Главные вкладки

    Презентация к уроку по алгебре (9 класс) по теме:
    Арифметическая прогрессия

    Рябова Лилия Геннадьевна

    Презентация к уроку по теме " Арифметическая прогрессия" 9 класс

    Скачать:

    ВложениеРазмер
    arifmeticheskaya_progressiya.ppt2.78 МБ

    Предварительный просмотр:

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

    Подписи к слайдам:

    Определение. Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом. an + 1 = an + d , n є N Число d называют разностью арифметической прогрессии d =  an+1 - an Если разность между последующим и предыдущим членами последовательности есть одно и то же число, то это арифметическая прогрессия. Разумеется, при этом предполагается, что обнаруженная закономерность справедлива не только для явно выписанных членов последовательности, но и для всей последовательности в целом. Арифметическая прогрессия считается конечной, если рассматриваются только ее первые несколько членов. Арифметическая прогрессия является:возрастающей последовательностью, если d > 0, например, 1, 3, 5, 7, 9,11,...убывающей, если d < 0, например, 20,17, 14, 11, 8, 5, 2, -1, -4, ...
    Свойство арифметической прогрессии: каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов. Верно и обратное утверждение: если в последовательности (an) каждый член начиная со второго, равен среднему арифметическому предыдущего и последующего членов, то эта последовательность является арифметической прогрессией. Формулы суммы n первых членов арифметической прогрессии Первое представление о арифметических прогрессиях были ещё у древних народов. В клинописных вавилонских табличках и египетских папирусах встречаются задачи на прогрессии и указания, как их решать. В древнеегипетском папирусе Ахмеса (ок.2000г. до н.э.) приводится такая задача: «Пусть тебе сказано: раздели десять мер ячменя между 10 людьми так, чтобы разность мер ячменя, полученного каждым человеком и его соседом, равнялось одна восьмая меры». В этой задачи речь идёт об арифметической прогрессии. Условие задачи, пользуясь современными обозначениями, можно записать так: S10 = 10, d = 1/8, найти a1, a2, a3. О прогрессиях и их суммах знали древнегреческие учёные. Так, им были известны формулы суммы n чисел последовательности натуральных, чётных и нечётных чисел. Отдельные факты об арифметической прогрессии знали китайские и индийские учёные. Об этом говорит, например известная индийская легенда об изобретателе шахмат. Термин «прогрессия» (от латинского progressio, что означает «движение вперёд») был введён римским автором Боэцием ( VI век) и понимался в более широком смысле, как бесконечная числовая последовательность. Названия «арифметическая» и «геометрическая» были перенесены на прогрессии из теории непрерывных пропорций, изучением которых занимались древние греки. Формула суммы членов арифметической прогрессии была доказана в книге Евклида « Начала» (IIIв. до н.э.). Правило отыскания суммы членов арифметической прогрессии встречается в « Книге абака» Л. Фибоначчи (1202). С арифметической прогрессией связан интересный эпизод из жизни немецкого математика К.Ф. Гаусса (1777 – 1855). Когда ему было 9 лет, учитель занятый проверкой работ учеников других классов, задал на уроке следующую задачу: « Сосчитать сумму всех натуральных чисел от 1 до 40 включительно: 1+2+3+4+5+…+40». Каково же было удивление учителя, когда один из учеников (это был Гаусс)через минуту воскликнул: « Я уже решил». Большинство учеников после долгих подсчётов получили неверный результат. В тетради Гаусса было одно число, но зато верное. Арифметические прогрессии и их свойства изучались математиками с древних времён. Греческих математиков интересовала связь прогрессий с так называемыми многоугольными числами, вычислением площадей, объемов. Большой популярностью даже в наши дни пользуются магические квадраты. Эти квадраты, в каждую клетку которых вписаны числа так, что суммы чисел вдоль любой горизонтали, любой вертикали и любой диагонали равны. Такой магический квадрат изображён в гравюре немецкого художника А. Дюрера «Меланхолия». МОУ «Быстроистокская общеобразовательная средняя (полная) школа»
    Презентацию выполнили: Рябова Кристина 11А класс Клишина Марина 9А класс Крощук Иван 9А класс Крощук Геннадий 9А класс Руководитель: Рябова Лилия Геннадьевна