Кодирование звуковой информации
презентация к уроку по информатике и икт (10 класс) по теме

Пономарева Галина Алексеевна

Презкнтация. содержащая терию и проктические задания по теме: "Кодирование звуковой информации"

Скачать:

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Кодирование звуковой информации

Слайд 2

ЗВУКОВАЯ ИНФОРМАЦИЯ Свойства : звук - продольная волна; распространяется в упругих средах (воздух, вода, различные металлы и т.д.); имеет конечную скорость. Звуковые колебания (волны) – механические колебания, частота которых лежит в пределах от 20 до 20 000 Гц. Звуковые колебания 20 Гц 20 000 Гц Инфразвук Ультразвук

Слайд 3

ХАРАКТЕРИСТИКИ ЗВУКА громкость звука – зависит от амплитуды колебаний. Чем больше амплитуда колебаний, тем громче звук. высота звука – определяется частотой колебаний воздуха. скорость звука – скорость распространения волн в среде. тембр звука – окраска звука, зависящая от источника звука (скрипка, рояль, гитара и т.д.). Единица громкости звука - децибел (дБ) (десятая часть бела). Названа в честь Александра Грэхема Белла, изобретателя телефона. sound_high_low.swf sound_quiet_aloud.swf

Слайд 4

fourth.swf third.swf Зависимость громкости и высоты тона звука от интенсивности и частоты звуковой волны

Слайд 5

УРОВНИ ГРОМКОСТИ ЗВУКА ОТ РАЗНЫХ ИСТОЧНИКОВ Источник звука Уровень (дБ) Спокойное дыхание Не воспринимается Шёпот 10 Шелест листьев 17 Перелистывание газет 20 Обычный шум в доме 40 Прибой на берегу 40 Разговор средней громкости 50 Громкий разговор 70 Работающий пылесос 80 Поезд в метро 80 Концерт рок-музыки 100 Раскат грома 110 Реактивный двигатель 110 Выстрел из орудия 120 Болевой порог 120

Слайд 6

Звуковая информация 2. Временная дискредитация звука 3. Частота дискредитации 4. Глубина кодирования звука 5. Качество оцифрованного звука 6. Звуковые редакторы

Слайд 7

СПОСОБЫ ПРЕДСТАВЛЕНИЯ ЗВУКА Аналоговый Дискретный физическая величина принимает бесконечное множество значений, причем они изменяются непрерывно . физическая величина принимает конечное множество значений, причем они изменяются скачкообразно . Виниловая пластинка (звуковая дорожка изменяет свою форму непрерывно) Аудиокомпакт-диск (звуковая дорожка содержит участки с разной отражающей способностью)

Слайд 8

ВРЕМЕННАЯ ДИСКРЕТИЗАЦИЯ ЗВУКА t A(t) Временная дискретизация – это разбиение непрерывной звуковой волны на отдельные маленькие временные участки, причем для каждого участка устанавливается определенная величина амплитуды.

Слайд 9

КВАНТОВАНИЕ - процесс замены реальных значений сигнала приближенными с определенной точностью. БИТРЭЙТ ( bitrate ) - уровень квантования, объем информации в единицу времени ( bits per second ). То есть, какое количество информации о каждой секунде записи мы можем потратить. Измеряется в битах ( bit ).

Слайд 10

МЕТОД ИМПУЛЬСНОГО КОДИРОВАНИЯ ( PCM Pulse Code Modulation ) Звуковая информация хранится в виде значений амплитуды, взятых в определенные моменты времени (т. е. измерения проводятся «импульсами»).

Слайд 11

ОЦИФРОВКА ЗВУКА Для оцифровки звука используются специальные устройства: аналого-цифровой преобразователь (АЦП) и цифро-аналоговый преобразователь (ЦАП).

Слайд 12

ХАРАКТЕРИСТИКИ ОЦИФРОВАННОГО ЗВУКА Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно: N = 2 I = 2 16 = 65 536 В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему - 1111111111111111. ГЛУБИНА ДИСКРЕТИЗАЦИИ ЗВУКА ( I ) – это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука. N = 2 i N – количество уровней громкости I – глубина кодирования

Слайд 13

ЧАСТОТА ДИСКРЕТИЗАЦИИ ЗВУКА – это количество измерений громкости звука за одну секунду. 1 Гц = 1/с 1 кГц = 1000 /с Сэмплрэйт ( samplerate ) - частота дискретизации (или частота сэмплирования ) - частота взятия отсчетов непрерывного во времени сигнала при его дискретизации (в частности, аналого-цифровым преобразователем - АЦП). sound_frequency.swf ХАРАКТЕРИСТИКИ ОЦИФРОВАННОГО ЗВУКА

Слайд 14

КАЧЕСТВО ОЦИФРОВАННОГО ЗВУКА Чем выше качество цифрового звука, тем больше информационный объем звукового файла. ! Параметр Глубина кодирования Частота дискретизации Телефон ная связь 8 бит до 8 кГц Среднее качество 8 бит или 16 бит 8-48 кГц Звучание CD -диска 16 бит до 48 кГц

Слайд 15

ОБЪЕМ АУДИОФАЙЛА V = I * M * t * k V - объем звукового файла, I - глубина кодирования звука, M - частота дискретизации звука, t - длительность звучания файла, k - количество каналов звучания (режим моно k = 1, стерео k = 2)

Слайд 16

Пример . Оцените информационный объем высокочественного стереоаудиофайла длительностью звучания 1 минута, если "глубина" кодирования 16 бит, а частота дискретизации 48 кГц. Информационный объем звукового файла длительностью в 1 секунду равен: 16 бит * 48 000 * 2 = 1 536 000 бит = 187,5 Кбайт Это значит, что битрейт или скорость воспроизведения должна быть равна 187,5 килобайт в секунду. Информационный объем звукового файла длительностью 1 минута равен: 187,5 Кбайт/с * 60 с = 11 Мбайт

Слайд 17

РЕДАКТИРОВАНИЕ ЗВУКА Очистка от шумов Разделение стерео-записи на два различных файла: Микширование звука Наложение эффектов Редактирование звука - это любое это преобразование.

Слайд 18

ЗВУКОВЫЕ РЕДАКТОРЫ Звуковые редакторы позволяют изменять качество цифрового звука и объем звукового файла путем изменения частоты дискретизации и глубины кодирования. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV или в формате со сжатием МР3. При сохранении звука в форматах со сжатием отбрасываются "избыточные" для человеческого восприятия звуковые частоты с малой интенсивностью, совпадающие по времени со звуковыми частотами с большой интенсивностью. Применение такого формата позволяет сжимать звуковые файлы в десятки раз, однако приводит к необратимой потере информации (файлы не могут быть восстановлены в первоначальном виде).

Слайд 19

Существуют различные методы кодирования звуковой информации двоичным кодом, среди которых можно выделить два основных направления : метод FM и метод Wave-Table . Метод FM ( Frequency Modulation ) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, и, следовательно, может быть описан кодом. Разложение звуковых сигналов в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальные устройства — аналогово-цифровые преобразователи (АЦП).

Слайд 20

Преобразование звукового сигнала в дискретный сигнал: a — звуковой сигнал на входе АЦП; б — дискретный сигнал на выходе АЦП . Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). Процесс преобразования звука представлен на рис. ниже. Данный метод кодирования не даёт хорошего качества звучания, но обеспечивает компактный код. Преобразование дискретного сигнала в звуковой сигнал: а — дискретный сигнал на входе ЦАП; б — звуковой сигнал на выходе ЦАП .

Слайд 21

Таблично-волновой метод ( Wave-Table ) основан на том, что в заранее подготовленных таблицах хранятся образцы звуков окружающего мира, музыкальных инструментов и т. д. Числовые коды выражают высоту тона, продолжительность и интенсивность звука и прочие параметры, характеризующие особенности звука. Поскольку в качестве образцов используются «реальные» звуки, качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов. Звуковые файлы имеют несколько форматов. Наиболее популярные из них MIDI, WAV, МРЗ.

Слайд 22

ФОРМАТЫ ЗВУКОВЫХ ФАЙЛОВ WAVE (. wav ) ( waveform ) представляет произвольный звук в виде цифрового представления исходного звукового колебания или звуковой волны. Все стандартные звуки Windows имеют расширение WAV. Ш ироко распространенный формат. MPEG-3 (.mp3 ) ( MPEG-1 Audio Layer 3 ) — один из цифровых форматов хранения звуковой информации. Он обеспечивает более высокое качество кодирования.Н аиболее популярный на сегодняшний день формат звуковых файлов. MIDI (. mid ) ( Musical Instrument Digital Interface ) изначально был предназначен для управления музыкальными инструментами. В настоящее время используется в области электронных музыкальных инструментов и компьютерных модулей синтеза. С одержат не сам звук, а только команды для воспроизведения звука. Звук синтезируется с помощью FM- или WT-синтеза. Real Audio (. ra , . ram ) - разработан для воспроизведения звука в Internet в режиме реального времени. MOD (. mod ) - музыкальный формат, в нем хранятся образцы оцифрованного звука, которые можно затем использовать как шаблоны для индивидуальных нот.

Слайд 23

ПРАКТИЧЕСКАЯ РАБОТА №10 «Создание и редактирование оцифрованного звука»

Слайд 24

ЗВУКОВОЙ РЕДАКТОР Audacity Область редактирования Временная шкала Главное меню Панели инструментов http://www.audacity.ru/p1aa1.html

Слайд 25

ДОМАШНЕЕ ЗАДАНИЕ Выучить конспект, решить задачи в тетради. Задачи «Кодирование звуковой информации» Уровень «5» Определите длительность звукового файла, который уместится на гибкой дискете 3,5”. Учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байт. а) при низком качестве звука: моно, 8 бит, 8 кГц; б) при высоком качестве звука: стерео, 16 бит, 48 кГц. Уровень «4» В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность? Уровень «3» Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит.


Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Тема урока: «Кодирование звуковой информации»

Слайд 2

Процесс преобразования звуковых волн в двоичный код в памяти компьютера : Процесс воспроизведения звуковой информации, сохраненной в памяти ЭВМ :

Слайд 3

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда, тем он громче для человека, чем больше частота сигнала, тем выше тон. Программное обеспечение компьютера в настоящее время позволяет непрерывный звуковой сигнал преобразовывать в последовательность электрических импульсов, которые можно представить в двоичной форме.

Слайд 4

В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Таким образом, непрерывная зависимость амплитуды сигнала от времени A ( t ) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек ».

Слайд 5

Каждой «ступеньке» присваивается значение уровня громкости звука, его код(1, 2, 3 и т.д.) Уровни громкости звука можно рассматривать как набор возможных состояний, соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации будет нести значение каждого уровня и тем более качественным будет звучание . Качество компьютерного звука определяется: Частотой дискретизации Разрядностью(глубина звука) .

Слайд 6

Частота временной дискретизации - это количество измерений входного сигнала за 1 секунду. Частота измеряется в герцах (Гц). Одно измерение за одну секунду соответствует частоте 1 Гц. 1000 измерений за 1 секунду – 1 килогерц (кГц). Характерные частоты дискретизации аудиоадаптеров: 11 кГц, 22 кГц, 44,1 кГц и др .

Слайд 7

Разрядность регистра (глубина звука) число бит в регистре аудиоадаптера (количество уровней звука). Разрядность определяет точность измерения входного сигнала . Чем больше разрядность,тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. Если разрядность равна 8 (16) , то при измерении входного сигнала может быть получено 2 8 = 256 (2 16 =65536) различных значений. Очевидно, 16 разрядный аудиоадаптер точнее кодирует и воспроизводит звук, чем 8-разрядный.

Слайд 8

Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле: N = 2 I = 2 16 = 65536, где I — глубина звука. Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код. При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации тем точнее процедура двоичного кодирования.

Слайд 9

Задача Определить информационный объем стерео аудио файла длительностью звучания 1 секунда при высоком качестве звука(16 битов, 48 кГц). Запись условия T=1 сек I=16 бит H= 48 кГц Стерео - × 2 V=? Решение V= T × I × H × 2 V=1 × 16 × 48 000 × 2= 1536000 бит/8 =192000 байт/1024 = 187,5 Кбайт

Слайд 10

Задача ( самостоятельно ) Определить информационный объем цифрового аудио файла длительностью звучания которого составляет 10 секунда при частоте дискретизации 22,05 кГц и разрешении 8 битов . Запись условия T=1 0 сек I=8 бит H= 22,05 кГц Моно- × 1 V=? Решение V= T × I × H × 2 V=1 0 × 8 × 22 0 5 0 × 1 = 10 × 8 × 22 050 бит/8 = 220500 байт/1024 = 215,332/1024 Кбайт = 0,21 Мбайт

Слайд 11

Решение задач. (Учебник: Информатика, задачник-практикум 1 том) № 90 Определить объем памяти для хранения цифрового аудио­файла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 битов. № 91* В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретиза­ции и разрядность? № 92 Объем свободной памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность звучания цифро­вого аудиофайла, записанного с частотой дискретизации 22,05 кГц? № 93 Одна минута записи цифрового аудиофайла занимает на дис­ке 1,3 Мб, разрядность звуковой платы - 8. С какой частотой дискретизации записан звук?

Слайд 12

№ 94 Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты? № 95 Цифровой аудиофайл содержит запись звука низкого качест­ва (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб? № 96 Две минуты записи цифрового аудиофайла занимают на дис­ке 5,05 Мб. Частота дискретизации — 22 050 Гц. Какова раз­рядность аудиоадаптера ? № 97 Объем свободной памяти на диске — 0,1 Гб, разрядность зву­ковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44 100 Гц?


По теме: методические разработки, презентации и конспекты

тест по теме "Кодирование звуковой информации " 9 класс

в данном тесте проверяются знания по данной тематике в ходе теоритических вопросов и умения решать задачи по данной теме...

Кодирование звуковой информации. Подготовка к ЕГЭ.

Информатика сдается на многие специальности в форме ЕГЭ. При обучении детей надо учитывать и стандарт, и демоверсии ЕГЭ по информатике. Цель урока - осмыслить процесс преобразования звуковой информаци...

Презентация "Кодирование звуковой информации"

Презентация «Кодирование звуковой информации»9 классАвтор: Горина В. С., учитель информатикиУчебник: Угринович Н. Д. Информатика и ИКТ, учебник для 9 класса, М.: "БИНО...

Презентация "Кодирование звуковой информации"

Презентация раскрывает понятие звука и принцип кодирования звуковой информации. Составлена в соответствии с материалом  учебника 10 класса Н.Д. Угриновича....

двоичное кодирование звуковой информации

разработка  урока в 9 классе "Двоичное кодирование звуковой информации"...

Кодирование звуковой информации

план-конспект урокапрезентация...

Открытый урок в 8 классе «Двоичное кодирование звуковой информации»

Содержание публикации:План урокаОпорный конспектПрактическое заданиеСамостоятельная работаПрезентация для электронной доски Smart NotebookЗвуковые файлы для практической работы...