Главные вкладки

    Логические задачи на раскрашивание в рамках внеурочной деятельности по общеинтеллектуальному направлению «Занимательная математика»
    статья (3 класс) на тему

    Чурилова Светлана Николаевна

    Среди задач на смекалку, используемых во внеурочной деятельности по общеинтеллектуальному направлению «Занимательная математика» в начальных классах, встречаются задачи на раскрашивание. Эти задачи достаточно наглядны. Лист бумаги и цветные карандаши или краски — вот и все, что надо для их решения. Задачи на раскрашивание вызывают активную деятельность детей. Ознакомившись с условием задачи, дети спешат проверить свои возможности на практике. Они активно работают с простыми фигурами: квадратами, треугольниками, кругами и их частями. Заинтересованность можно усилить, если придать задаче жизненный характер, сделать ее занимательной. Не следует при случае пренебрегать и сказочным сюжетом.

    Скачать:


    Предварительный просмотр:

    Логические задачи на раскрашивание в рамках внеурочной деятельности по общеинтеллектуальному направлению «Занимательная математика»

        Среди задач на смекалку, используемых во внеурочной деятельности по общеинтеллектуальному направлению «Занимательная математика» в начальных классах, встречаются задачи на раскрашивание. Эти задачи достаточно наглядны. Лист бумаги и цветные карандаши или краски — вот и все, что надо для их решения. Задачи на раскрашивание вызывают активную деятельность детей. Ознакомившись с условием задачи, дети спешат проверить свои возможности на практике. Они активно работают с простыми фигурами: квадратами, треугольниками, кругами и их частями. Заинтересованность можно усилить, если придать задаче жизненный характер, сделать ее занимательной. Не следует при случае пренебрегать и сказочным сюжетом.

         Именно такие задачи нужны для развития логического мышления. С помощью задач на раскрашивание дети учатся логически рассуждать. Это задачи чаще всего без числовых данных. Дети, даже не зная чисел, учатся сопоставлять и комбинировать. С помощью задач на раскрашивание у детей младшего школьного возраста формируется умение ориентироваться на плоскости; они на практике учатся познавать отношения («правее, чем...», «быть одного цвета» и т. д.), устанавливать взаимно-однозначное соответствие между элементами множества.

         Вместе с тем логические задачи на раскрашивание, несколько усложненные, допускают использование простейших числовых данных. В процессе их решения дети могут овладевать счетом предметов, усваивать состав чисел, сравнивать числа. Задачи на раскрашивание знакомят с простейшими элементами современных разделов математики: теории множеств, математической логики.

         Предлагаю различные задачи на раскрашивание. Решать их целесообразно не все сразу, а в течение достаточно длительного промежутка времени, например в течение третьего (четвертого) года обучения. Быть может, кто-то найдет целесообразным растянуть этот промежуток, начав с первого года обучения. Все зависит от подготовленности детей.

          Задача 1. Квадрат состоит из 9 различных фигур. Четыре из них раскрашены разным цветом: красным, желтым, зеленым, синим. Надо раскрасить остальные фигуры этими цветами так, чтобы соседние фигуры (они имеют хотя бы одну общую точку) были раскрашены разными цветами. Известно, что желтым цветом должно быть раскрашено наибольшее число фигур.

           Покажи, как раскрасить квадрат. Приведем рассуждения.

    Единственная незакрашенная часть, не являющаяся соседней по отношению к синему треугольнику,— верхняя фигура, ее следует раскрасить синим цветом. Желтым цветом надо раскрасить еще две фигуры — оставшиеся треугольники. После этого остается раскрасить красным цветом правую, а зеленым — нижнюю фигуру.

    Задача 2. Квадрат состоит из 16 одинаковых клеток. Четыре клетки раскрашены красным, желтым, зеленым и синим цветом. Этими же цветами надо раскрасить остальные клетки так, чтобы в каждом горизонтальном и вертикальном ряду и по диагонали были клетки разных цветов. Как это сделать? Эта задача имеет единственное решение. Дети находят его, рассуждая логически.

    Задача 3. Треугольник разбили на 9 частей, как показано на рисунке. Раскрась эти части красным, синим и зеленым цветом так, чтобы любые две части с общей границей были разного цвета.

    Задача 4. На клетчатой бумаге раскрась 6 клеток так, чтобы:

    а) одна клетка имела 4 соседние клетки (т. е. имеющие общую с ней сторону), одна клетка имела 2 соседние клетки и 4 клетки по одной соседней клетке;

    б) две клетки имели по 3 соседние клетки, 4 клетки — по одной соседней клетке.

    Ответы.

                                                

                                      4.а                                             4.б

    Задача 5. Элли нарисовала карту Волшебного края, который отделен от остального мира Великой пустыней. Волшебный край состоит из пяти стран: Желтой, Розовой, Голубой, Фиолетовой и Изумрудного города. Желтая страна со всех сторон окружена Великой пустыней и не имеет общей границы с Изумрудным городом. Каждая из стран — Розовая, Голубая и Фиолетовая — имеют общую границу с остальными четырьмя странами.

    Нарисуй, как расположены разные страны Волшебного края.

    Решение. Очевидно, что Желтая страна имеет форму кольца. К ее наружной границе примыкает Великая пустыня, к внутренней границе — Голубая, Фиолетовая, Розовая страны. Изумрудный город расположен в центре.

     

    Задача 6. Прямоугольник состоит из трех квадратов. Сколькими способами можно раскрасить эти квадраты тремя красками: красной, зеленой, синей? Решение. Пусть квадраты раскрасили каким-то способом. Если первый квадрат раскрашен красным цветом, то остальные квадраты можно раскрасить двумя способами: синим и зеленым, зеленым и синим цветом. Но первый квадрат можно раскрасить любым из данных трех цветов. И каждый из этих случаев даст два способа раскраски остальных квадратов. Всего полу-чается способов — 2-3=6 .

    Ответ. Три квадрата можно раскрасить 6 способами.

    Задача 7. Нарисовано три одинаковых квадрата. Под ними написано: красный, зеленый, красный или зеленый. Надо раскрасить каждый из этих квадратов красным, зеленым или синим цветом так, чтобы ни одна из подписей не соответствовала действительности.

    Решение. Начнем с последнего квадрата. Если под ним запись неверна, то его надо раскрасить синим цветом.

    Дети об этом догадываются интуитивно.

    Задача 8. Света, Зина, Катя должны раскрасить каждую из четырех картинок тремя цветами: синим, зеленым и красным. Света раскрашивает каждую картинку синим, Зина — зеленым, а Катя — красным цветом. На раскраску одной картинки любой краской требуется 1 мин. Выбранную одну картинку может раскрашивать только одна девочка.

    Могут ли девочки раскрасить все картинки за 4 мин?

    Ответ. Да, могут.

    Раскраску можно организовать так, как показано на таблице.

    Света

    Зина

    Катя

    1-я мин.

    картинка 1

    картинка 2

    картинка 3

    2-я мин.

    картинка 2

    картинка 3

    картинка 4

    3-я мин.

    картинка 3

    картинка 4

    картинка 1

    4-я мин.

    картинка 4

    картинка 1

    картинка 2

    Конечно, это один из многочисленных способов организации раскраски картинок.

    Задача 9. Шесть кругов расположены по окружности так, как показано на рисунке. Как раскрасить эти круги красным, зеленым и синим цветом, чтобы два круга, расположенные рядом, не были одного цвета? Зеленых кругов больше, чем красных и синих.

    Решение. 6= 1 +2+3. Такая сумма для числа 6 в порядке возрастания трех слагаемых является единственной. Значит, зеленых кругов 3. Один из вариантов раскраски кругов показан на рисунке. Возможны два варианта раскраски: два красных круга и один синий; два синих и один красный. Все другие способы раскраски можно свести к одному из этих вариантов, если повернуть рисунок, соответствующий определенному способу, на некоторый угол вокруг центра окружности. (Это показать детям очень просто.)

                                   

    Задача 10. Семь кругов расположены по окружности. Можно ли раскрасить эти круги красным, зеленым и синим цветом так, чтобы два круга одного цвета не были рядом? Кругов разного цвета неодинаковое число, зеленых кругов больше, чем красных и синих.

    Решение.

    7 = 1+6= 1 +(2+4)

    7=2+5=2+ (1+4)

    7=3+4 = (1+2) +4

      Таким образом, число 7 единственным образом разлагается на сумму трех чисел в порядке возрастания слагаемых: 7=1+2+4. Следовательно, зеленых кругов 4. Расположим их по окружности. Промежутков между ними тоже 4, поэтому оставшихся 3 кругов других цветов недостаточно, чтобы заполнить ими эти промежутки. Обязательно два каких-то зеленых круга окажутся рядом.

    Ответ. Раскрасить круги, выполнив условие задачи, нельзя.


    По теме: методические разработки, презентации и конспекты

    Программа курса внеурочной деятельности по общеинтеллектуальному направлению «Занимательная математика» для 1-2 классов по ФГОС

    Программа«Занимательная математика» направлена на формирование у школьников мыслительной деятельности, культу...

    Программа внеурочной деятельности общеинтеллектуальной направленности "Занимательная математика" Насибовой Б.А.

    Программа внеурочной деятельности общеинтеллектуальной направленности  "Занимательная математика" составлена для обучающихся 3 -4 классов.Программа составлена в соответствии с ФГОС 2009 года. Мож...

    ПРОГРАММА по внеурочной деятельности общеинтеллектуального направления «Занимательная математика»

    Внеурочная деятельность является составной частью учебно-воспитательного процесса  и одной из форм организации свободного времени учащихся.  Внеурочная деятельность понимается сегодня преиму...

    Рабочая программа внеурочной деятельности обще интеллектуального направления "Занимательная математика" 1 класс

    Данная программа позволяет учащимся ознакомиться со многими интересными вопросами математики на данном этапе обучения, выходящими за рамки школьной программы, расширить целостное представление о пробл...

    Рабочая программа по внеурочной деятельности общеинтеллектуального направления "Занимательная математика" для 3 класса

    Актуальна при работе по любому УМК. Содержит пояснительную записку, планируемые результаты освоения курса (согласно ФГОС второго поколения), содержание курса, календарно-тематическое планирование и ма...

    Календарно-тематическое планирование внеурочной деятельности общеинтеллектуального направления "Занимательная математика" для 1-4 классов

    КТП  внеурочной деятельности общеинтеллектуального направления "Занимательная математика" для 1-4 классов...