Производство муки
план-конспект занятия
Предварительный просмотр:
ТЕМА: Мука. Показатели качества пшеничной муки
Действующим стандартом на муку ГОСТ 26574-2017 Мука пшеничная хлебопекарная. Технические условия нормируются основные показатели, контролирующие работу мукомольных предприятий. К ним относят органолептические показатели, белизна, количество и качество клейковины, число падения, зольность, крупность помола, влажность, наличие металломагнитных примесей, зараженность вредителями хлебных запасов. Однако хлебопекарные достоинства муки характеризуются лишь одним показателем - количеством и качеством клейковины. Поэтому на практике приходится проводить ряд дополнительных исследований, хотя и не предусмотренных стандартом, но позволяющих хлебозаводам, смешивая разные партии муки, обеспечивать высокое и стабильное качество хлеба. Характеристика хлебопекарных свойств муки и показателей, определяющих их, выделена в самостоятельный раздел.
Запах и вкус пшеничной муки хорошего качества слабо выражены, но специфичны для культуры.
Однако запах и вкус муки легко изменяются под влиянием многих факторов: наличия пахучих сорняков, использования при помоле дефектного зерна (морозобойного, проросшего, заплесневевшего и др.). Неблагоприятные условия перевозки и хранения также отрицательно влияют на муку.
В реализацию и хлебопечение не допускается мука, имеющая любые посторонние привкусы и запахи.
Кроме того, при оценке муки устанавливают отсутствие при разжевывании хруста на зубах. Он может появиться при плохой очистке зерна перед помолом и измельчении минеральных примесей. Хруст является недопустимым дефектом муки.
Цвет муки разных сортов должен отвечать стандартам.
Цвет муки в существенной степени зависит от ее выхода. Чем больше измельченных оболочек попадает в нее, тем она темнее. Это дает возможность быстро определять сорт муки, сравнивая ее с эталонами-образцами определенного сорта. Однако такое установление сорта дает лишь приблизительный результат, так как, кроме присутствия оболочек, на цвет муки влияет много других факторов. Среди них важное значение имеют природные особенности зернам содержание пигментов, стекловидность эндосперма и даже состав минеральных веществ. Кроме того, для зрительного восприятия цвета определенное значение имеют степень измельчения муки и ее влажность. В настоящее время, пользуясь цветомерами (фотометры), можно определить белизну муки и ее цветность (оттенок цвета). Принцип действия их основан на измерении отражательной способности сглаженной поверхности испытуемой муки в условных единицах прибора. Отражение света определяют при красном и зеленом светофильтрах, белизну рассчитывают по приведенной в стандарте формуле.
Одновременно определяют крупность муки и вводят на нее поправку. В зависимости от оттенка белизна муки не должна превышать в условных единицах прибора ФПМ-56м: для высшего сорта - 20-27, 1-го - 37-45, 2-го - 68-75. Однако цветомеры нашли применение пока лишь на мельницах для контроля цветности разных потоков муки при формировании товарных сортов.
Зольность муки является основным показателем ее сорта. Минеральные элементы сосредоточены в основном в оболочках и зародыше, поэтому чем лучше они отделены, тем зольность муки меньше. Нормы зольности хлебопекарной муки (в %, не более): крупчатки - 0,60; высшего сорта - 0,55; 1-го - 0,75; 2-го - 1,25; 2-го из твердой пшеницы - 1,75; обойной - 1,90.
Крупность помола муки имеет важное технологическое значение в хлебопечении. Чрезмерно крупная мука кажется более темной, она обладает пониженной водопоглотительной способностью, замедленным образованием теста и дает хлеб недостаточного объема, с грубой толстостенной пористостью мякиша, иногда с бледной коркой. Из излишне измельченной (перетертой) муки хлеб получается быстро черствеющим, пониженного объема, с темной коркой и мякишем, а подовые изделия расплывшейся формы. В хлебопечении ценится мука, однородная по размерам образующих ее частиц. Оптимальная крупность их в определенной степени связана с качеством клейковины и размерами крахмальных зерен. Мука с сильной клейковиной должна быть несколько мельче, чем со слабой.
Крупность муки определяют просеиванием ее на шелковых или капроновых ситах, размер отверстий которых установлен стандартом в зависимости от сорта. Нормы крупности и преобладающий размер частиц муки показаны в ГОСТе.
Применяемый термин «сила» муки фактически является синонимом качества муки, ее физических свойств. Сильной считают муку, способную при замесе поглощать относительно большее количество воды и образовывать при этом тесто, устойчиво сохраняющее форму, не липнущее к рукам и машинам, не расплывающееся при разделке и выпечке. Из хорошей пшеничной муки получается ароматный, вкусный, пышный хлеб правильной формы, покрытый гладкой блестящей зарумяненной коркой, с эластичным равномерно разрыхленным мелкопористым мякишем. Прогнозирование и обеспечение высокого качества хлеба возможны лишь при учете хлебопекарных достоинств муки, которые зависят от белко-допротеиназного и углеводно-амилазного комплексов муки. Под термином «белково-протеиназный комплекс» подразумевают белки муки (главным образом глиадин и глютенин), протеолитические ферменты, гидролизующие их, а также активаторы и ингибиторы протеолиза. В понятие «углеводно-амилазный комплекс» включены сахар, крахмал и амилазы, гидролизующие его.
Белково-протеиназный комплекс, и прежде всего клейковина, является основным фактором, обусловливающим силу муки. Клейковина пшеничной муки представляет собой сильно гидратированный комплекс, состоящий в основном из белков глиадина и глютенина. Их соотношение, по данным В. С. Смирнова, в клейковине из муки высшего сорта находится в пределах от 1: 1,6 до 1:1,8. С увеличением выхода муки оно снижается и в клейковине из муки 2-го сорта составляет от 1:1,1 до 1 :1,2. Оба эти белка гетерогенны, каждый состоит из нескольких фракций.
Глиадин имеет молекулярную массу от 27000 до 65000. Набухая в воде, он образует относительно жидкую сиропообразную массу, которая характеризуется липкой, вязкотекучей, сильно растяжимой и не упругой консистенцией.
Глютенина молекулы более крупные, их молекулярная масса составляет от сотни тысяч до нескольких миллионов. Гидратированный глютенин образует резиноподобную, короткорастяжимую массу с большим сопротивлением деформации, упругую и относительно жесткую.
Сырая клейковина сочетает в себе структурно-механические свойства этих белков и занимает как бы промежуточное положение: глютенин является основой, а глиадин - ее склеивающим началом.
В сырой клейковине доля воды составляет 64-70 %. Кроме воды, белки прочно удерживают небольшое количество крахмала, сахара, липидов, минеральных элементов. В клейковине небелковые вещества составляют (в % на сухое вещество): из муки высшего сорта-8-10; 1-го- 10-12; 2-го-16-22. Установлено, что липиды, углеводы и минеральные элементы находятся в клейковине в химически связанном состоянии - в виде лило- и гликопротеидов, а крахмал и оболочечные частицы удерживаются механически. Входящие в состав клейковины липиды оказывают влияние на ее свойства. Их действие объясняется тем, что ненасыщенные жирные кислоты, окисляясь и образуя перекиси и гидроперекиси, способствуют окислению сульфгидрильных групп - SH с образованием дисульфидных связей - S - S -, которые упрочняют внутримолекулярную структуру белка, делая ее более плотной. Дисульфидные связи образуются как внутри одной молекулы белка, так и между разными молекулами клейковинных белков. Определенная часть липидов остается не связанной с белками и служит как бы смазкой между белковыми молекулами, придавая клейковине дополнительную эластичность.
Свойства клейковины и методы их определения регламентированы стандартом, которым нормируется количество клейковины. Содержание сырой клейковины должно быть (в % к массе муки, не менее): в крупчатке - 30, высшем сорте - 28, 1-м - 30, 2-м - 25, обойной - 20.
Качество клейковины характеризуется в основном органолептическим показателям - по цвету и запаху, а также упругости, эластичности и растяжимости. У клейковины хорошего качества цвет белый с желтоватым или сероватым оттенком и слабый приятный мучной запах. Клейковина пониженного качества имеет серый цвет, иногда с коричневатым оттенком, и посторонний неприятный запах.
Клейковина хорошего качества упругая, связная, после деформации быстро восстанавливает первоначальную форму, к рукам не липнет. Плохая клейковина не упруга, прилипает к пальцам, консистенция у нее мажущаяся, иногда губчатая или крошливая.
Клейковина считается крепкой, если кусочек в 4 г растягивается менее чем на 10 см, средней растяжимости - от 11 до 16 и слабой - более чем на 16 см.
Стандартом клейковину делят на три группы по указанным выше показателям: I - хорошая упругость, длинная или средняя растяжимость; II - хорошая упругость и короткая растяжимость или удовлетворительная упругость, короткая, средняя или длинная растяжимость; III - слабая упругость, сильно тянущаяся, провисающая при растягивании, разрывающаяся на весу под собственной тяжестью, а также неупругая, плывущая, несвязная.
Характеристика качества клейковины может быть проведена с помощью приборов, наиболее распространенным является измеритель деформации клейковины ИДК-1, в котором на шарик клейковины массой 4 г в течение 30 с действует сила Р = 1,18 Н. Чем глубже пуансон прибора погружается в клейковину, тем она слабее. И. М. Ройтер приводит следующую градацию качества клейковины (Ндеф - критерии качества в единицах прибора): сильная - 60-70, средняя - 71-80, удовлетворительная - 81 -100, слабая - более 100. Если результат, полученный на ИДК-1, умножить на 0,2, то получают растяжимость клейковины в сантиметрах.
Таким образом, изучение качества клейковины стандартными и дополнительными методами позволяет достаточно объективно и разносторонне характеризовать ее свойства. Однако на процесс отмывания клейковины влияет множество факторов, в том числе температура и жесткость воды, длительность отмывания, количество израсходованной при этом воды и др. Кроме того, клейковинные белки выделены из природной среды, и поэтому их свойства не полностью совпадают с поведением их в тесте. Поэтому, хотя изучать клейковину несколько быстрее и проще, но определение силы муки по свойствам теста дает более надежные результаты.
Протеолитические ферменты являются вторым компонентом белково-протеиназного комплекса; в здоровом зерне пшеницы они имеют сравнительно невысокую активность. Однако в дефектном зерне и муке из него она резко возрастает. Протеазы, воздействуя на клейковину, снижают ее упругость, увеличивают текучесть. Протеолиз не всегда сопровождается образованием свободных аминокислот, т. е. разрушением первичной структуры белка. В начальной стадии протеолиз воздействует на третичную и четвертичную структуры белковой молекулы, вызывая ее дезагрегацию, образование полипептидов.
Ингибируют (замедляют) протеолиз окислители, способные окислять сульфгидрильные группы до дисульфидных.
Активаторами протеолиза являются восстановители, разрушающие дисульфидные мостики между молекулами белка и тем самым ослабляющие клейковину. В муке и дрожжах, особенно старых, присутствует трипептид глютатион, обладающий сильным восстановительным действием. Таким же свойством обладает аминокислота цистеин. Специальные исследования активности протеолитических ферментов при оценке муки не производят. Об их деятельности судят по качеству клейковины и структурно-механическим свойствам теста.
Характеристика «силы» муки по структурно-механическим (реологическим) свойствам теста. Тесто является оводненным коллоидным комплексом - полидисперсоидом. Оно обладает определенной внутренней структурой и своеобразными непрерывно изменяющимися структурно-механическими свойствами. Методы, позволяющие дать их характеристику, одновременно характеризуют «силу» муки.
Определение «силы» муки по расплываемости шарика бездрожжевого теста предложено проф. Л. Я. Ауэрманом. По этому методу замешивают тесто с влажностью 46,3 %; 100 г теста закатывают в шарик и выдерживают один, два и три часа, учитывая не только свойства клейковины, но и суммарное влияние белковых веществ, протеолитических ферментов и некрахмальных полисахаридов на реологические свойства теста. За 3 ч отлежки диаметр шарика теста из сильной муки увеличивается не более чем до 83 мм, средней - до 97, слабой - более 97 мм.
Определение, «силы» муки по консистенции теста проводят консистометром (пенетрометром). При этом исследуют структурно-механические свойства теста, по которым судят об активности протеолитических ферментов, вызывающих дезагрегацию клейковины и снижение ее упругости. Для испытания замешивают тесто постоянной для каждого сорта муки влажности. Выдерживают его в термостате при температуре 35 °С в течение 60, 120 и 180 мин (Ко, Keo, Кi20 и Kieo) и определяют глубину продавливания теста пуансоном под действием силы Р = 50 г (0,49 Н). Чем глубже пуансон погружается в тесто, тем слабее мука и тем больше значение К в условных единицах прибора. Так, в муке 1-го сорта хорошего качества Ко не превышает 100, Кбо - до 120, Ki20 -до 150 и Kieo - до 180.
Определяют «силу» муки на фаринографе, валориграфе или миксографе. Эти приборы выпускают фирмы разных стран, но основаны они на едином принципе - регистрации сопротивления теста усилиям рабочих рычагов тестомесилки. Они имеют некоторые конструктивные различия, но при работе вычерчивают на лентах самописцев практически одинаковые кривые, характеризующие качество муки разных сортов и партий при соблюдении постоянных условий температуры и консистенции теста.
Фаринограф сострит из тестомесилки с электродвигателем - динамометром, соединенным с самописцем. Тестомесилка имеет двойные стенки, между которыми циркулирует вода постоянной температуры. Отмеривают воду на замес теста бюреткой, укрепленной над тестомесилкой.
Оценку в фаринбграфе проводят в два этапа. Вначале определяют водопоглотительную способность муки: в тестомесилку загружают навеску муки и из бюретки добавляют воду до тех пор, пока не образуется тесто с консистенцией в 500 единиц прибора, рассчитывают влагоемкость, которая у муки разной силы различна и, следовательно, влажность испытуемого теста также меняется. Затем в тестомесилку вновь насыпают такую же навеску муки, сразу вливают из бюретки найденное в первом опыте количество воды и замешивают тесто до тех пор, пока не начнется снижение консистенции. За время замеса стрелка самописца вычерчивает кривую - фаринограмму, схема которой показана на рис. 7.
Фаринограмма замеса характеризует:
а - образование и консистенцию теста (в первый период она возрастает, достигая заданного значения - 500 единиц прибора, некоторое время удерживается на этом уровне, затем начинает постепенно снижаться, указывая на утрату тестом упругости - его разжижение);
b - время образования теста, в течение которого оно достигает заданной консистенции (для сильной муки оно больше, чем для слабой);
с - эластичность и растяжимость теста (амплитуда колебаний пера самописца, из которых эта полоса складывается, у слабой муки она значительно шире, чем у сильной. Наиболее узкая полоса будет в тесте с очень крепкой клейковиной);
d - стабильность (устойчивость) теста к механическим воздействиям (чем сильнее мука, тем дольше сохраняет тесто свои первоначальные свойства, поэтому горизонтальный участок кривой достаточно длинный. Тесто из слабой муки быстро теряет консистенцию, и спад кривой начинается почти сразу после достижения ею максимума);
е - разжижение (размягчение) теста соответствует разности между максимально достигнутой при замесе консистенцией и ее конечным значением. Чем больше числовое значение этой разности, тем тесто слабее.
Рис. 7. Схема фаринотраммы теста (по Л. Я. Ауэрмаиу, 1984)
Рис. 8. Альвеограммы теста: Р - упругость; L - растяжимость; из муки; 1 - сильной; 2 - средней «силы», 3 - слабой
Фаринограф используют для изучения изменений реологических свойств теста при брожении, а также влияния на них таких добавок, как жиры, сахара, белковые обогатители и другие виды муки.
Определение «силы» муки на альвеографе (рис. 8) основано на регистрации давления, выдерживающее тесто при выдувании из него пузыря, и его предельного растяжения. Прибор состоит из тестомесилки и, собственно, альвеографа. Влажность теста для испытания всегда одинакова (на 250 г муки с влажностью 14,3 % берут 125 мл 2,5 %-ного раствора поваренной соли). При отклонении влажности муки в ту или иную сторону делают соответствующий пересчет. Замес продолжается 6 мин, затем специальным устройством, которым снабжена месилка, из теста выпрессовывается диск всегда одинакового диаметра и толщины. Его выдерживают в термостате при температуре 25 °С в течение 20 мин. После этого диск теста зажимают между фланцами альвеографа и воздухом выдувают из него пузырь до тех пор, пока его стенки лопнут.
Растяжение (L) и предельное давление (Р) регистрируются самописцем на кривой - альвеограмме, показанной на рис. 8. Отношение Р к L для очень сильной муки достигает 2,5 и более; для хорошей муки - от 2 до 0,8; для слабой - менее 0,8. Площадь, очерченная кривой, показывает работу (W), которую надо произвести для разрыва пузыря теста. Для сильной муки она бывает не менее 580-10~4 Дж, а для слабой 300-10~4 Дж и менее, т. е. чем больше W и отношение P:L, тем мука сильнее.
Углеводно-амилазный комплекс муки. Известно, что преобладающими компонентами муки являются углеводы, главным образом крахмал. Доля растворимых углеводов невелика, в сухом веществе разных сортов муки их содержание колеблется от 0,7 до 1,8 %. В процессе приготовления пшеничного хлеба для обеспечения нормальной жизнедеятельности дрожжей, получения красивого, пышного и ароматного хлеба их необходимо 5-6 %. Недостающее количество Сахаров образуется из крахмала под действием амилаз. Поэтому очень важными показателями качества муки являются сахарообразующая и газообразующая способности.
Сахарообразующая способность муки показывает активность ферментов, осахаривающих крахмал, и его атакуемость. В муке из здорового зерна пшеницы в активном состоянии находится Р-амилаза, количества которой вполне достаточно для выработки высококачественного хлеба. В муке из проросшего и морозобойного зерна повышенную активность имеет а-амилаза. Зерно, сушившееся при излишне высокой температуре, дает муку с частично или полностью инактивированными амилазами.
Следующим фактором, влияющим на сахарообразующую способность муки, является состояние ее крахмала. Крупность частичек муки оказывает влияние на атакуемость крахмала. В муке тонкого помола больше плоыдадь соприкосновения крахмала с ферментами и, следовательно, выше будет сахарообразующая способность. Аналогично на этот показатель влияют размеры крахмальных гранул. Важное значение имеет также степень механического повреждения крахмала при помоле. Оптимальной сахарообразующей способностью обладает мука, в которой количество поврежденных гранул крахмала находится в пределах от 20 до 30 %.
Сахарообразующую способность определяют по методу Рам-зей - ВНИИЗ и выражают в миллиграммах мальтозы, образовавшейся в водно-мучной суспензии из 10 г муки и 50 мл воды в течение 1ч ч амилолиза при температуре 27 °С. Для хорошей муки высшего сорта она находится в пределах от 150 до 200 мг, 1-го и 2-го - от 250 до 300 мг.
Газообразующая способность муки выражается в миллилитрах углекислого газа, образовавшегося за 5 ч брожения теста при температуре 30°С из Г00 г исследуемой муки (с влажностью 14 %), 60 мл воды и 10 г прессованных дрожжей. Этот показатель тесно связан с сахарообразующей способностью и зависит от тех же факторов. Образующийся диоксид углерода можно определять волюмометрически (по его объему) и манометрически (по создаваемому им давлению). В нашей стране используются приборы первого типа.
Поскольку часть газа, образовавшегося при брожении, остается в тесте и разрыхляет его, то естественно, что газообразующая способность определяется как сумма выделившегося и удержанного тестом газа. Газообразующая способность муки высшего и 1-го сортов (мл ): низкая (мука «крепкая на жар») - менее 1300, нормальная - 1301 -1600, высокая - более 1600.
Газоудерживающая способность (разрыхление теста образующимся при брожении диоксидом углерода) зависит от количества и качества клейковины, а также от активности протеолитических ферментов, т. е. от белково-протеиназного комплекса муки. Обычно она выражается в процентах к газообразующей способности. Тесто из муки отличного качества удерживает 65-80 % образовавшегося углекислого газа, а из слабой муки - менее 50 %. Тесто с низкой газоудерживающей способностью дает хлеб расплывшейся формы, т. е. оно обладает низкими формоудержи-вающими свойствами.
Автолитическая активность пшеничной муки. Накопление водорастворимых веществ под действием ферментов позволяет в определенной степени судить о качестве зерна, из которого она выработана. Мука разных сортов из здорового зерна имеет автолитическую активность не более 20-30 %, а из проросшего, морозобойного - значительно выше. Поданным А. Н. Рукосуева, содержание водорастворимых веществ в пшеничной муке из здорового зерна составляет (в %): в крупчатке - 4,2; в высшем сорте - 6,0; в 1-м сорте - 6,5; во 2-м сорте - 8,0; в обойной - 11,0. Методика определения автолитической активности дана на с. 74.
Пробная выпечка хлеба из пшеничной муки. Все перечисленные выше показатели белково-протеиназного и углеводно-амилазного комплексов муки характеризуют какой-то один или несколько признаков ее качества. Наиболее разносторонней получается оценка качества муки по пробной выпечке и оценке хлеба, полученного из исследуемого образца.
Стандарт на методы оценки качества муки (ГОСТ 9404-60) предусматривает безопарный способ приготовления теста из муки, воды, дрожжей и соли. Влажность теста для каждого сорта муки установлена постоянной. Так же четко регламентированы температура теста (32°С), длительность брожения (170 мин) и количество обминок (две - через 60 и 120 мин от начала брожения). Готовое тесто делят на три части - два хлебца выпекают в формах, один - подовым. Стандарт оговаривает также длительность расстойки, выпечки и температуру печи.
У готовых хлебцов производят полную органолептическую оценку по стандарту на простой хлеб из данного сорта муки. Кроме того, у подового хлеба определяют отношение высоты к диаметру. Для муки хорошего качества оно должно быть не менее 0,4. У формового хлеба определяют объем в миллилитрах и рассчитывают его на 100 г муки с влажностью 14,5 %. Он составляет (в мл): для муки отличного качества - более 500, хорошего - 450-500, выше среднего - от 400 до 450, среднего - от 360 до 400, плохого - менее 360.
Число падения пшеничной муки
Здравствуйте, уважаемые читатели сайта Сегодня мы познакомимся с тем, какое значение имеет показатель «число падения» для характеристики хлебопекарных свойств пшеничной муки.
Показатель «число падения» (ЧП) используется для характеристики активность амилолитических ферментов (амилаз), содержащихся в зерне или муке. ЧП пшеничной муки, в зависимости от ее качества, может изменяться в широких пределах. Государственный стандарт для хлебопекарной пшеничной муки устанавливает нижний предел показателя ЧП для пшеничной муки 2 сорта и обойной – 160 с, для остальных сортов пшеничной хлебопекарной муки – 185 с.
В нормальной пшеничной или ржаной муке всегда содержится крахмал и ферменты, способные расщеплять этот крахмал (α-амилаза и β-амилаза). Если заварить муку горячей водой или нагреть мучную болтушку, то получится густая слизистая масса – клейстер. Клейстер образуется из содержащегося в муке крахмала. В водной среде находящиеся в зерна амилазы (β-амилаза и α-амилаза) активизируются и начинают разрушать молекулы крахмала, вязкость крахмального клейстера при этом уменьшается (клейстер «разжижается»).
Чем выше активность амилаз, тем быстрее крахмальный клейстер становится жидким. Попробуйте поместить небольшие грузики (например, бусинки) на поверхность жидкого и густого клейстера. В жидком клейстере бусинка быстро упадет на дно, а в густом будет опускаться на дно медленно. Если выразить время опускания груза в емкости с клейстером в секундах, то в первом случае (жидкий клейстер), это время будет небольшим (низким), а во втором более длительным (высоким). Примерно так и устанавливается число падения крахмала. Правда процесс приготовления крахмального клейстера и измерение скорости падения груза в этом клейстере выполняются в точно заданных и строго контролируемых условиях с использованием специальных приборов.
В соответствии с Международными стандартами ICC 107, ISO 3093-82 и ГОСТ 27676-88 «Зерно и продукты его переработки. Метод определения числа падения» число падения муки определяют по методу Хагберга-Пертена с помощью различных модификаций прибора ПЧП (Прибор для определения числа падения). Чем выше активность α-амилазы в муке, тем быстрее будет разрушаться крахмал и тем более низким будет число падения. Единицей измерения числа падения является секунда (с).
Число падения как показатель активности протеаз
Число падения имеет решающее значение для установления хлебопекарных свойств ржаной муки, поскольку качество ржаного хлеба непосредственно зависит от состояния крахмала в муке. А как быть с пшеничной мукой? Ведь хлебопекарные свойства пшеничной муки зависят главным образом от количества и состояния клейковины. Причем тут число падения? Какова взаимосвязь между числом падения, характеризующим активность α-амилазы и состоянием клейковины в пшеничной муке? Дело в том, что по активности амилазы можно судить об активности остальных ферментов в муке. Если активность амилазы повышена, то и активность протеолитических ферментов, вызывающих разрушение клейковины, будет высокой. Если активность α-амилазы понижена, то и протеазы будут оказывать слабое воздействие на клейковинные белки.
Активация всего ферментного комплекса происходит при прорастании зерна. По результатам измерения ЧП мы можем сделать обоснованное заключение о том, попало ли в размол проросшее зерно.
Низкое число падения муки и качество хлеба
Если мука выработана из проросшего пшеничного зерна, или содержит заметную примесь проросшего зерна, то хлебопекарные свойства муки резко снижаются. ЧП такой муки имеет низкое значение.
Под влиянием α-амилаз происходит расщепление молекул крахмала на более мелкие фрагменты – декстрины. Под воздействием высокоактивных протеаз клейковина становится слишком слабой, и тесто сильно расплывается. Накопление декстринов и ослабление клейковины приводит к заметному ухудшению качества хлеба.
В результате повышенной активности ферментов, характерной для проросшего зерна, хлеб становится расплывчатым, мякиш неэластичным, заминающимся, липким, пористость неравномерная, грубая. Объемный выход хлеба снижается, вкус ухудшается.
Муку, имеющую пониженное значение числа падения, пускать в переработку не стоит.
Ингибиторами повышенной протеолитической активности пшеничной муки могут служить соединения окислительного действия: кислород, аскорбиновая кислота, йодат калия, пероксид водорода, пероксид кальция. Эти вещества при добавлении в муку или тесто способствуют укреплению клейковины.
Раньше для укрепления клейковины использовались и такие добавки, как азодикарбонамид, персульфат аммония, бромат калия. В настоящее время эти вещества исключены из списка разрешенных пищевых добавок.
Снижение активности амилолитических ферментов происходит в кислой среде. Для переработки муки с повышенной активностью амилаз используют приемы, способствующие быстрому накоплению кислот в тесте.
Высокое значение числа падения
Верхний предел ЧП стандартом не регламентируется. Многие пекари искренно считают, что чем выше число падения, тем лучше. Это не так. Слишком высокие значения ЧП свидетельствуют о том, что активность собственных ферментов в муке понижена. Вместе с тем, ферменты необходимы для нормального брожения и формирования оптимальных для дальнейшей обработки теста реологических свойств (пластичность, эластичность и др.). Причиной пониженной активности ферментов может служить высушивание зерна при слишком высокой температуре.
Под действием амилаз крахмал муки расщепляется до сахаров, доступных для питания дрожжей. Если в муке понижена активность амилолитических ферментов, то крахмал муки оказывается недоступным для сбраживания дрожжами. Такую муку характеризуют, как муку с пониженной сахаробразующей способностью. Сахара необходимы не только для питания дрожжей, но и для формирования аромата хлеба и синтеза меланоидинов, придающих цвет корке.
В условиях недостаточного питания дрожжи слабо развиваются и выделяют мало углекислого газа и органических кислот. Тесто плохо поднимается. Объемный выход готового продукта уменьшается. Готовый хлеб получается пресноватым на вкус, со слабо выраженным ароматом, бледными корками и быстро черствеет.
При ИДК менее 60 и ЧП более 280 рекомендуется вносить в хлеб хлебопекарные улучшители, содержащие ферментные препараты. Под воздействием ферментов улучшается сахаробразующая способность теста, клейковина несколько расслабляется и становится более растяжимой. В результате тесто приобретает необходимую пластичность, дрожжевое брожение активизируется, в хлебе накапливаются вкусо и ароматобразующие вещества, формируется равномерная, хорошо развитая пористость, улучшается цвет корок.
Белизна муки – показатель качества
Такой показатель, как белизна муки, характеризует сорт готового продукта и измеряется количественно в условных приборных единицах РЗ БПЛ. Для мучной продукции высшего сорта белизна должна быть не ниже 54 ед., для муки 1 сорта – не ниже 36 ед., для 2 сорта – не ниже 12 ед. Данный показатель не важен (не нормируется) для продукции категорий «крупчатка», «обойная» и «экстра».
Белизна муки влияет на стоимость. Не стоит путать понятия «белизна» и «склонность муки к потемнению». Последний показатель определяется даже не сортом больше сортностью пшеницы, из которой выработан мучной продукт. Потемнение абсолютно не влияет на качество выпечки, однако покупателей невозможно убедить в том, что качество продукции не страдает от цвета хлебопекарного изделия.
Зерно перед помолом проходит 4 степени обработки металлическими вальцами с разной насечкой, с прогонкой через калиброванные сита. Если зерно прошло тщательную предварительную очистку, правильный отсев, то на выходе получается мука идеально кремового цвета без вкраплений. При любых нарушениях мука будет серая, с содержанием мелких частичек отрубей.
С чем связано снижение белизны муки
Мука, выработанная из нескольких сортов пшеницы, имеет риск потемнения. Это связано с особенностями биохимического состава некоторых сортов пшеницы. Чем выше процент содержания в муке свободного тирозина, тем больше риск появления серого оттенка.
Уменьшить потемнение муки помогает включение в рецептуру хлеба сыворотки или пищевой кислоты. Пекари при замесе теста добавляют соль в опару, что приводит к снижению активности полифенолоксилазы. Иногда кондитеры в выпечку кладут улучшители с содержанием отбеливающих агентов, например добавку Е930.
По теме: методические разработки, презентации и конспекты
Курсовой проект на тему "Технология производства муки"
В курсовой отражены этапы технологии производства муки, даны производственные расчеты....

КОНСПЕКТ ПРАКТИЧЕСКОГО ЗАНЯТИЯ Приготовление и отпуск соусов с мукой
Цели урока:Образовательные - сформировать у обучающихся знания технологического процесса приготовления и отпуска соусов.- способствовать обеспечению правильной последовательности ведения технологическ...
Возможность использования муки тритикале в хлебопечении
Хлебопекарная отрасль занимает одно из ведущих мест в пищевой промышленности Российской Федерации ввиду того, что хлебобулочные изделия являются незаменимыми продуктами питания населения России.Хлеб -...

МЕТОДИЧЕСКАЯ РАЗРАБОТКА урока учебной практики Тема: Мука, макаронные изделия: изучение ассортимента, продажа. по профессии «Продавец, контролер – кассир»
Данная методическая разработка предназначена для проведения уроков учебной практики по теме «Мука, макаронные изделия: изучение ассортимента, продажа»Дисциплина: «Учебная практи...

Методическая разработка мастер-класса по компетенции: ХЛЕБОПЕЧЕНИЕ Тема: «Разделка теста для сдобных изделий из муки пшеничной высшего сорта»
Методическая разработка по проведению мастер-класса по компетенции: ХЛЕБОПЕЧЕНИЕ на тему: «Разделка теста для сдобных изделий из муки пшеничной высшего сорта»...

ОП.02 Товароведение Урок № 4 Требования к качеству зерна и продуктов его переработки круп, муки
ОП.02 Товароведение Урок № 4 Требования к качеству зерна и продуктов его переработки круп, муки...

