помощью набора пяти отрезков http://festival.1september.ru/articles/210103/img7.gifили четырех отрезков http://festival.1september.ru/articles/210103/img8.gif. Эти цифры предназначены для электронных машин и используются на почтовых конвертах.

Число три считалось в древности магическим, потому что оно складывалось из суммы двух предыдущих (3 = 2 + 1), символизировало треугольник, который представляет прошлое, настоящее и будущее. Даже в начале XX века жители некоторых островов Полинезии считали предметы так: один, два, три, много. Пифагорейцы разбили числа на четные и нечетные. Четные числа считались мужскими, а нечетные – женскими. Одни числа считали счастливыми, а другие – несчастливыми, несущими зло и горе. От Пифагора и его последователей и пошли всякие суеверия, связанные с числами. Особенно много суеверий связано с числом три. Те, кто считает его счастливым, говорят: “Бог троицу любит”. Другие напротив, считают его несчастливым. Отсюда и ругательное слово “треклятый”. Число три играло важную роль в магических обрядах. Все заговоры для придания им большей силы должны были произноситься трижды. От сглаза трижды плюют через левое плечо и трижды стучат по дереву. А троекратный поцелуй по русскому обычаю? В различных поверьях и легендах сохранились триединые действия: скажем, успех достигался с третьего раза (с третьей попытки). Особенно в спорте. Три попытки попасть в кольцо, полагая, что этого достаточно.

Легенды тоже не избежали числа три. Например, сказание о том, что Земля держится на трех китах. Дух триединства проявляет себя везде и во всем. Смотрите сами:

  • составляющие времени: прошлое – настоящее – будущее;
  • трехмерность пространства: высота – ширина – длина;
  • три ветви жизни: животные – растения – микроорганизмы;
  • три исторические эпохи: современная – средние века – древний мир;
  • три периода жизни человека: молодость – зрелость – старость;
  • человек имеет три основные силы: мыслительную – эмоциональную – двигательную;
  • человеку свойственны три проявления ума: интуиция – интеллект – инстинкт;
  • продолжительность жизни на земле: мужское начало – женское начало – новая жизнь.

И, наконец, последний пример: Земля – третья по расстоянию от Солнца планета Солнечной системы. Да, магическая это цифра – три!

Число три стало самым излюбленным числом и в мифах, и в сказках. Вот яркие примеры: камень на распутье предлагает богатырю три пути, отправляют за тридевять земель, в тридесятое государство, у отца три сына или три дочери, золотая рыбка и джинн выполняют по три желания, на третий раз обычно всё получается, «три девицы под окном…», три головы у Змея Горыныча, три стрелы Ивана-царевича в сказке «Царевна-лягушка» - всё это подтверждения моим словам. Можно вспомнить и названия сказок, фильмов, пьес. К примеру: три богатыря, три медведя, три мушкетёра, три толстяка, три танкиста, три сестры.

Как же не задуматься о таком совпадении!? То, что везде используют число три (реже – семь и одиннадцать), я заметил давно. А про простые числа (а главное про их свойства) совсем недавно. Вспомним свойства простых чисел. Они делятся только на единицу и на самих себя. Соответственно являются самыми «крепкими» числами при делении. Не зря поросята (из сказки «Три поросёнка») были чуть-чуть не съедены когда остались по одному. А «победили» волка лишь когда снова оказались вместе.

Три богатыря земли русской, трехглавый дракон, в тридевятом царстве, в тридесятом государстве. А где оно? Оказывается, рядом, потому что 3 х 9 = 27, 27 дней – это как раз лунный месяц – время обращения Луны вокруг Земли. Идем дальше: 3 х 10 = 30, а это период между двумя новолуниями. Вот вам и указание на то, где находится “Тридевятое царство, Тридесятое государство” – на расстоянии, равном месяцу пути.

Вот такой пример сказочной математики.

Едва ли не в каждой сказке появляется цифра три. Вот несколько названий:

  • “Три медведя”
  • “Три арбузных семечка”
  • “Три калача и одна баранка”
  • “Три толстяка”
  • “Три ветра”
  • “Три поросенка”
  • “Три подземных царства”
  • “Три товарища”
  • “Три брата”
  • “Три счастливца”
  • “Три смерти”
  • “Три очка за старичка”
  • “Три мушкетера”
  • “Три охотника”
  • “Трое умельцев”
  • “Три царевича”
  • “Три встречи”
  • “Третий глаз Шивы”
  • “Три друга”
  • “Три богатыря” и другие. Их много.

По мнению русских три приносит людям счастье. Любовь русских людей  к цифре три имеет дело с христианской и греческой культурой. В «Библии» много сказок о числе три: У израильтян есть трое святых предков. Иисус ожил через три дня после смерти . Троица имеет в виду триединое божество, то есть бог-отец, бог-сын, бог-дух святой. По обычаю, когда встречаются русские люди, то они целуются трижды. В русском языке во многих поговорках и пословиц употребляют цифру три.

ПОСЛОВИЦЫ И ПОГОВОРКИ, СОДЕРЖАЩИЕ ЧИСЛО 3.

  1. Три раза прости, а в четвёртый прихвостни.

  2. Три деньги в день, куда хочешь, туда и день.

  3. Три дни молол, а в полтора дни съел.

  4. Три попа, а заросла в церковь тропа.

  5. Три беды, семь бед, а всё помощи нет.

  6. Трёх лет Ивана по отечеству звать рано.

  7. Три дня – не три года.

  8. За учёного трёх неучёных дают, да и то не берут.

  9. Говорит три дня, а всё про злыдни.

  10. Наскочил плут на тройного плута.

  11. От горшка три вершка.

  12. Наврал с три короба.

  13. Заблудился в трех соснах.

  14. Мнится – писание лёгкое дело: пишут три перста, а болит всё тело.

  15. В августе мужику три заботы: и косить, и пахать, и сеять.

  16. Февраль три часа прибавит.

  17. Заведутся злыдни на три дня, и не изживёшь довеку.

  18. В лес идут на троих один топор берут.

  19. Не хвались замужеством третьего дня, а хвались третьего года.

  20. В нашей волости три болезни: рекрутство, подати да земщина.

  21. На то лето, не на лето, а на третий год, когда чёрт пошлёт.

ЧИСЛО 3 В РЕЛИГИИ

 Для начала обратимся к христианству. Самое известное - это Святая Троица: Бог-Отец, Бог-Сын и Святой Дух. Три волхва принесли дары родившемуся Иисусу в Назарет. Согласно Новому Завету три дня и три ночи надлежало быть Сыну Божьему в сердце земли; Иисус Христос воскрес утром на третий день; Трижды отрёкся от Иисуса апостол Пётр. Идея триединства составляет основу многих философских и религиозных учений. В Древнем Вавилоне поклонялись трем главным божествам: Солнцу, Луне, Венере. В Индии поклоняются трехглавому Тримурти. На Востоке этот принцип назывался “Сам-цей” – “Три драгоценности”. Высочайшая драгоценность внизу – это Земля, высочайшая драгоценность в середине – это Небо, высочайшая драгоценность в середине – это Человек. В славянской мифологии 3 — одна из трёх священных цифр. Обозначает: 1) количество священных цифр; 2) троичность миросозидания (трансцентдентные сущности Тригла и Триглав). Имеет своё изображение в магических и народных орнаментах.

ЧИСЛО 3 В СКАЗКАХ А. С. ПУШКИНА

Очень интересовался происхождением арабских цифр наш великий поэт и сказочник Александр Сергеевич Пушкин. Он думал, что все арабские цифры могли получиться из квадрата, пересеченного диагоналями.

А вот сделанная им запись:

ABECD – цифра 3;

http://festival.1september.ru/articles/210103/img9.gif

AD – цифра 1;

ABDC – цифра 2;

ABD + AE – цифра 4.

В сказках Пушкина уже в зачине часто встречается цифра три. Например:

  • “Негде, в тридевятом царстве, в тридесятом государстве, жил-был славный царь Дадон…”
  • Три девицы под окном пряли поздно вечерком…”
  • “Жил старик со своею старухой у самого синего моря.
  • Они жили в ветхой землянке ровно тридцать лет и три года…”

События в сказках складываются по тройственной схеме, с повторяющимися словесными фразами. Звучит утроенный мотив.

Например, обернувшись насекомым (мушкой, комаром, шмелём), Гвидон трижды посещает царство Салтана.

“В муху князь оборотился,
Полетел и опустился
Между моря и небес
На корабль – и в щель залез”.

На острове у него появляется три чуда: белка, царевна Лебедь и тридцать три богатыря. Балда побеждает бесёнка в трёх состязаниях: в беге, в бросании палки, в верховой езде и даёт попу три щелчка. Утроенный мотив, да и сама цифра три звучит и в сказке Ершова “Конёк-горбунок”.

“Стало в третий раз смеркаться,
Надо младшему сбираться…”
“Слушай: завтра на заре,
На широком на дворе
Должен челядь ты заставить
Три котла больших поставить…”

Широкое использование числа «3» у А.С. Пушкина в его знаменитой сказке «О попе и его работнике Балде»

С виду глупый работник Балда соглашается работать всего за 3 щелка. Жадный поп, считая себя умным и хитрым, надеется на «русское авось». Наступает уже срок расплаты, не на шутку испуганный поп хочет  «погубить Балду, отправляет его к чертям собрать «недоимки за 3 года». Чтобы показать «русское лукавство» ума Балды, Пушкин использует традиционный утроенный мотив сказок – поединок с чёртом.

Три раза Балда в море «верёвку крутил», чертям покоя не давал. Мы ощущаем, как нетерпеливее, грознее становится Балда с каждым разом: в первый раз Балда «море морщил», во второй раз «наделал такого шуму, что все море смутилось и волнами так и расходилось», а в третий «Балда над морем опять шумит да чертям верёвкой грозит».

Три раза мерился силой Балда с «посланным бесёнком».

Первые два задания придумал чертёнок:

 «кто скорее из нас обежит около моря».

 «кто далее палку бросит».

А третье задание задал сам Балда:

 «Кобылу подыми-ка ты,

  Да неси её полверсты».

Мы видим, как хитрый Балда лихо и весело побеждает чёрта.

Не зря испугались черти Балды. С таким же страхом ждёт своей расплаты поп. С каждым щелком сила растёт. Мы чувствуем юмор в слове «щелк». Не удар, а щелк. Каким же должен быть удар Балды, если щелк его такой силы. Вот тебе и «глупый» Балда. Оказался он умнее и хитрее даже попа.

                                                        С первого щелчка

                                                        Прыгнул поп до потолка;

                                                        Со второго щелчка

                                                        Лишился он языка,

                                                        А с третьего щелчка

                                                        Вышибло ум у старика.

Поэт говорит о бесшабашности русского характера. Выражая свои симпатии Балде, автор презрительно смеется над бесёнком («ножки протянул») и над попом («со страху корчится»), которые вздумали тягаться «с самим Балдой».

Загадочная семерка

Семь чудес света. Семь дней недели. Семь цветов радуги. Семь недель поста. Семь смертных грехов. Француз дает самую сильную клятву: «Крепко, как семь». Счастливый чувствует себя на седьмом небе.

Названия сказок: «Волк и семеро козлят», «Семь козьих голов».

Пословицы: «Семь раз отмерь, один раз отрежь», «Семь бед – один ответ», «Семеро одного не ждут», «Семь пятниц на неделе».

Число «7» буквально пронизывает всю историю культуры народов Земли.

Зародился культ числа «7» в Древнем Вавилоне. Наблюдая небо, древние астрономы насчитывали 7 планет: Солнце, Луну, Меркурий, Венеру, Марс, Юпитер, Сатурн.

И все-таки, почему 7?

Может быть, почитание семерки связано не только с обожествлением планет? Ведь еще до вавилонян, уже у людей палеолита, было какое-то особое отношение к ритму «7» в орнаментации. Причем не только в Европе, но и в Азии.

Неожиданный ответ был найден американским ученым Миллером в психологии. Он объяснил особенности семерки пропускной способностью нервной системы человека. Статистика опыта подтвердила, что самые разные испытуемые могут без ошибок сравнить в среднем только 7 раздражителей. Человек при кратковременном восприятии может мгновенно охватить не более семи сходных элементов.

7 ЧУДЕС СВЕТА

Так называют прославленные в древности сооружения и статуи. Наверное, Филон Александрийский, живший в IV веке до н. э., и не подозревал, что его имя сохранится в веках по столь забавному поводу. Он, математик, механик, геодезист, составил первый вариант «Семи чудес света». Почему он выбрал именно 7 объектов, точно историки не знают. Самое распространенное объяснение: «семерка» считалась числом магическим, которое в своих наблюдениях за окружающим миром отметили еще древние египтяне. Это и семь цветов радуги, и семь небесных тел в Солнечной системе, видимых невооруженным глазом…

В свой труд «Семь чудес света» Филон Александрийский включил: Египетские пирамиды, Висячие сады Семирамиды, Храм Артемиды Эфесской, Статую Зевса Олимпийского, Галикарнасский мавзолей, Колосс Родосский, Александрийский маяк. (Приложение IV). До нас, к сожалению, дошло лишь одно из этих прекрасных творений человеческого разума и умелых человеческих рук – пирамиды – гробницы древних египетских царей – фараонов.

От Каира, столицы  Египта, далеко на юг тянется цепь остроконечных искусственных гор белого желтоватого цветов. Это пирамиды. Самая большая их них – пирамида фараона Хеопса – высотой около 147 м, построена в начале 27 в. до н.э. Лишь на 2 м ниже пирамида Хефрена. Этому фараону показалась недостаточной гробница величиной с гору, и он приказал поставить рядом с ней каменного стража, вытесанного из целой скалы. У стража лицо человека и туловище льва. Называется он Сфинксом. Образ Сфинкса, мудрого, как человек, и сильного, как лев, внушал суеверный ужас, и люди называли его отцом трепета.

Другое «чудо света» - висячие сады Семирамиды – находилось в самом большом и богатом городе Древнего Востока – Вавилоне. Они были созданы по приказу царя Навуходоносора ІІ в 6 в. до н.э. для своей жены – царицы Семирамиды. Навуходоносор построил свой дворец на искусственно созданной площадке, поднятой на высоту шестиэтажного дома. К площадке уступами поднимались шесть рядов кирпичных арок – шесть аркад. На каждом уступе был насыпан слой земли и разведён цветущий сад. День и ночь сотни рабов вращали колоссальные колёса с кожаными вёдрами, подавая в висячие сады воду Евфрата.

Храм греческой богини Артемиды в городе Эфесе, в Малой Азии, считался третьим «чудом света». Храм представлял собой прямоугольное здание из камня и дерева, обнесённое со всех сторон двойной колоннадой из 127 колон. В 356 г. до н.э. некто Герострат, желая прославиться, пожёг храм. Его имя навеки стало символом бессмысленного варварства.

В северо-западной части Греции, в городе Олимпии, на родине Олимпийских игр, в 456г. до н.э. появился храм, посвящённый Зевсу – верховному богу древних греков. Храм украшала статуя бога, изваянная великим скульптором Фидием. Это четвёртое «чудо». Двенадцатиметровый Зевс восседал на троне из золота, слоновой кости, чёрного дерева и драгоценных камней. Голову его украшал золотой венок из оливковых ветвей – знак миролюбия грозного бога. Голова, плечи, руки, грудь были выточены из слоновой кости. Плащ, перекинутый через левое плечо, волосы и борода Зевса были изваяны из золота. Фидий наделил Зевса человеческим благородством. Его лицо, обрамлённое бородой и вьющимися волосами, было не только строгим, но и добрым. Казалось, что Зевс вот-вот улыбнётся, поднимется с трона и расправит могучие плечи.

В Малой Азии, в столице небольшого Карийского царства – Галикарнасе (ныне город Бодрум в Турции) находилось пятое «чудо» - великолепная гробница, построенная для царя Мавсола его вдовой – царицей Артемисией в середине 4 в. до н.э. Это было величественное сооружение из кирпича, облицованное изнутри и снаружи белым мрамо-

ром, высотой 60 м. Первый этаж, где покоилась урна с прахом, имел вид громадного куба. Второй этаж был обнесён снаружи мраморной колоннадой, а третий представлял собой многоступенчатую пирамиду. Её венчала четвёрка коней с колесницей, которой правили Мавсол и Артемисия (статуи Мавсола и Артемисии, а также другие украшения мавзолея хранятся сейчас в Британском музее в Лондоне). От имени Мавсола и произошло слово «мавзолей».

В 3 в. до н.э. на остров Родос напали войска правителя Передней Азии и Сирии Деметрия Полиоркета. Однако одолеть свободолюбивых родосцев Деметрию не удалось. В память об успешной обороне острова они решили поставить самую большую статую на свете. Это шестое «чудо», известное по именем Колосса Родосского.. Это было изображение бога солнца Гелиоса, которого жители острова считали своим покровителей.

На острове Фарос в устье реки Нила, рядом с городом Александрией, около 280 г. до н.э. был построен самый большой маяк древности. Высота этой трёхъярусной башни достигала 135 м. На её вершине в открытой каменной беседке пылал костёр, указывая путь кораблям.

42033-1

7 В РУССКОМ ЯЗЫКЕ

 

    Русские люди особенно любят семь. Они считают, что семь является союзом бога с человеком. В романе «Пиковая дама» семёрка всегда приносит Герману счастье. Даже теперь в России семь считается добрым. Говорят, что если человек живёт в седьмой комнате на седьмом этаже, то он будет счастлив.

    Почему русские смотрят на семь с большой любовью? По-моему, это в основном имеет дело с христианством. Все знают, что христианская культура оказала огромное влияние на российскую нацию. Говорят, что небо состоит  из семи ярусов, которые заключают в себе чистое серебро, чистое золото, жемчужину, платину, серебро, рубин, святой луч. В древности через наблюдение и измерение люди знали только семь планет – Солнце, Луна, Венера, Юпитер, Меркурий, Марс, Сатурн и люди связывали их с богом. Поэтому семь придали святые смыслы. В « Библии » Бог создавал мир шесть дней, и на седьмой день отдыхал. Иисус сказал семь слов на кресте. Число семь с древнейших времен играло важную роль, считалось волшебным, таинственным у самых разных народов мира. 
      Индийская философия древности учила, например, что Вселенная состоит из семи элементов. Древние египтяне полагали, что солнце и все небесные светила поднимаются по семи лестницам и проходят семь ворот. Знаменитый философ Древней Греции Аристотель утверждал, что небесная твердь состоит из семи кристальных сфер. Самая главная, высшая, седьмая сфера получила название "Седьмое небо". Кстати, именно отсюда идет современное шутливое выражение
быть на седьмом небе (от счастья), то есть "находиться на верху блаженства".
      Число семь вошло в легенду о сотворении мира в течение семи дней. Древние говорили о семи чудесах света. Рим был основан на семи холмах. К библейским источникам восходят общеизвестные выражения "книга за семью печатями" - о чем-то непонятном, неясном никому, "семь смертных грехов" и некоторые другие.

      Рассказывая о мистическом числе семь (древнерусское седмь) в старинных народных поверьях и в схоластических церковных догматах, С. В. Максимов в книге "Крылатые слова" напоминает известный исторический факт: "Когда Галилей после открытия четырех спутников Юпитера по целым ночам любовался системой этой планеты, противники его не только не верили открытиям, но и утверждали, что они невозможны. Ученое невежество говорило: "Как в неделе семь дней, так и на небе семь планет (Солнце, Луна, Меркурий, Венера, Марс, Юпитер, Сатурн) и больше быть не может. Соединение малого мира человека с безграничным миром Вселенной происходит при помощи наших органов чувств, расположенных в семи отверстиях головы: два глаза, два уха, две ноздри и рот. Как нет более таких отверстий в голове, точно так не может быть и на небе более семи планет". Так утверждали семь кардиналов инквизиции, осудившие Галилея на заточение в 1633 году. По этому поводу писатель добавляет не без иронии: "Впоследствии оказалось, что у семи нянек дитя всегда без глазу, как и у этих семи совершенно слепых мудрецов мировая истина". 
      Если мы обратимся к сказкам и песням русского и других народов, то мы найдем в них и огнедышащего змея о семи головах (семиголовую гидру), и семимильные сапоги-скороходы, и сказочного храбреца, который "одним махом семерых побивахом", и такие выражения, как "у семи царей по семи
 дочерей", и шуточное "было у тещеньки семеро зятьев". 
      С числом семь мы встречаемся и теперь. Но уже не считаем его таким таинственным и мистическим, каким оно было в представлении наших далеких предков
. Известные объективные явления природы лежат в основе того, что, скажем, спектр состоит из семи основных цветов, а в музыке выделяются семь тонов (нот) звукоряда. Математики давно обратили внимание на то, что 7 - это самое большое простое число в первом десятке. Это математическое объяснение проливает свет на древнее обожествление числа семь - самого большого из простых однозначных. Именно с величиной, размером связаны по смыслу многие старинные русские пословицы и поговорки, в которые входит число семью.

7 В ПОСЛОВИЦАХ И ПОГОВОРКАХ

        

1. Семеро не один, в обиду не дадим.

  2. Семеро одного не ждут.

  3. Семеро одну соломинку подымают.

  4. Семь раз по - твоему, да хоть раз по моему.

  5. Семь раз отмерь, один раз отрежь.

  6. Семь лет не виделись, а сошлись и говорить нечего.

  7. Старик – да лучше семерых молодых.

  8. Семь бед – один ответ.

  9. Семь деревень, а лошадка одна.

  10. У пьяного – семь клетей, а проспится – один плетень.

  11. В гору семеро тащат, а с горы и один столкнёт.

  12. Невелик городок, да семь воевод.

  13. У одной овечки да семь пастухов.

  14. В семи дорогах один топор.

  15. Из поповского рукава семеро штанов выходит.

  16. На поминки идёт, пузо из семи овчин шьёт.

  17. Попадья лукавая – змея семиглавая.

  18. За семь вёрст да киселя хлебать.

  19. Ковры семи шелков, а рубаха и не прядена.

  20. Всем по семь, а мне по восемь.

  21. От семи собак на распутье огрызается.

22. Беда! До беды семь лет: либо будет, либо нет.

Число π

                                       Первое знакомство с числом π

В школьном курсе математики с числом π мы впервые встречаемся в 6 классе в теме: «Длина окружности и площадь круга». В учебнике мы сталкиваемся со следующим объяснением: «Длина окружности прямо пропорциональна длине её диаметра. Поэтому для всех окружностей отношение длины окружности к длине её диаметра является одним и тем же числом. Его обозначают греческой буквой π («читается «пи»»). Длина окружности: C=2πr; площадь круга S=πr2 ».                                                                                        

Потом, только в 9 классе мы опять встречаемся с числом π, но уже в курсе геометрии пытаются доказать длину окружности следующим образом. «Периметр любого правильного вписанного в окружность многоугольника является приближённым значением длины окружности. Чем больше число сторон такого многоугольника, тем точнее это приближённое значение, так как многоугольник при увеличении числа сторон всё ближе и ближе «прилегает» к окружности

                                                  Возникновение числа π

Более двух тысячелетий назад было подмечено, что все окружности длиннее своих диаметров в одно и то же число раз. Впоследствии это было доказано.

Отношение длины окружности к её диаметру лет 250 назад стали обозначать кратко одной буквой  π. Эта греческая буква – первая буква греческого слова «периферия», что означает «окружность». В древнем Вавилоне считали, что окружность длиннее её диаметра в три раза (т.е. π приблизительно равно трём). Но древнегреческие геометры уже знали, что π не равно трём. Об этом мы знаем из школьного курса геометрии. Почему же тогда Бертран Рассел в своей книге «Кошмары выдающихся личностей» писал: «лицо π было скрыто маской. Все понимали, что сорвать её, оставшись при этом в живых, не сможет никто. Сквозь прорези маски пронзительно, безжалостно, холодно и загадочно смотрели глаза …».

Английский математик Август де Морган назвал как-то π «…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу».

Число π связывают с окружностью. Однако это число появляется в различных математических результатах, в которых ни о какой окружности речи не идёт.  

Записи числа π

2 знака после запятой:

                                          π =3,14

510 знаков после запятой:

π =3,141 592 653 589 793 238 462 643 383 279 502 884 192 169 399 375 105 280 974  592 307 816 406 286 208 998 628 034 825 342 117 067 982 148 086 513 282 306 647 093 844 609 550 582 231 725 359 408 128 481 117 450 284 102 701 938 521 105 559 644 622 948 954 930 381 964 428 810 975 665 933 446 128 475 648 233….

                                             

                                      Мнемоническое правило

  • Чтобы нам не ошибаться,
  • Надо правило прочесть:
  • Три, четырнадцать, пятнадцать,
  • Девяносто два и шесть.
  • Надо только постараться
  • И запомнить все как есть:
  • Три, четырнадцать, пятнадцать,
  • Девяносто два и шесть.
  • Три, четырнадцать, пятнадцать,
  • Девять, два, шесть, пять, три, пять.
  • Чтоб наукой заниматься
  • Это каждый должен знать.

Если подсчитать количество букв в каждом слове в нижеприведенных фразах (без учета знаков препинания) и записать эти цифры подряд, не забывая про десятичную запятую после первой цифры «3». Получится приближенное число π

                                                   

Забавные факты

 

Международный день числа π 14 марта человечество отмечает Международный день числа π. Почему 14 марта? Если быть точнее, то поздравлять окружающих с днем «пи» нужно в марте 14-го в 1:59:26, в соответствии с цифрами числа π – 3,1415926…

Интересно, что праздник числа π, отмечающийся 14 марта, совпадает с днем рождения одного из наиболее выдающихся физиков современности Альбертом Эйнштейном.

Еще одной датой, связанной с числом π, является 22 июля, которою называют  «Днем приближенного числа π», так как в европейском формате дат этот день записывается как 22/7. а значение этой дроби является приближенным значением числа π

Мировой рекорд по запоминанию знаков числа пи принадлежит японцу Акира Харагути. Он запомнил число π до 100- тысячного знака после запятой. Ему понадобилось почти 16 часов, чтобы назвать всё число целиком.

В штате Индиана (США) в 1897 был выпушен билль, законодательно устанавливающий значение числа π равным 3,2. Данный билль не стал законом благодаря своевременному вмешательству профессора Университета Пердью, присутствовавшем во время рассмотрения принятого данного закона.



Предварительный просмотр:

                       ЧИСЛО  

                           

   Отношение длины окружности к её диаметру – величина постоянная и не зависит от размеров окружности. Число, выражающее это отношение , принято обозначать  греческой буквой π ( “ пи “ ) – первой буквой слова “ периферия “ ( греч. “ окружность “ ).

Общеупотребительным такое число стало с середины 18 века. Число π выражается бесконечной непериодической десятичной дробью и приближённо равно 3,141592653589…

   

                 Математика Древнего Междуречья, Древнего Египта.

     В глубокой древности считалось, что окружность ровно в 3 раза длиннее диаметра. Эти сведения содержатся в клинописных табличках Древнего Междуречья. Такое же значение можно извлечь из текста Библии: “ И сделал литое из меди море, - от края его и до края его десять локтей, - совсем круглое… и шнурок в тридцать локтей обнимал его кругом”.  Однако уже во 2 тысячелетии до н.э. математики Древнего Египта находили более точное отношение. Важным достижением геометрической науки египтян было очень хорошее приближение числа π, которое получается из формулы площади круга диаметра d:

                      S  =  ( d – 1/9d  ) 2 = ( 1 – 1/9 ) 2 d2 .

Этому правилу из 50 – й задачи папируса Райнда (приблизительно 1650 г. до н.э.) соответствует значение π = 4(8/9)2 = 3,1605. Однако каким образом египтяне получили саму формулу, из контекста неясно.

        В Московском папирусе есть ещё одна интересная задача: вычисляется поверхность корзины “ с отверстием 4 ½ “. Исследователи толкуют её по – разному, поскольку  π в тексте не указано, какой формы была корзина. Но все сходятся во мнении, что и здесь для числа π  берётся то же самое приближённое значение 4 ( 8/9 )2. Замечательно, что на всём Древнем Востоке при вычислениях использовалось значение π = 3.

      В этом отношении египтяне намного опередили другие народы.

                 Математические достижения в Древней Греции.

      С 6 века до н.э. математическая наука стремительно развивалась в Древней Греции. Древние греки Евдокс Книдский, Гиппократ и др. измерение окружности сводили к построению соответствующего отрезка, а измерение круга – к построению равновеликого квадрата.

       Архимед в 3 веке до н.э. , занимаясь вычислениями длины окружности, установил, что “ периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых “. В своей небольшой работе “ Измерение круга “ он обосновал три положения: 1) всякий круг равновелик прямоугольному  треугольнику, катеты которого соответственно равны длине окружности и её радиусу; 2) площади круга относятся к квадрату, построенному на диаметре как 11 к 14; 3) отношение любой окружности к её диаметру меньше 3 1/7  и больше 3  10/71.      (Вероятно, в первоисточнике третье предложение стояло на месте второго, но при переписке или переводе была допущена погрешность. Нужно заметить, что арабы располагали более точным текстом этой работы, чем мы.) Последнее предложение Архимед обосновал последовательным вычислением периметров правильных вписанных и описанных многоугольников при удвоении числа их сторон. Сначала он удвоил число сторон правильных описанного и вписанного шестиугольников, затем двенадцатиугольников и т.д., доведя до вычисления периметров правильного вписанного и описанного многоугольников с 96-ю сторонами.

      Определение. Правильным многоугольником называется выпуклый многоугольник, у которого все углы равны и все стороны равны.

    Определение. Многоугольник называется выпуклым, если он лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины.

     Определение. Если все стороны многоугольника касаются окружности, то многоугольник называется описанным около этой окружности.

     Определение. Если все вершины многоугольника лежат на окружности, то многоугольник называется вписанным в эту окружность.)

По точным расчётам Архимеда отношение окружности к диаметру заключено между числами 3 10/71 и 3 1/7, а это означает, что π  =3,1419… Иначе говоря, Архимед указал границы числа

                                             3,1408 <   π    < 3,1428 .

               Значение 3 1/7 до сих пор считается вполне хорошим приближением числа  π  для прикладных задач. Более точное приближение 3 17/120 (π =3,14166) нашёл знаменитый астроном, создатель тригонометрии Клавдий Птолемей (2 в.), но оно не вошло в употребление.

                 

                     Приближения числа “ “   в Индии и Китае.

   

              В священной книге джайнизма ( одной из древнейших религий, существовавших в Индии и возникшей в 6 веке до н.э. ) имеется указание, из которого следует, что число  “пи “   принимали равным дроби 3,162… Это значение приводит индийский математик 7 века Брахмагупта.

               Китайские учёные в 3 веке использовали для  π   значение 3  7/50, которое хуже приближения Архимеда. В конце 5 века китайский математик Цзу Чун Чжи получил приближение 355/113  (π   =3,1415927). Оно осталось неизвестно европейцам и было вновь найдено нидерландским математиком Адрианом Антонисом лишь в 1585 г.

                     Число “ “ в Европе (15 – 16 вв.).

                В первой половине 15 века в обсерватории Улугбека, возле Самарканда, астроном и математик ал-Каши вычислил “пи” с 16 десятичными знаками.

               К концу 16 века в европейской математике сформировались понятия рациональных и иррациональных чисел. (Определение. Целые и дробные числа составляют множество рациональных чисел. Термин “ рациональное число “ произошёл от латинского слова ratio, что в переводе означает “ отношение “ (частное). Каждое рациональное число может быть представлено в виде бесконечной периодической дроби.

Определение. Бесконечные десятичные непериодические дроби представляют числа, не являющиеся рациональными. Их называют иррациональными числами (приставка “ир”  означает отрицание).) Хотя многие были убеждены, что число π   - иррациональное, доказать это никто не мог.

 В то же время некоторые математики продолжали заниматься вычислением числа    π. Спустя полтора столетия  после ал-Каши в Европе Ф.Виет нашёл число “пи” только с 9 правильными десятичными знаками. Но при этом он первым сделал открытие, имеющее большое значение, так как позволило вычислять π с какой угодно точностью.

           

                 Число Лудольфа.

                 Поиски точного выражения числа π   продолжались и после работ Ф.Виета. В начале 17 века голландский математик из Кёльна Лудольф ван Цейлен ( 1540 – 1610 ) – некоторые историки называют его Л.ван Кейлен – нашёл 32 знака. С тех пор ( год публикации 1615 )значение числа π   с 32 знаками получило название числа Лудольфа.

                 Идеальный математик.

                 

                  Первым ввёл обозначение отношения длины окружности к диаметру современным символом    английский математик У.Джонсон в 1706 г. В качестве символа он взял первую букву греческого слова “периферия”. Общеупотребительным введённое У.Джонсоном обозначение стало после работ Л.Эйлера, который воспользовался этим символом впервые в 1736 г.

ЭЙЛЕР ЛЕОНАРД (1707-1783)

Идеальный математик 18 века - так часто называют Эйлера. Это был недолгий век Просвещения, вклинившийся между эпохами жестокой нетерпимости. Всего за 6 лет до рождения Эйлера в Берлине была публично сожжена последняя ведьма. А через 6 лет после смерти Эйлера - в 1789 году - в Париже вспыхнула революция. Эйлеру повезло: он родился в маленькой тихой, куда изо всей Европы приезжали мастера и ученые, не желавшие тратить дорогое рабочее время на гражданские смуты или религиозные распри. Так переселилась в Базель из Голландии семья Бернулли: уникальное созвездие научных талантов во главе с братьями Якобом и Иоганном. По воле случая юный Эйлер попал в эту компанию и вскоре сделался достойным членом базельского "питомника гениев". Братья Бернулли увлеклись математикой, прочтя статьи Лейбница об исчислении производных и интегралов. Вскоре вокруг братьев сложился яркий математический кружок, и на полвека Базель стал третьим по важности научным центром Европы - после Парижа и Лондона, где уже процветали академии наук. Каждый год на кружке решались новые трудные и красивые задачи, а на смену им вставали новые увлекательные проблемы. ЭЙЛЕР ЛЕОНАРД (1707-1783)

Но когда ученые орлята подросли, выяснилось, что в Швейцарии не хватит места для их гнезд. Зато в далекой России, по замыслу Петра 1 и по проекту Лейбница, была учреждена в 1725 году Петербургская Академия Наук. Русских ученых не хватало, и тройка друзей: Леонард Эйлер с братьями Даниилом и Николаем Бернулли (сыновьями Иоганна) - отправилась туда, в поисках счастья и научных подвигов. Чем только не пришлось заниматься Эйлеру на новом месте! Он обрабатывал данные всероссийской переписи населения. Эту огромную работу Эйлер вел в одиночку, быстро проделывая все вычисления в уме: ведь компьютеров еще не было. Он расшифровывал дипломатические депеши, перехваченные русской контрразведкой. Оказалось, что эту работу математики выполняют быстрее и надежнее прочих специалистов. Он обучал молодых моряков высшей математике и астрономии, а также основам кораблестроения и управления парусным судном в штиль или в бурю. И еще составлял таблицы для артиллерийской стрельбы и таблицы движения Луны. Ведь в дальнем плавании Луна часто заменяла часы при определении долготы! Только гений мог, выполняя всю эту работу, не забыть о большой науке. Эйлер оказался гением. За 15 лет своего первого пребывания в России он успел написать первый в мире учебник теоретической механики (не учить же простого студента по сложным книгам Ньютона!), а также курс математической навигации и многие другие труды. Писал Эйлер легко и быстро, простым и понятным языком. Столь же быстро он выучивал новые языки, но вкуса к литературе не имел. Математика поглощала все его время и силы.

В 26 лет Эйлер был избран российским академиком, но через 8 лет он переехал из Петербурга в Берлин. В чем дело? Да, тогдашнее российское правительство было малограмотным и свирепым. Только что завершилось правление Анны Иоанновны, и возобновилась чехарда военных переворотов. Однако Эйлера это впрямую не касалось: считаться "немцем" в Петербурге было безопасно и престижно, а ученые немцы были на вес золота. Но Эйлер уже почувствовал себя одним из сильнейших математиков Европы - и вдруг заметил, что ему не с кем на равных поговорить о своей науке. Приезжая иностранная молодежь повзрослела и либо уехала из дикой и опасной России, либо погрязла в мелкой текущей работе. А первое поколение ученых россиян еще не выросло. Вспомним, что Ломоносова тогда послали на учебу в Германию! Эйлер решил переехать туда, где накал ученых дискуссий был повыше. Он выбрал Берлин, где молодой король Фридрих 2 Прусский решил создать научный центр не слабее парижского. Эйлер провел в Берлине четверть века, и считал эти годы лучшими в своей жизни. В Берлине Эйлер занимался всей математикой сразу, и почти все у него получалось. Например, захотелось ему перенести все методы математического анализа на функции, зависящие от комплексных чисел - и создал он теорию функций комплексного переменного. Попутно Эйлер выяснил, что показательная функция и синусоида суть две стороны одной медали. Аналогично было с Большой Теоремой Ферма. Услыхав о ней, Эйлер решил сам придумать утраченное доказательство - и вскоре обнаружил "метод спуска", найденный Ферма веком раньше. Проверив этот метод для степеней 3 и 4, Эйлер стал проверять его для следующего простого показателя - 5. Тут обнаружились неожиданные затруднения, и Эйлер оставил эту тему молодым исследователям. Но только в конце 20 века эта проблема, кажется, приблизилась к окончательному решению.

В геометрии Эйлер также оставил значительный след. Он искал в ней не столько новые изящные факты, сколько общие теоремы, не укладывающиеся в догматику Евклида. Например, теорема о связи между числами вершин, ребер и граней выпуклого многогранника. Эту формулу знал еще Декарт; но он не оставил ее доказательства. В Берлине "король математиков" Леонард Эйлер работал с 1741 по 1766 год; потом он покинул Берлин и вернулся в Россию. Надвигалась старость, выросла огромная семья, а новая российская царица Екатерина 2 (немка по происхождению) предложила Эйлеру гораздо лучшие условия жизни, чем предоставлял своим академикам скуповатый и капризный Фридрих 2. Тесное общение с научной молодежью Эйлера уже не увлекало; он торопился успеть изложить на бумаге те бесчисленные открытия и догадки, которые осенили его в золотую берлинскую пору. Все научные журналы Европы охотно печатали новые статьи Эйлера. Его трудоспособность и вдохновение с годами нарастали, и многие тексты увидели свет лишь после смерти автора. Переезд Эйлера в Петербург мало что изменил для математиков Европы. Великое светило лишь сместилось на восток, не исчезая с горизонта. Удивительно другое: слава Эйлера не закатилась и после того, как ученого поразила слепота (вскоре после переезда в Петербург). Неукротимый старец продолжал размышлять о математике и диктовать очередные статьи или книги до самой смерти. Она настигла его на 77 году жизни и на 16 году слепоты... В 1770-е годы вокруг Эйлера выросла Петербургская математическая школа, более чем наполовину состоявшая из русских ученых. Тогда же завершилась публикация главной его книги - "Основ дифференциального и интегрального исчисления", по которой учились все европейские математики с 1755 по 1830 год. Она выгодно отличается от "Начал" Евклида и от "Принципов" Ньютона. Возведя стройное здание математического анализа от самого фундамента, Эйлер не убрал те леса и лестницы, по которым он сам карабкался к своим открытиям. Многие красивые догадки и начальные идеи доказательств сохранены в тексте, несмотря на содержащиеся в них ошибки - в поучение всем наследникам эйлеровой мысли. Первый учебник, предназначенный не для последователей, а для исследователей: таково завещание Эйлера и всей эпохи Просвещения, адресованное грядущим векам и народам.

                      Иррациональность и трансцендентность числа “ ”. 

              В 1766 г. немецкий математик Иоганн Ламберт строго доказал иррациональность числа  π: число “пи” не может быть представлено простыми дробями, как бы ни были велики числитель и знаменатель. И, тем не менее, история числа   на этом не закончилась.

                   В конце 19 века профессор Мюнхенского университета Карл Фердинанд Линдеман нашёл строгое доказательство того, что π  - число не только иррациональное, но и трансцендентное, т.е. не может быть корнем никакого алгебраического уравнения. Его доказательство поставило точку в истории древнейшей математической задачи о квадратуре круга.  ( Определение. Квадратура круга – неразрешимая задача построения при помощи циркуля и линейки квадрата, равного по площади данному кругу; вообще неразрешимая задача.) На протяжении тысячелетий она не поддавалась усилиям математиков, и выражение “квадратура круга “ даже стало синонимом неразрешимой проблемы. “Загадочное упорство” этой задачи, как оказалось, связано именно с природой числа π.

В память об открытии трансцендентности числа π   в зале перед математической аудиторией Мюнхенского университета был установлен бюст Линдемана. На постаменте под его именем изображён круг, пересечённый квадратом равной площади, внутри которого начертана буква  π.

                       Число “” в современной математике. 

               К концу 19 века, после 20 лет упорного труда, англичанин Вильям Шенкс нашёл 707 знаков числа π. Однако в 1945 г. обнаружено с помощью ЭВМ, что Шенкс в своих вычислениях допустил ошибку в 520-м знаке и дальнейшие его вычисления оказались неверными.

                 

                В наше время с помощью ЭВМ число π   вычислено с миллионами правильных знаков после запятой. Но такая точность не нужна ни в каких вычислениях и представляет скорее технический, чем научный интерес.

                   В современной математике  число π   - это не только отношение длины окружности к диаметру, оно входит в большое число различных формул, в том числе и в формулы неевклидовой геометрии. Входит она и в замечательную формулу Л.Эйлера, которая устанавливает связь числа “пи” и числа “е”. Эта и другие взаимосвязи позволили математикам ещё глубже выяснить природу числа  π.

                   Как запомнить первые цифры числа “ ”.

            Три первые цифры числа  π   = 3,14… запомнить совсем несложно. А для запоминания большего числа знаков существуют забавные поговорки и стихи. Например, такие:

                              Нужно только постараться

                             И запомнить всё как есть:

                             Три, четырнадцать, пятнадцать,

                            Девяносто два и шесть.

                                                                            С.Бобров. ”Волшебный двурог”

Тот, кто выучит это четверостишие, всегда сможет назвать 8 знаков числа  π:

3,1415926…

             В следующих фразах знаки числа  π    можно определить по количеству букв в каждом слове:

                           “Что я знаю о кругах?”   (3,1416 );

                            “Вот и знаю я число, именуемое Пи. – Молодец!”    

( 3,1415927 );

                           “Учи и знай в числе известном за цифрой цифру, как удачу примечать”

                              ( 3,14159265359 )

          А так выглядит 101 знак числа “ ” без округления:            

3, 14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230

78164 06286 20899 86280 34825 34211 70679.

бтмб мрлдб