Главные вкладки

    Презентация к уроку по алгебре (11 класс) по теме:
    Методические разработки, презентации и конспекты уроков

    Зарипова Эльвира Тагировна
    
    Презентация составлена по материалам Открытого банка заданий ЕГЭ 2012. В презентацию включен необходимый теоретический материал и образцы решений заданий (практика) а так же задачи для самостоятельного решения (домашнее задание) и ответы к ним. Может быть полезна учащимся для самостоятельной подготовки к ЕГЭ.  Решение заданий В10 ЕГЭ 2012 года

    Презентация составлена по материалам Открытого банка заданий ЕГЭ 2012. В презентацию включен необходимый теоретический материал и образцы решений заданий (практика) а так же задачи для самостоятельного решения (домашнее задание) и ответы к ним. Может быть полезна учащимся для самостоятельной подготовки к ЕГЭ.

    Скачать:

    ВложениеРазмер
    reshenie_zadaniy_ege_2012_o.zip1.83 МБ

    Подписи к слайдам:


    Автор: Зарипова Эльвира ТагировнаДолжность: учитель математики и информатикиНазвание учреждения: МОУ Красноборская средняя общеобразовательная школа Название материала: Презентация к уроку «Решение заданий В10 ЕГЭ 2012 года»Название предмета: МатематикаВозраст (класс) учащихся: 16-17 лет (11 класс).

    Решение заданий В 10 ЕГЭ 2012

    Элементы комбинаторики,

    статистики и теории

    вероятностей

    Введение

    Презентация составлена по материалам Открытого банка заданий ЕГЭ 2012. В презентацию включен необходимый теоретический материал и образцы решений заданий (практика) а так же задачи для самостоятельного решения (домашнее задание) и ответы к ним. Может быть полезна учащимся для самостоятельной подготовки к ЕГЭ.

    Уметь строить и исследовать простейшие математические модели

    Моделировать реальные ситуации на языке алгебры, составлять уравнения и неравенства по условию задачи; исследовать построенные модели с использованием аппарата алгебры

    Моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры; решать практические задачи, связанные с нахождением геометрических величин

    Проводить доказательные рассуждения при решении задач, оценивать логическую правильность рассуждений, распознавать логически некорректные рассуждения

    Для успешного решения задач типа В10 необходимо:

    Элементы комбинаторики

    Поочередный и одновременный выбор

    Формулы числа сочетаний и перестановок. Бином Ньютона

    Элементы статистики

    Табличное и графическое представление данных

    Числовые характеристики рядов данных

    Элементы теории вероятностей

    Вероятности событий

    Примеры использования вероятностей и статистики при решении прикладных задач

    Повторить материал по темам:

    Вероятностью Р наступления случайного события А называется отношение m к n, где n – это число всех возможных исходов эксперимента, а m – это число всех благоприятных исходов.

    Формула представляет собой так называемое классическое определение вероятности по Лапласу, пришедшее из области азартных игр, где теория вероятностей применялась для определения перспективы выигрыша.

    Классическое определение вероятности

    Формула классической теории вероятностей

    Число благоприятных исходов

    Число всех равновозможных исходов

    Вероятность события =

    Вероятность события - это десятичная дробь, а не целое число!

    Перестановкой множества из n  элементов называется расположение элементов в определенном порядке.

    Перестановки

    Число перестановок можно вычислить по формуле Pn=n!

    Размещениями множества из n различных элементов по m (m≤n) элементов называются комбинации, которые составлены из данных n элементов по m элементов и отличаются либо самими элементами, либо порядком элементов.

    Размещения

    Сочетаниями из n различных элементов по k элементов называются комбинации, которые составлены из данных n элементов по k элементов и отличаются хотя бы одним элементом (иначе говоря, k -элементные подмножества данного множества из n элементов).

    Сочетания

    Практика

    Задача 1:В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.

    Решение: Всего возможных комбинаций: 6 * 6 = 36.Из них благоприятные исходы можно перечислить:1-й кубик 2-й кубик1 очко 2, 3, 4, 5 или 6 очков. Благоприятных исходов 5. 2 очка 1, 3, 4, 5 или 6 очков. Благоприятных исходов 5. 3 очка 1, 2, 4, 5 или 6 очков. Благоприятных исходов 5. 4 очка 1, 2, 3, 5 или 6 очков. Благоприятных исходов 5. 5 очков 1, 2, 3, 4 или 6 очков. Благоприятных исходов 5. 6 очков 1, 2, 3, 4 или 5 очков. Благоприятных исходов 5. Хотя проще было бы посчитать число неблагоприятных для нас исходов. Когда выпадет одинаковое число очков 1 и 1, 2 и 2, 3 и 3, 4 и 4, 5 и 5, 6 и 6. Таких исходов 6. Всего исходов 36. Тогда благоприятных исходов 36 – 6 = 30. Итак, всего благоприятных исходов 30. Найдем отношение 30/36 = 0,83333…

    Ответ. 0,83

    Задача 3: Игральный кубик подбрасывают дважды. Определите вероятность того, что при двух бросках выпадет разное количество очков. Результат округлите до сотых.

    В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Результат округлите до сотых.(ответ: 0,11)

    В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 6 очков. Результат округлите до сотых.(ответ: 0,14)

    В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых.(ответ: 0,17)

    В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 4 очка. Результат округлите до сотых. (ответ: 0,01)

    В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых. (ответ: 0,07)




    Для самостоятельного решения

    Решение: По условию индекс может стоять либо на первом, либо на втором месте:

    H2NO HNO2

    H3NO HNO3

    2 + 2 = 4

    Ответ: 4

    Задача 4: Вова точно помнит, что в формуле азотной кислоты подряд идут буквы H, N, O и что есть один нижний индекс – то ли двойка, то ли тройка. Сколько имеется вариантов, в которых индекс стоит не на втором месте?

    а, в, с – признаки

    1 случай – гамета не обладает ни одним из этих признаков – только 1тип

    2 случай – одним из этих признаков: а; в; с – 3 типа

    3 случай - двумя из трех признаков: ав, ас, вс – 3 типа

    4 случай – всеми тремя признаками: авс – 1 тип

    1+3+3+1=8 типов гамет

    Ответ: 8

    Задача 5: Сколько разных типов гамет может дать гибрид, гетерозиготный по 3 независимым признакам?

    Задача 6: Перечислить все трехзначные числа, в записи которых встречаются только цифры 1 и 2.

    Задача 7:Три друга – Антон (А), Борис (Б) и Виктор (В) – приобрели два билета на футбольный матч. Сколько различных вариантов посещения футбольного матча для троих друзей?

    2

    Задача 8: Из группы теннисистов, в которую входят четыре человека – Антонов (А), Григорьев (Г), Сергеев (С) и Федоров (Ф), тренер выделяет пару для участия в соревнованиях. Сколько существует вариантов выбора такой пары?

    2

    Задача 9: Сколько словарей надо издать, чтобы можно было непосредственно выполнять переводы с любого из 5 языков: русского, английского, французского, немецкого, итальянского, на любой другой из этих 5 языков?

    Задача 10: Три друга – Антон, Борис и Виктор – приобрели два билета на футбольный матч на 1-е и 2-е места первого ряда стадиона. Сколько у друзей есть вариантов занять эти два места на стадионе?

    2

    Задача 11: Сколько двузначных чисел можно составить, используя цифры 1, 2, 3, при условии, что цифра в числе не может повторяться?

    2

    Задача 13: В сборнике билетов по биологии всего 25 билетов, в двух из них встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет. Найдите вероятность того, что в этом билете не будет вопроса о грибах.

    1. В соревнованиях по толканию ядра участвуют 9 спортсменов из Дании, 3 спортсмена из Швеции, 8 спортсменов из Норвегии и 5 — из Финляндии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Финляндии.

    2. В соревнованиях по толканию ядра участвуют 4 спортсмена из Македонии, 9 спортсменов из Сербии, 7 спортсменов из Хорватии и 5 — из Словении. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Македонии.

    3. В чемпионате по гимнастике участвуют 50 спортсменок: 22 из Великобритании, 19 из Франции, остальные — из Германии. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Германии.

    4. В чемпионате по гимнастике участвуют 40 спортсменок: 12 из Аргентины, 9 из Бразилии, остальные — из Парагвая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Парагвая.

    5. В чемпионате по гимнастике участвуют 64 спортсменки: 20 из Японии, 28 из Китая, остальные — из Кореи. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Кореи.

    Для самостоятельного решения

    Задача 16: В среднем из 50 аккумуляторов, поступивших в продажу 7 неисправны. Найдите вероятность того, что один купленный аккумулятор окажется исправным.

    Фабрика выпускает сумки. В среднем на 180 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых. (Ответ:0,96 )

    Фабрика выпускает сумки. В среднем на 170 качественных сумок приходится шесть сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых. (Ответ: 0,96)

    В среднем из 1400 садовых насосов, поступивших в продажу, 7 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

    В среднем из 500 садовых насосов, поступивших в продажу, 4 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

    Фабрика выпускает сумки. В среднем на 200 качественных сумок приходится четыре сумки со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.

    Фабрика выпускает сумки. В среднем на 110 качественных сумок приходится пять сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.

    Для самостоятельного решения

    Произведением событий А и В называется событие АВ, которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно.

    Теорема об умножении вероятностей. Вероятность произведения независимых событий А и В вычисляется по формуле:

    Произведение вероятностей

    Суммой событий А и В называется событие А + В, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.

    Теорема о сложении вероятностей. Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.

    Сложение вероятностей

    Желаю удачи!


    По теме:
    методические разработки, презентации и конспекты уроков

    методические разрадотки,презентации к уроку и конспекты уроков : Методическая разработка урока 6 класс математика "Проценты. Решение текстовых задач"

    Урок по теме " Проценты" составлен так, что начало урока представлено  как путешествие в сказочную страну.Решение т...

    Презентации, разработки уроков

    Урок " Правописание буквосочетаний ЖИ-ШИ, ЧА-ЩА, ЧУ-ЩУ" (закрепление и обощение знаний по теме) был разработан и показан...

    Презентации и конспекты уроков "Правильные многоугольники".

    Презентации и конспекты уроков "Правильные многоугольники" разработаны по технологии стратовой дифференциации для 1,2, 3...

    Презентации к урокам по творчеству М.А.Булгакова в 9 классе, конспекты уроков

    Методическую разработку выполнила  учитель русского языка и литературы МАОУ СОШ №9 г.Боровичи Новгородской областиБ...

    методические разработки уроков с использованием смарт доски в помощь молодым учителям

    Бесконечно убывающая геометрическая прогрессия 10 классУроки по теме:  Арифметический квадратный корень 8 классЛине...

    методические разработки уроков с использованием смарт доски в помощь молодым учителям

    Бесконечно убывающая геометрическая прогрессия 10 классУроки по теме:  Арифметический квадратный корень 8 классЛине...

    методические разработки уроков с использованием смарт доски в помощь молодым учителям

    разработки уроков с использованием смарт доски на уроках математики в 7, 8, 10классах...

    Методические разработки уроков алгебры в 7 классе по теме "Формулы сокращенного умножения"

    Разработки уроков: 1. Умножение разности двух выражений на их сумму. 2. Разложение разности квадратов двух выражений н...

    Презентации, разработки уроков, доклады, эссе, внеклассные мероприятия

        Данный материал незаменим при подготовке обучающихся к олимпиаде по русскому языку, а также для подго...