Урок-лекция по теме: "Строение и химические свойства предельных углеводородов"
план-конспект урока по химии

Машеева Цындема Дондоковна

Цели урока:
Сформулировать знания учащихся о пространственном строении алканов.
Продолжить формировать понятия о гомологах.
Рассмотреть химические свойства алканов, показать взаимосвязь между строением и свойствами.
Продолжить формирование умений анализировать, сравнивать, делать выводы; развить навыки культуры общения.

Тип урока: сообщение новых знаний.

Вид урока: лекция + элементы беседы.

Оборудование:
Шаростержневая и объёмная модели молекулы метана.
Таблицы:
“Строение метана”;
“Строение этана и бутана”;
Кодограмма “Хлорирование метана”.

 

Скачать:

ВложениеРазмер
Файл stroenie_i_himicheskie_svoystva_alkanov.docx31.95 КБ

Предварительный просмотр:

Урок-лекция по теме: «Строение и химические свойства предельных углеводородов»

Цели урока:
Сформулировать знания учащихся о пространственном строении алканов.
Продолжить формировать понятия о гомологах.
Рассмотреть химические свойства алканов, показать взаимосвязь между строением и свойствами.
Продолжить формирование умений анализировать, сравнивать, делать выводы; развить навыки культуры общения.

Тип урока: сообщение новых знаний.

Вид урока: лекция + элементы беседы.

Оборудование:
Шаростержневая и объёмная модели молекулы метана.
Таблицы:
“Строение метана”;
“Строение этана и бутана”;
Кодограмма “Хлорирование метана”.

ХОД УРОКА

I. Организационный момент

II. Сообщение новых знаний

Знакомство с планом новой темы:
Особенности пространственного строения предельных углеводородов.
Анализ химических связей алканов.
Химические свойства.
Зависимость свойств предельных углеводородов от их строения, характера химических связей.

III. Изложение лекционного материала учителем в соответствии с планом

Современные представления о строении вещества не сводятся только к установлению порядка соединений атомов, но также включают рассмотрение пространственного строения молекул и электронной природы химических связей.

Предлагается написать молекулярную, электронную, структурную формулы метана, выяснить, что они показывают.

СН4 – молекулярная формула (качественный, количественный состав);

http://www.alhimikov.net/image/img13.gif– электронная формула (ковалентная полярная связь);

формула– структурная формула (порядок соединения атомов в молекуле).

Но данные формулы не отражают истинного строения молекул метана. Молекула метана не имеет плоского строения, как можно представить на основании структурной формулы.

IV. Работа с моделями молекулы метана

Молекула метана в действительности имеет форму тетраэдра. Тетраэдр – это пирамида, в основании которой лежит равносторонний треугольник. В центре тетраэдра находится атом углерода, а все его четыре валентности направлены к вершинам тетраэдра. Физическими методами исследования установлено, что валентные углы равны 109о28'.

Учащимся предлагаются проблемные вопросы:
Почему молекула метана имеет такую пространственную форму?
Чем объясняется направление валентных связей атома углерода от центра к вершинам тетраэдра?

Ответ следует искать в электронном строении атома углерода и молекулы метана.

С 1S2 2S2 2P2схема ––> C * 1S2 2S1 2P3схема 

(основное состояние) (возбужденное состояние)

Так как на втором энергетическом уровне Р-подуровне есть свободная орбиталь, то на неё переходит один из 2S2-электронов. В результате этого атом углерода в возбуждённом состоянии имеет четыре неспаренных электрона, т.е. становится четырёхвалентным.

схема

(негибридные электронные облака) (гибридные электронные облака)

Облака всех четырёх валентных электронов атома углерода выравниваются, становятся одинаковыми. При этом они принимают форму вытянутых в направлении к вершинам тетраэдра восьмёрок.

Явление, при котором происходит смешение и выравнивание по форме и энергии электронных облаков, называется гибридизацией.

Так как гибридизации подвергаются один S и три Р-электрона, то такое состояние называется SP3-гибридизацией.

Несимметричное распределение электронной плотности означает, что вероятность нахождения электрона по одну сторону от ядра больше, чем по другую. Гибридные электронные облака вытянуты в пространстве под углом 109о28' к вершинам воображаемого тетраэдра, и в этом направлении они перекрываются с электронными облаками атомов водорода.

Итак, молекула метана имеет тетраэдрическое строение, что обусловлено SP3-гибридизацией атома углерода, тетраэдрическим направлением четырёх гибридных электронных облаков атома углерода.

Сравнивая масштабную и шаростержневую модели молекул метана, можно отметить, что шаростержневая модель, появившаяся до возникновения электронной теории, более наглядно рассматривает строение молекулы метана.

V. Работа с таблицами “Строение метана” и “Строение этана и бутана”

Для активизации учащихся им предлагается рассмотреть данные таблицы и ответить на вопросы (анализ информации, заключённой в таблицах).
Что общего в строении молекул метана, этана, бутана вы видите?
Чему равны валентные углы в молекулах гомологов метана?
Почему углеродный скелет у молекулы бутана имеет зигзагообразную форму?
Виды химической связи в молекулах этана, бутана?

Проанализировав информацию, учащиеся делают выводы.

Для гомологов метана характерно:
тетраэдрическое строение атома углерода (SP
3-гибридизация);
одинаковое значение всех валентных углов;
наличие С – С и С – Н химических связей.

VI. Анализ химических связей алканов

При рассмотрении второго вопроса плана обращается внимание на характер С – С и С – Н связей, являющихся ковалентными по характеру образования. Углерод-углеродные и углерод-водородные связи в алканах относятся к (сигма) связям.

(сигма) связь – это химическая связь, при образовании которой перекрывание электронных облаков происходит по прямой, соединяющей ядра атомов.

Эти связи разнообразны.

 

VII. Химические свойства алканов

схема

Предельные углеводороды характеризуются малой реактивной способностью. Их называют инерционными, химически стойкими, парафинами (от латинского parum affinis – “мало сродства”).

В данной лекции познакомимся со взаимодействием алканов с кислородом, галогенами, термическим разложением, изомеризацией.

1. Горючесть алканов.

При поджигании (t = 600oС) алканы вступают в реакцию с кислородом, при этом происходит их окисление до углекислого газа и воды.

СnН2n+2 + O2 ––>CO2 + H2O + Q

например:

СН4 + 2O2 ––>CO2 + 2H2O + Q

Смесь метана с кислородом или воздухом при поджигании может взрываться.

Наиболее сильный взрыв получается при объёмных отношениях 1 : 2 (с кислородом) или 1 : 10 (с воздухом), т.к. метан и кислород вступают в реакцию полностью.

Подобные смеси опасны в каменноугольных шахтах. Чтобы обеспечить безопасность работы в шахтах, там устанавливают анализаторы, сигнализирующие о появлении газа, и мощные вентиляционные устройства.

С3Н8 + 5O2 ––>3CO2 + 4H2O + Q

Горение пропан-бутановой смеси можно продемонстрировать на примере газовой зажигалки.

При горении алканов выделяется много теплоты, что позволяет использовать их в качестве источника энергии. Но большая часть их используется в качестве сырья для получения других продуктов.

2. Разложение алканов.

СnН2n+2= C + H2 

СН4 =C + 2H2

С4Н10 = 4C + 5H2

Метан в термическом отношении более устойчив, чем другие алканы. Причина этого в достаточной прочности С – Н связей.

3. Реакции замещения (протекают с галогенами и другими окислителями при определённых условиях: свет, температура).

СН4 + Cl2= CH3Cl + HCl

СН3Cl + Cl2 =CH2Cl2 + HCl

СН2Cl2 + Cl2= CHCl3 + HCl

СНCl3 + Cl2 =CCl4 + HCl

Механизм цепных реакций достаточно сложен, объяснение ему было дано русским учёным Н.Н. Семёновым, за что он в 1956 г. был удостоен Нобелевской премии.

4. Реакции изомеризации характерны не для всех алканов. Обращается внимание на возможность превращения одних изомеров в другие, наличие катализаторов.

С4Н10= C4H10

Уравнение вызывает недоумение, т.к. учащиеся не встречались с реакциями, при которых состав молекул не изменялся. Значит, химические реакции могут сопровождаться не только изменением состава веществ, но и изменением их строения, что часто встречается в органической химии. Чтобы выразить такое превращение, надо пользоваться структурными формулами.

С уравнением учащиеся знакомятся самостоятельно, работая с учебником.

VIII. Выводы

В конце лекции учащиеся записывают выводы, вытекающие из содержания лекции, включая пункт № 4 плана. Алканы (предельные углеводороды) характеризуются общими свойствами, на основании которых объединяются в гомологические ряды:
имеют общую формулу С
nH2n+2;
все атомы углерода находятся в них в состоянии SP
3-гибридизации;
имеют прочные ковалентные (сигма) связи;
обладают сходными химическими свойствами, способностью к полному, частичному, постепенному окислению.

Свойства алканов находятся в зависимости от электронно-пространственного строения, прочных химических связей.

IX. Обобщение

По завершении лекции каждый учащийся заполняет обобщающую таблицу о соответствующем гомологе по образцу, выдаваемому учителем.

Название вещества

Молекулярная формула

Структурная формула

Уравнения реакций

Тип реакции

Метан

СН4

формула

СН4 + 2O2 ––> CO2 + 2H2O

Горение (полное окисление)

СН4= C + 2H2

Разложение (частичное окисление)

СН4 + Cl2 = CH3Cl + HCl

Замещение (постепенное окисление)

Выводы и обобщающая таблица являются кратким конспектом лекции.

X. Первичная проверка усвоения темы урока

После подведения итогов проводится небольшой тест.

1. Укажите ошибочное определение алканов:

а) предельные углеводороды;
б) карбоциклические соединения (в молекулах имеются циклы);
в) насыщенные углеводороды;
г) парафиновые углеводороды.

2. Общая формула алканов:

а) СnH2n;
б) С
nH2n+1;
в) С
nH2n+2;
г) С
nН2n-2.

3. Признаки, характеризующие строение алканов:

а) SP3-гибридизация, плоская форма молекул 120о,http://www.alhimikov.net/image/img1.gif и п -связи;
б) SP-гибридизация, линейная форма молекул 180
оhttp://www.alhimikov.net/image/img1.gif, и п-связи;
в) SP
3-гибридизация, форма молекул – тетраэдр 109о28'http://www.alhimikov.net/image/img1.gif,п -связи.

4. Невозбуждённый атом углерода имеет электронную конфигурацию:

а) 1S22S12P3;
б) 1S
22S22P2;
в) 1S
22S22P3;
г) 1S
22S22P4.

5. Возбужденный атом углерода имеет электронную конфигурацию:

а) 1S22S22P3;
б) 1S
22S22P2;
в) 1S
22S22P4;
г) 1S
22S12P3.

6. Всем алканам присущи свойства:

а) вступать в реакцию замещения;
б) окисляться при обычных условиях;
в) гореть в кислороде;
г) реагировать с активными металлами.

7. Найдите ошибку.

а) Все алканы – химически активные вещества.
б) Для алканов характерны реакции присоединения.
в) Алканы окисляются с трудом при высоких температурах кислородом воздуха.
г) Для алканов характерны реакции с разрывом - связи С – С и С – Н.

Учитель предлагает варианты правильных ответов, учащиеся проводят самоконтроль


По теме: методические разработки, презентации и конспекты

Никитина Н.Н. учитель химии МОУ "Лицей № 47"г. Саратов. Подготовка ЕГЭ.. Химические свойства предельных одноатомных спиртов ( конспект лекции для учащихся )

Подготовка к ЕГЭ.Химические свойства предельных одноатомных спиртов. Учащиеся воспользовшись предложенным конспектом смогут ответить на следующие вопросы:1. Какие типы химических реакций  будут х...

"Химические свойства предельных одноатомных спиртов" 10 класс

Урок в 10 классе (УМК О.С. Габриелян) по теме "Химические свойства предельных одноатомных спиртов "...

Урок-лекция по химии тема: «Химические свойства предельных углеводородов»

Урок-лекция по химии тема: «Химические свойства предельных углеводородов»...

«Химические свойства предельных одноатомных спиртов».

На данном уроке учащиеся получают представление о свойствах спиртов, общность свойств предельных одноатомных спиртов, обусловленную сходным строением. Развиваем на уроке понятие о взаимном влиянии ато...

Химические свойства предельных карбоновых кислот. Химические свойства непредельных карбоновых кислот.

Дистанционное обучение. Опорный конспект для учащихся.Тема урока: Химические свойства предельных карбоновых кислот. Химические свойства непредельных карбоновых кислот.(используем опорную схему 10, при...