Химия в современных технологиях
статья по теме

Цель работы – проанализировать историю создания ЭВМ и показать,  какие химические элементы используются в развитии компьютерных технологий.

Скачать:

ВложениеРазмер
Microsoft Office document icon statya_chimiy.doc240.5 КБ

Предварительный просмотр:

Химия в современных технологиях

Елпатова Ольга Ивановна,

 преподаватель химии

Цель работы – проанализировать историю создания ЭВМ и показать,  какие химические элементы используются в развитии компьютерных технологий.

На протяжении нескольких последних десятилетий компьютерная технология развивается по пути все большей миниатюризации деталей и все большего удорожания их производства. Микропроцессоры последних поколений содержат огромное число транзисторов (10 млн. и более), имеющих размеры в десятую долю микрона (10-7 метра). Следующий шаг в сторону микромира приведет к нанометрам (10-9 метра) и миллиардам транзисторов в одном чипе. Еще чуть-чуть — и мы попадем в диапазон атомных размеров, где все начинают действовать законы квантовой механики.

 Ричард Фейнман еще лет двадцать назад заметил, что законы физики не будут препятствовать уменьшению размеров вычисляющих устройств до тех пор, «пока биты, не достигнут размеров атомов, и квантовое поведение не станет доминирующим». Другая проблема, указывающая на то, что современная технология создания компьютеров изживает себя — это проблема приближения к пределу быстродействия. Так, современные компьютерные носители способны вмещать миллионы записей, с которыми уже не справляются существующие алгоритмы поиска.

. Это  привело к повышению производительности ЭВМ  в целом. Отправной точкой всех «технологических прорывов» в компьютерной технике являются открытия в фундаментальных науках, таких как физика и химия.

 

В вычислительной технике существует периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления.

Анализ истории создания ЭВМ показал, что в развитии компьютерных технологий наметилась тенденция к уменьшению размеров ключевых элементов и увеличению  скорости их переключения. За основу мы взяли теорию о пяти поколениях компьютеров вместо шести, т.к.  мы считаем, что  находимся на рубеже четвертого и пятого поколениях.

Одним из первых химических элементов встречающихся в истории ЭВМ является германий. Германий один из самых важных элементов для технического прогресса, так как наряду с кремнием германий стал важнейшим полупроводниковым материалом.

По внешнему виду германий нетрудно спутать с кремнием. Эти элементы не только конкуренты, претендующие на звание главного полупроводникового материала, но и аналоги. Впрочем, несмотря на сходство многих технических свойств, отличить германиевый слиток от кремниевого довольно просто: германий в два с лишним раза тяжелее кремния.

Формально, полупроводник – это вещество с удельным сопротивлением от тысячных долей до миллионов омов на 1 см.

Замечательна чувствительность германия не только к внешним воздействиям. На свойства германия сильно влияют даже ничтожные количества примесей. Не менее важна химическая природа примесей.

Добавка элемента V группы позволяет получить полупроводник с электронным типом проводимости. Так готовят ГЭС (германий электронный, легированный сурьмой). Добавив же элемент III группы, мы создадим в нем дырочный тип проводимости (чаще всего это ГДГ – германий дырочный, легированный галлием).

Напомним, что «дырки» – это места, освобожденные электронами, перешедшими на другой энергетический уровень. «Квартиру», освобожденную переселенцем, может тут же занять его сосед, но у того тоже была своя квартира. Переселения совершаются одно за другим, и дырка сдвигается.

Сочетание областей с электронной и дырочной проводимостью легло в основу самых важных полупроводниковых приборов – диодов и транзисторов.

 Создание диодов легло в основу первого поколения компьютеров на основе электронных ламп в 40-х годах. Это электровакуумные диоды и триоды, представляющие собой стеклянную колбу, в центре которой размещалась вольфрамовая нить накала.

Вольфрам причисляют обычно к редким металлам. Он отличается от всех остальных металлов особой тяжестью, твердостью и тугоплавкостью.

В начале XX в. вольфрамовую нить стали применять в электрических лампочках: она позволяет доводить накал до 2200°C и обладает большой светоотдачей. И в этом качестве вольфрам совершенно незаменим в наши дни. Незаменимость вольфрама в этой области объясняется не только его тугоплавкостью, но и пластичностью. Из одного килограмма вольфрама вытягивается проволока длиной 3,5 км, т.е. этого килограмма достаточно для изготовления нитей накаливания 23 тыс. 60-ваттных лампочек. Именно благодаря этому свойству мировая электротехническая промышленность потребляет всего около 100 т вольфрама в год.

Электронную начинку UNIVAC составляло более 5000 вакуумных ламп. Память на ртутных колбах позволяла хранить информацию объемом до полутора килобайт. Наиболее примечательным элементом в конструкции UNIVAC был специальный накопитель, который позволял записывать информацию и считывать ее с магнитной ленты. Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 - 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.

        Появление первого поколения компьютеров стало возможно благодаря трем техническим новшествам: электронным вакуумным лампам, цифровому кодированию информации и созданию устройств искусственной памяти на электростатических трубках.

        

Во втором поколении компьютеров вместо электронных ламп использовались транзисторы, изобретённые в 1948 г. Это был точечно-контактный прибор, в котором три металлических "усика" контактировали с бруском из поликристаллического германия. Поликристаллический германий получали вплавлением индия с обеих сторон пластинки ГЭС. Для всех областей нужен германий очень высокой чистоты – физической и химической. Для достижения ее выращивают монокристаллический германий: весь слиток – один кристалл.

Транзисторы были более надёжны, долговечны, обладали большой оперативной памятью.

        С изобретением транзистора и использованием новых технологий хранения данных в памяти появилась возможность значительно уменьшить размеры компьютеров, сделать их более быстрыми и надежными, а также значительно увеличить емкость памяти компьютеров.

                Подобно тому, как появление транзисторов привело к созданию второго поколения компьютеров, появление интегральных схем ознаменовало собой новый этап в развитии вычислительной техники - рождение машин третьего поколения.

Интегральная схема, которую также называют кристаллом, представляет собой миниатюрную электронную схему, вытравленную на поверхности кремниевого кристалла площадью около 10 мм2. До 1965 г. большая часть полупроводниковых приборов делалась на германиевой основе. Но в последующие годы стал развиваться процесс постепенного вытеснения германия самим кремнием. Этот элемент – второй по распространенности на Земле после кислорода. Не идеальный, а просто высокочистый и сверхчистый кремний стал важнейшим полупроводниковым материалом. При температуре, отличной от абсолютного нуля, в нем возникает собственная проводимость, причем носителями электрического тока являются не только свободные электроны, но и так называемые дырки – места, покинутые электронами.

Вводя в сверхчистый кремний те или иные легирующие добавки, в нем создают проводимость того или иного типа. Добавки элементов третьей группы менделеевской таблицы ведут к созданию дырочной проводимости, а пятой – электронной.

 Кремниевые полупроводниковые приборы выгодно отличаются от германиевых, прежде всего лучшей работоспособностью при повышенных температурах и меньшими обратными токами. Большим преимуществом кремния оказалась и устойчивость его двуокиси к внешним воздействиям. Именно она позволила создать наиболее прогрессивную планарную технологию производства полупроводниковых приборов, состоящую в том, что кремниевую пластинку нагревают в кислороде или смеси кислорода с водяным паром, и она покрывается защитным слоем SiO2.

Вытравив затем в нужных местах «окошки», через них вводят легирующие примеси, здесь же присоединяют контакты, а прибор в целом тем временем защищен от внешних воздействий. Для германия такая технология пока невозможна: устойчивость его двуокиси недостаточна.

Под натиском кремния, арсенида галлия и других полупроводников германий утратил положение главного полупроводникового материала. В 1968 г. в США производилось уже намного больше кремниевых транзисторов, чем германиевых.

. Маленькая пластинка из кристаллического материала размерами примерно 1 мм2 превращается в сложнейший электронный прибор, эквивалентный радиотехническому блоку из 50-100 и более обычных деталей. Он способен усиливать или генерировать сигналы и выполнять многие другие радиотехнические функции.

Первые интегральные схемы (ИС) появились в 1964 году. Появление ИС означало подлинную революцию в вычислительной технике. Ведь она одна способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 электронных ламп. Быстродействие ЭВМ третьего поколения возросло в 100 раз, а габариты значительно уменьшились. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной.

Появилась идея интегральной микросхемы – кремниевого  кристалла, на который монтируются миниатюрные транзисторы и другие   элементы. В том же году появился первый образец интегральной  микросхемы, содержащий пять транзисторных элементов на кристалле германия. Ученые довольно быстро научились размещать на одной интегральной микросхеме сначала десятки, а затем сотни и больше транзисторных элементов. Компьютеры третьего поколения работали со скоростью до одного миллиона операций в секунду.

Начиная с середины 70-х все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего, за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

В начале 70-х годов. была предпринята попытка выяснить, можно ли на одном кристалле разместить больше одной интегральной схемы. Развитие микроэлектроники привело к созданию четвертого поколения машин и появлению больших интегральных схем. Появилась возможность размещать на одном-единственном кристалле тысячи интегральных схем.

Это позволило объединить в единственной миниатюрной детали большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор. Центральный процессор небольшого компьютера оказалось возможным разместить на кристалле, площадью всего в четверть квадратного дюйма (1,61 см2). Началась эпоха микрокомпьютеров.

Интегральные схемы содержали уже тысячи транзисторов. Каково же быстродействие современной микро ЭВМ? Оно в 10 раз превышает быстродействие ЭВМ третьего поколения на интегральных схемах, в 1000 раз - быстродействие ЭВМ второго поколения на транзисторах и в 100000 раз - быстродействие ЭВМ первого поколения на электронных лампах.

Следовательно, нужны компьютеры с более высокими скоростными характеристиками. Поэтому специалисты во всем мире взялись за решение этой проблемы путем создания вычислительной системы будущего. В настоящее время ведутся экспериментальные разработки квантового компьютера, биокомпьютера, нейрокомпьютера, оптического компьютера, вероятностного компьютера наноэлектроники, нанокомпьютера, нанороботов, молекулярно-механических автоматов, высокотемпературных полупроводниковых материалов.


По теме: методические разработки, презентации и конспекты

Современные технологии контроля практической подготовки студентов

         Целью контроля проведения производственной практики является выявление и устранение недостатков, а также оказание практической помощи студентам в выполне...

Современные технологии, в изучении дисциплины "Биология".

Различают "полевые" (основанные на реальном фактическом материале) и "кабинетные" (выдуманные) кейсы.К середине прошлого столетия метод конкретных ситуаций приобрел четкий технологический алгори...

Обеспечение эффективности освоения учебного модуля «Справочные правовые системы» учебной дисциплины «Информационные технологии в профессиональной деятельности» на основе современных технологий образования», 2011

Итоговая аттестационная работа курсов повышения квалификации по направлению «Современные технологии в образовании»: «Обеспечение эффективности освоения учебного модуля «Справочные правовые системы» уч...

Современный урок иностранного языка. Синтез традиционных и современных технологий.

Современный урок иностранного языка. Синтез традиционных и современных технологий. Осознание урока повышение интереса педагогов к современным технологиям осознание необходимости повышения ур...

ДОКЛАД на заседание цикловой комиссии общепрофессионального и профессионального циклов на тему: «МОДЕЛИРОВАНИЕ СОВРЕМЕННОГО УРОКА С УЧЕТОМ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ»

ХХI-й век – век высоких информационных и компьютерных технологий. Только человек, грамотно владеющий способами работы с информацией и техникой в различных сферах деятельности, востребован сейчас...

Программа дополнительного профессионального образования повышения квалификации Технологии подготовки кадров по компетенции «Современные технологии подготовки кадров по компетенции «Токарные работы на станках с ЧПУ»

Дополнительная профессиональная образовательная программа повышения квалификации разработана в соответствии с требованиями, общих характеристик приобретаемой квалификации в соответствиис направлением ...