Рабочая программа по физике
рабочая программа по физике (10, 11 класс)

Петрова Татьяна Дмитриевна

Рабочая программа по физике СПО 1 курс (145 часов)

Скачать:

ВложениеРазмер
Файл rabochaya_programma.docx43 КБ

Предварительный просмотр:

Управление образования и науки Липецкой области

ГОБ ПОУ «Усманский  промышленно - технологический  колледж»

«Утверждаю»

директор Усманского

промышленно-технологического  колледжа

___________ Ю.В. Афанасьев

РАБОЧАЯ    ПРОГРАММА

УЧЕБНОЙ  ДИСЦИПЛИНЫ

«ФИЗИКА» (углубленный уровень)

ДЛЯ СПЕЦИАЛЬНОСТИ: 

21.02.04 Землеустройство

Усмань 2022

ОДОБРЕНА

Цикловой методической комиссией

естественнонаучных дисциплин, спорта и ОБЖ

Протокол  № 10от «29 июня» 2022г.

Председатель:  ____________

Заместитель директора

по учебной работе

Фитисова Н.А.__________

Рабочая программа учебной дисциплины «Физика» (углубленный уровень) является частью общеобразовательной подготовки студентов в учреждениях СПО.

Составлена на основе:

1.ФГОС среднего  общего образования, утвержденного приказом № 413 Минобнауки РФ от 17 мая 2012 г.

2.Примерной основной образовательной программы среднего общего образования, одобренной решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016 г. № 2/16-з)

Автор (составитель):  Петрова Татьяна Дмитриевна, преподаватель

ГОБПОУ  «Усманский промышленно-технологический колледж»

СОДЕРЖАНИЕ

Планируемые результаты освоения учебной дисциплины ...............................4

Содержание учебной дисциплины .....................................................................7

Тематическое планирование …………………………………………………...13

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Освоение содержания учебной дисциплины «Физика» обеспечивает достижение студентами следующих результатов:

личностных:

- чувство гордости и уважения к истории и достижениям отечественной физической науки;

- физически грамотное поведение в профессиональной деятельности и быту при обращении с приборами и устройствами;

- готовность к продолжению образования и повышения квалификации в избранной профессиональной деятельности и объективное осознание роли физических компетенций в этом;

- умение использовать достижения современной физической науки и физических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

- умение самостоятельно добывать новые для себя физические знания, используя для этого доступные источники информации;

- умение выстраивать конструктивные взаимоотношения в команде по решению общих задач;

- умение управлять своей познавательной деятельностью, проводить самооценку уровня собственного интеллектуального развития;

метапредметных:

- использование различных видов познавательной деятельности для решения         − физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности;

- использование основных интеллектуальных операций: постановки задачи,          формулирования гипотез, анализа и синтеза, сравнения, обобщения, систематизации, выявления причинно-следственных связей, поиска аналогов, формулирования выводов для изучения различных сторон физических объектов, явлений и процессов, с которыми возникает необходимость сталкиваться в профессиональной сфере;

- умение генерировать идеи и определять средства, необходимые для их реализации;

- умение использовать различные источники для получения физической информации, оценивать ее достоверность;

умение анализировать и представлять информацию в различных видах;        - умение публично представлять результаты собственного исследования, вести         дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;

предметных:

-сформированность собственной позиции по отношению к физической информации, получаемой из разных источников

- сформированность представлений о роли и месте физики в современной научной картине мира;

- понимание физической сущности наблюдаемых во Вселенной явлений, роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;

- владение основополагающими физическими понятиями, закономерностями, законами и теориями;

- уверенное использование физической терминологии и символики;

- владение основными методами научного познания, используемыми в физике: наблюдением, описанием, измерением, экспериментом;

- умения обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;

- сформированность умения решать физические задачи;

- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе, профессиональной сфере и для принятия практических решений в повседневной жизни;

- сформированность собственной позиции по отношению к физической информации, получаемой из разных источников.

Выпускник на углубленном уровне научится:

  • объяснять и анализировать роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
  • характеризовать взаимосвязь между физикой и другими естественными науками;
  • характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
  • понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
  • владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
  • самостоятельно конструировать экспериментальные установки для проверки выдвинутых гипотез, рассчитывать абсолютную и относительную погрешности;
  • самостоятельно планировать и проводить физические эксперименты;
  • решать практико-ориентированные качественные и расчетные физические задачи с опорой как на известные физические законы, закономерности и модели, так и на тексты с избыточной информацией;
  • объяснять границы применения изученных физических моделей при решении физических и межпредметных задач;
  • выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
  • характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
  • объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
  • объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Выпускник на углубленном уровне получит возможность научиться:

  • проверять экспериментальными средствами выдвинутые гипотезы, формулируя цель исследования, на основе знания основополагающих физических закономерностей и законов;
  • описывать и анализировать полученную в результате проведенных физических экспериментов информацию, определять ее достоверность;
  • понимать и объяснять системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
  • решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности, используя физические законы, а также уравнения, связывающие физические величины;
  • анализировать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;
  • формулировать и решать новые задачи, возникающие в ходе учебно-исследовательской и проектной деятельности;
  • усовершенствовать приборы и методы исследования в соответствии с поставленной задачей;
  • использовать методы математического моделирования, в том числе простейшие статистические методы для обработки результатов эксперимента.

СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Введение

Физика — фундаментальная наука о природе. Естественнонаучный метод познания, его возможности и границы применимости. Эксперимент и теория в процессе познания природы. Моделирование физических явлений и процессов. Роль эксперимента и теории в процессе познания природы. Физическая величина. Погрешности измерений физических величин. Физические законы. Границы применимости физических законов. Понятие о физической картине мира. Значение физики при освоении специальностей СПО.

  1. Механика

Кинематика. Механическое движение. Перемещение. Путь. Скорость. Равномерное прямолинейное движение. Ускорение. Равнопеременное прямолинейное движение. Свободное падение. Движение тела, брошенного под углом к горизонту. Равномерное движение по окружности.

Законы механики Ньютона. Первый закон Ньютона. Сила. Масса. Импульс. Второй закон Ньютона. Основной закон классической динамики. Третий закон Ньютона. Закон всемирного тяготения. Гравитационное поле. Сила тяжести. Вес. Способы измерения массы тел. Силы в механике.

Законы сохранения в механике. Закон сохранения импульса. Реактивное движение. Работа силы. Работа потенциальных сил. Мощность. Энергия. Кинетическая энергия. Потенциальная энергия. Закон сохранения механической энергии. Применение законов сохранения.

Демонстрации

Зависимость траектории от выбора системы отсчета.

 Виды механического движения.

Зависимость ускорения тела от его массы и силы, действующей на тело.

Сложение сил.

Равенство и противоположность направления сил действия и противодействия.

Зависимость силы упругости от деформации.

 Силы трения.

 Невесомость.

Реактивное движение.

Переход потенциальной энергии в кинетическую и обратно.

Сохранение механической энергии при движении тела под действием сил тяжести и упругости.

Сравнение работы силы с изменением кинетической энергии тела.

Изучение законов сохранения на примере удара шаров и баллистического маятника.Изучение особенностей силы трения (скольжения).

Лабораторные работы

№1Исследование движения тела под действием постоянной силы.

№2Изучение закона сохранения импульса.

№3«Сравнение работы силы с изменением кинетической энергии тела»

  1. Основы молекулярной физики и термодинамики

Основы молекулярно-кинетической теории. Идеальный газ. Основные положения молекулярно-кинетической теории. Размеры и масса молекул и атомов. Броуновское движение. Диффузия. Силы и энергия межмолекулярного взаимодействия. Строение газообразных, жидких и твердых тел. Скорости движения молекул и их измерение. Идеальный газ. Давление газа. Основное уравнение молекулярно-кинетической теории газов. Температура и ее измерение. Газовые законы. Абсолютный нуль температуры. Термодинамическая шкала температуры. Уравнение состояния идеального газа. Молярная газовая постоянная.

Основы термодинамики. Внутренняя энергия системы. Внутренняя энергия идеального газа. Работа и теплота как формы передачи энергии. Теплоемкость. Удельная теплоемкость. Уравнение теплового баланса. Первое начало термодинамики. Адиабатный процесс. Принцип действия тепловой машины. КПД теплового двигателя. Второе начало термодинамики. Термодинамическая шкала температур. Холодильные машины. Тепловые двигатели. Охрана природы.

Свойства паров. Испарение и конденсация. Насыщенный пар и его свойства. Абсолютная и относительная влажность воздуха. Точка росы. Кипение. Зависимость температуры кипения от давления. Перегретый пар и его использование в технике.

Свойства жидкостей. Характеристика жидкого состояния вещества. Поверхностный слой жидкости. Энергия поверхностного слоя. Явления на границе жидкости с твердым телом. Капиллярные явления.

Свойства твердых тел. Характеристика твердого состояния вещества. Упругие свойства твердых тел. Закон Гука. Механические свойства твердых тел. Тепловое расширение твердых тел и жидкостей. Плавление и кристаллизация.

Демонстрации

Движение броуновских частиц.

 Диффузия. Изменение давления газа с изменением температуры при постоянном объеме.

Изотермический и изобарный процессы.

Изменение внутренней энергии тел при совершении работы.

Модели тепловых двигателей.

Кипение воды при пониженном давлении.

Психрометр и гигрометр.

Явления поверхностного натяжения и смачивания.

 Кристаллы, аморфные вещества, жидкокристаллические тела.

Измерение поверхностного натяжения жидкости.

Наблюдение процесса кристаллизации.

 Изучение деформации растяжения.

Изучение особенностей теплового расширения воды.

Лабораторные работы

№4Измерение влажности воздуха.

№5Измерение поверхностного натяжения  жидкости

№6Изучение теплового расширения твердых тел.

3. Электродинамика

Электрическое поле. Электрические заряды. Закон сохранения заряда. Закон Кулона. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Работа сил электростатического поля. Потенциал. Разность потенциалов. Эквипотенциальные поверхности. Связь между напряженностью и разностью потенциалов электрического поля. Диэлектрики в электрическом поле. Поляризация диэлектриков. Проводники в электрическом поле. Конденсаторы. Соединение конденсаторов в батарею. Энергия заряженного конденсатора. Энергия электрического поля.

Законы постоянного тока. Условия, необходимые для возникновения и поддержания электрического тока. Сила тока и плотность тока. Закон Ома для участка цепи без ЭДС. Зависимость электрического сопротивления от материала, длины и площади поперечного сечения проводника. Зависимость электрического сопротивления проводников от температуры. Электродвижущая сила источника тока. Закон Ома для полной цепи. Соединение проводников. Соединение источников электрической энергии в батарею. Закон Джоуля—Ленца. Работа и мощность электрического тока. Тепловое действие тока.

Электрический ток в различных средах. Электрический ток в металлах. Электронный газ. Работавыхода. Электрический ток в электролитах. Электролиз. Законы Фарадея.Применение электролиза в технике. Электрический ток в газах и вакууме.Ионизация газа. Виды газовых разрядов. Понятие о плазме. Свойства иприменение электронных пучков. Электрический ток в полупроводниках. Собственная проводимость полупроводников. Полупроводниковые приборы.

Магнитное поле. Вектор индукции магнитного поля. Действие магнитного поля на прямолинейный проводник с током. Закон Ампера. Взаимодействие токов. Магнитный поток. Работа по перемещению проводника с током в магнитном поле. Действие магнитного поля на движущийся заряд. Сила Лоренца. Определение удельного заряда. Ускорители заряженных частиц.

Электромагнитная индукция. Электромагнитная индукция. Вихревое электрическое поле. Самоиндукция. Энергия магнитного поля. Демонстрации

Взаимодействие заряженных тел.

Проводники в электрическом поле.

Диэлектрики в электрическом поле.

Конденсаторы.

Тепловое действие электрического тока.

Собственная и примесная проводимость полупроводников.

Полупроводниковый диод.

Транзистор.

 Опыт Эрстеда.

Взаимодействие проводников с токами.

Отклонение электронного пучка магнитным полем.

 Электродвигатель.

 Электроизмерительные приборы.

Электромагнитная индукция.

 Опыты Фарадея.

Зависимость ЭДС самоиндукции от скорости изменения силы тока и индуктивности проводника.

Работа электрогенератора.

 Трансформатор.

Лабораторные  работы

№7Изучение закона Ома для участка цепи, последовательного и параллельного соединения проводников.

№ 8Определение коэффициента полезного действия электрического чайника.

№ 9Определение температуры нити лампы накаливания.

№ 10Определение ЭДС и внутреннего сопротивления источника напряжения.

4.Колебания и волны

Механические колебания. Колебательное движение. Гармонические колебания. Свободные механические колебания. Линейные механические колебательные системы. Превращение энергии при колебательном движении. Свободные затухающие механические колебания. Вынужденные механические колебания.

Упругие волны. Поперечные и продольные волны. Характеристики волны. Уравнение плоской бегущей волны. Интерференция волн. Понятие о дифракции волн. Звуковые волны. Ультразвук и его применение.

Электромагнитные колебания. Свободные электромагнитные колебания. Превращение энергии в колебательном контуре. Затухающие электромагнитные колебания. Генератор незатухающих электромагнитных колебаний. Вынужденные электрические колебания. Переменный ток. Генератор переменного тока. Емкостное и индуктивное сопротивления переменного тока. Закон Ома для электрической цепи переменного тока. Работа и мощность переменного тока. Генераторы тока. Трансформаторы. Токи высокой частоты. Получение, передача и распределение электроэнергии.

Электромагнитные волны. Электромагнитное поле как особый вид материи. Электромагнитные волны. Вибратор Герца. Открытый колебательный контур. Изобретение радио А.С. Поповым. Понятие о радиосвязи. Применение электромагнитных волн.

Демонстрации

Свободные и вынужденные механические колебания.

 Резонанс.

Образование и распространение упругих волн.

Частота колебаний и высота тона звука.

Свободные электромагнитные колебания.

Конденсатор в цепи переменного тока.

Катушка индуктивности в цепи переменного тока.

 Резонанс в последовательной цепи переменного тока.

Излучение и прием электромагнитных волн.

Радиосвязь.

Лабораторные работы

№11Изучение зависимости периода колебаний нитяногомаятника от длины нити (или массы груза).

№12Измерение индуктивности катушки.

5. Оптика

Природа света. Скорость распространения света. Законы отражения и преломления света. Полное отражение. Линзы. Глаз как оптическая система. Оптические приборы.

Волновые свойства света. Интерференция света. Когерентность световых лучей. Интерференция в тонких пленках. Полосы равной толщины. Кольца Ньютона. Использование интерференции в науке и технике. Дифракция света. Дифракция на щели в параллельных лучах. Дифракционная решетка. Понятие о голографии. Поляризация поперечных волн. Поляризация света. Двойное лучепреломление. Поляроиды. Дисперсия света. Виды спектров. Спектры испускания. Спектры поглощения. Ультрафиолетовое и инфракрасное излучения. Рентгеновские лучи. Их природа и свойства.

Демонстрации

Законы отражения и преломления света.

Полное внутреннее отражение.

Получение спектра с помощью призмы.

Получение спектра с помощью дифракционной решетки.

Спектроскоп.

Демонстрации:Изучение изображения предметов в тонкой линзе. Изучение интерференции и дифракции света. Градуировка спектроскопа и определение длины волны спектральных линий.

Лабораторные работы

№12 Изучение изображения предметов в тонкой линзе.

№13Изучение интерференции и дифракции света.

6. Основы специальной теории относительности

Инвариантность модуля скорости света в вакууме. Постулаты Эйнштейна.

Пространство и время специальной теории относительности. Связь массы и

энергии свободной частицы. Энергия покоя.

7. Элементы квантовой физики

Квантовая оптика. Тепловое излучение. Распределение энергии вспектре абсолютно чёрного тела. Квантовая гипотеза Планка. Фотоны.

Внешний фотоэлектрический эффект. Внутренний фотоэффект. Типы

фотоэлементов. Давление света. Понятие о корпускулярно-волновой природе

света.

Физика атома. Развитие взглядов на строение вещества.

Закономерности в атомных спектрах водорода. Ядерная модель атома. ОпытыЭ. Резерфорда. Модель атома водорода по Н.Бору. Гипотеза де Бройля.Соотношение неопределённостей Гейзенберга. Квантовые генераторы.

Демонстрации

 Фотоэффект.

Излучение лазера (квантового генератора).

Счетчик ионизирующих излучений.

№15Линейчатые спектры различных веществ.

8. Эволюция Вселенной

Строение и развитие Вселенной. Наша звездная система — Галактика. Другие галактики. Бесконечность Вселенной. Понятие о космологии. Расширяющаяся Вселенная. Модель горячей Вселенной. Строение и происхождение Галактик. Тёмная материя и тёмная энергия.

Эволюция звезд. Гипотеза происхождения Солнечной системы. Термоядерный синтез. Проблема термоядерной энергетики. Энергия Солнца и звезд. Эволюция звезд. Происхождение Солнечной системы.

Демонстрации

Солнечная система (модель).

Фотографии планет, сделанные с космических зондов.

Карта Луны и планет.

Строение и эволюция Вселенной.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

При реализации содержания общеобразовательной учебной дисциплины «Физика» в пределах освоения ОПОП СПО на базе основного общего образования с получением среднего общего образования (ППССЗ) максимальная учебная нагрузка обучающихся составляет по специальностям СПО технического профиля:ВСЕГО 217 часов,из них аудиторная (обязательная) нагрузка обучающихся, включая лабораторные работы,145 —  часов, самостоятельная учебная работа 72 часа.

Тематический план

Аудиторные занятия. Содержание.

Всего часов

Аудиторных

Лаборатор-

ных

Самостоятельная учебная

работа

Введение

2

2

1.Механика

28

18

6

10

2.Основы молекулярной физики и термодинамики

38

28

6

10

3.Электродинамика

47

35

8

12

4.Колебания и волны

42

32

4

10

5.Оптика

18

12

4

6

6.Основы специальной теории относительности

12

4

-

8

7.Элементы квантовой физики

16

10

2

6

8.Эволюция Вселенной

14

4

-

10

Консультация

-

-

-

-

Промежуточная аттестация:

Дифференцированный зачёт (1 семестр)

-

-

-

-

Экзамен (2 семестр)

-

-

-

-

Итого:

217

145

30

72


Темы рефератов (докладов), индивидуальных проектов.

Александр Григорьевич Столетов — русский физик.

Александр Степанович Попов — русский ученый, изобретатель радио.

Альтернативная энергетика.

Акустические свойства полупроводников.

Андре Мари Ампер — основоположник электродинамики.

Асинхронный двигатель.

Астероиды.

Астрономия наших дней.

Атомная физика. Изотопы. Применение радиоактивных изотопов.

Бесконтактные методы контроля температуры.

Биполярные транзисторы.

Борис Семенович Якоби — физик и изобретатель.

Величайшие открытия физики.

Виды электрических разрядов. Электрические разряды на службе человека.

Влияние дефектов на физические свойства кристаллов.

Вселенная и темная материя.

Галилео Галилей — основатель точного естествознания.

Голография и ее применение.

Движение тела переменной массы.

Дифракция в нашей жизни.

Жидкие кристаллы.

Законы Кирхгофа для электрической цепи.

Законы сохранения в механике.

Значение открытий Галилея.

Игорь Васильевич Курчатов — физик, организатор атомной науки и техники.

Исаак Ньютон — создатель классической физики.

Использование электроэнергии в транспорте.

Классификация и характеристики элементарных частиц.

Конструкционная прочность материала и ее связь со структурой.

Конструкция и виды лазеров.

Криоэлектроника (микроэлектроника и холод).

Лазерные технологии и их использование.

Леонардо да Винчи — ученый и изобретатель.

Магнитные измерения (принципы построения приборов, способы измерения магнитного потока, магнитной индукции).

Майкл Фарадей — создатель учения об электромагнитном поле.

Макс Планк.

Метод меченых атомов.

Методы наблюдения и регистрации радиоактивных излучений и частиц.

Методы определения плотности.

Михаил Васильевич Ломоносов — ученый энциклопедист.

Модели атома. Опыт Резерфорда.

Молекулярно-кинетическая теория идеальных газов.

Молния — газовый разряд в природных условиях.

Нанотехнология — междисциплинарная область фундаментальной и прикладной науки и техники.

Никола Тесла: жизнь и необычайные открытия.

Николай Коперник — создатель гелиоцентрической системы мира.

Нильс Бор — один из создателей современной физики.

Нуклеосинтез во Вселенной.Объяснение фотосинтеза с точки зрения физики.

Оптические явления в природе.

Открытие и применение высокотемпературной сверхпроводимости

Переменный электрический ток и его применение.

Плазма — четвертое состояние вещества.

Планеты Солнечной системы.

Полупроводниковые датчики температуры.

Применение жидких кристаллов в промышленности.

Применение ядерных реакторов.Природа ферромагнетизма.

Проблемы экологии, связанные с использованием тепловых машин.

Производство, передача и использование электроэнергии.

Происхождение Солнечной системы.

Пьезоэлектрический эффект его применение.

Развитие средств связи и радио.

Реактивные двигатели и основы работы тепловой машины.

Реликтовое излучение.

Рентгеновские лучи. История открытия. Применение.

Рождение и эволюция звезд.

Роль К.Э.Циолковского в развитии космонавтики.

Свет — электромагнитная волна.

Сергей Павлович Королев — конструктор и организатор производства ракетно-космической техники. Силы трения.

Современная спутниковая связь.

Современная физическая картина мира.•        Современные средства связи.

Солнце — источник жизни на Земле.

Трансформаторы.

Ультразвук (получение, свойства, применение).

Управляемый термоядерный синтез.

Ускорители заряженных частиц.

ОУД.08 Физика и музыка.

Физические свойства атмосферы.

Фотоэлементы.

Фотоэффект. Применение явления фотоэффекта.

ХансКристиан Эрстед — основоположник электромагнетизма.

Черные дыры.

Шкала электромагнитных волн.

Экологические проблемы и возможные пути их решения.

Электронная проводимость металлов. Сверхпроводимость.

ЭмилийХристиановичЛенц — русский физик.



По теме: методические разработки, презентации и конспекты

Рабочая программа по физике 10 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-10

Рабочая программа по физике 10 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-10, пояснительная записка, календарно-тематическое планирование, базовый уровень-68 часов, 2 часа в неделю...

Рабочая программа по физике 11 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-11

Рабочая программа по физике 11 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-11, пояснительная записка, календарно тематическое планирование, 68 часов, 2 часа в неделю, базовый уровень...

Рабочая программа по физике для обучающихся 10-11классов (базовый уровень) к комплекту учебников «Физика» авт.Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский

Данная рабочая программа реализуется через комплект учебников физики 10-11 класса авторов Г.Я. Мякишев и Б.Б. Буховцев, который наиболее полно отражает идеи «Обязательного минимума содержания физическ...

Рабочая программа по физике к учебнику Физика. 10 класс. Л. Э. Генденштейн, Ю. И. Дик

Рабочая программа по физике к учебнику Физика. 10 класс. Л. Э. Генденштейн, Ю. И. Дик 3 часа в неделю...

Рабочая программа по физике для 7-го класса на основе авторской программы Е.М. Гутника, А.В. Пёрышкина. «Физика». 7-9 класс.

ПОЯСНИТЕЛЬНАЯ  ЗАПИСКА Рабочая программа разработана на основе авторской программы Е.М. Гутника, А.В. Пёрышкина. «Физика». 7-9 класс. (Программы для общеобразовательных учреждений. Физика. А...

Рабочая программа по физике 10-11 класс (Базовый уровень) к учебнику "Физика 10" авт. Г.Я. Мякишев, Б.Б.Буховцев, Н.Н. Сотский, "Физика 11" авт. Г.Я. Мякишев, Б.Б.Буховцев

Программа по физике для полной общеобразовательной школы составлена на основе фундаментального ядра содержания общего образования и требований к результатам полного общего образования,  представл...