Развитие вариативного мышления у младших школьников на уроках математики
статья по математике на тему

Осташкина Ирина Александровна

Отрывок из статьи

Скачать:


Предварительный просмотр:

Развитие вариативного мышления у младших школьников на уроках математики  

         Под вариативностью мышления в психологии понимают способность человека находить разнообразные решения. Показателями развития вариативности мышления являются его продуктивность, самостоятельность, оригинальность и разработанность. Вариативность мышления определяет возможности личности творчески мыслить, помогает лучше ориентироваться в реальной жизни. Окружающая нас действительность многообразна и изменчива. Современный человек постоянно оказывается в ситуации выбора варианта решения проблемы, который является оптимальным в данной ситуации. Успешнее это будет делать тот, кто умеет искать разнообразные варианты и выбирать среди большого числа решений.

       Развитие вариативности мышления особенно актуально  для обучения. Так, проявление этого качества мышления требуется, например, при решении задач с помощью подбора, когда ученик рассматривает все возможные ситуации, анализирует их и исключает несоответствующие условию.

      Задания, способствующие развитию вариативности мышления учащихся, можно разделить на несколько групп. Это задания:

1)      имеющие единственный правильный ответ, нахождение которого осуществляется разными способами;

2)      имеющие несколько вариантов ответа, причем их нахождение осуществляется одним и тем же способом;

3)      имеющие несколько вариантов ответа, которые находятся отличающимися способами.

 

       Приведу примеры заданий к каждой группе.

 

 З а д а н и е 1 (группа 1). Найди выражения, значения которых можно вычислить разными способами:

(7+20):9

(30+8)+20

(28+21):7

(10+4)*1

(60+30)-80

100:(20+5)

О т в е т:

 (30+8)+20

(28+21):7

(10+4)*1

100:(20+5)

 

 З а д а н и е 2 (группа2). Петя живет в квартире 200. на его этаже есть еще 3 квартиры. Запиши, какие номера могут быть у этих квартир.

О т в е т: Это задание с многовариантным ответом. В нем не указано, как расположена на этаже квартира Пети, поэтому находятся все возможные варианты одним способом:

а) 200,201,202,203;

б) 199,200,201,202;

в) 198,199,200,201;

г) 197,198,199,200.

 

        З а д а н и е 3 (группа 3). Какое одно изменение нужно внести в запись, чтобы неравенство

465  456 стало верным? Рассмотри все варианты.

        Выполнить данное задание можно разными способами, получив при этом разные ответы. Во-первых, можно исправить знак неравенства (467  456). Во-вторых, можно исправить первое число: убрать цифру в разряде сотен (67  456); изменить цифру в разряде сотен (447  456, 437  456, 427  456, 417  456, 407  456). В-третьих, можно исправить второе число: приписать цифру, обозначающую единицы тысяч (467  1456, 467  2456 и т.д.); изменить цифру в разряде сотен (467  556, 467  656, 467  756, 467  856, 467  956); изменить цифру в разряде десятков (467  476, 467  486, 467  496).

 

       К заданиям третьей группы можно отнести комбинаторные задачи. При их решении способом перебора составляют различные варианты и рассуждения, проводимые учащимися, могут быть разные.

 

       Ученикам можно предлагаются многовариантные задания (у которых есть несколько ответов), специально направленные на формирование определенного показателя развития вариативности мышления: продуктивности, оригинальности и самостоятельности.

 

       Задания, способствующие развитию продуктивности, должны содержать указание на поиск различных вариантов решения. При их выполнении главным будет количество найденных учеником вариантов. Начинать нужно с заданий, предполагающих небольшое число вариантов (от 2 до 4), а затем можно переходить к большему числу вариантов решения, но их количество должно ограничиваться, чтобы у учащихся не пропал интерес к выполнению заданий.

 

З а д а н и е 1. Запиши все возможные трехзначные числа, сумма цифр которых равна четырем.

О т в е т: 400, 310, 301, 130, 103, 220, 202, 112, 121, 211.

 

З а д а н и е 2. Вставь знаки действий, чтобы равенства стали верными. Приведи все возможные варианты выполнения задания.

а) 12…1=12;

б) 12…0=12;

в) 17…28=28…17;

г) (9…4)…2=9…(4…2);

О т в е т:

а) 12*1=12, 12:1=12;

б) 12+0=12, 12-0=12;

в) 17+28=28+17, 17*28=28*17;

г) (9+4)+2=9+(4+2), (9*4)*2=9*(4*2), (9+4)-2=9+(4-2), (9-4)-2=9-(4+2).

        При выполнении данного задания ученики опираются на теоретические знания об арифметических действиях. Можно подвести учащихся к обобщениям, например, что от перестановки двух чисел только при сложении и умножении результат не изменится.

 

З а д а н и е 3. Вспомни единицы различных величин. Вставь вместо точек наименования, рассмотри разные варианты:

а) 1…=10…;

б) 1…=100…;

в) 1…=1000…

О т в е т:

а) 1см=10мм, 1дм=10см, 1м=10дм;      1т=10ц;

б) 1дм=100мм;      1ц=100кг;      1см =100мм ;    1м=100см, 1дм =100см , 1м =100дм ;

в) 1км=1000м, 1м=1000мм;   1кг=1000г, 1т=1000кг;

Можно добавить:

1р.=100коп.;   1век=1000лет.

 

      Показатель продуктивности не дает полного представления о развитии вариативности мышления у школьников. Один ученик может привести много вариантов, но они будут аналогичными. Другой ученик приведет только два варианта, но они будут принципиально различаться. Поэтому необходимо учитывать и показатель оригинальности.

 

       Задания, способствующие развитию оригинальности, должны содержать вариант (или аналогичные варианты) решения, а также указание на поиск вариантов, отличных от данного. При их выполнении учитывается степень отличия найденных вариантов от представленных в условии.

 

З а д а н е 1. Вставь пропущенные единицы длины, чтобы записи стали верными:

3…5…=35см;

3…5…=305см;

3…5…=350см.

      Чем похожи все числа, которые стоят после знака «=»? Какие числа, отличающиеся от них, могут стоять после знака «=»? Найди их.

3…5…=…;

3…5…=…;

3…5…=… .

О т в е т:

3дм 5см=35см;

3м 5см=305см;

3м 5дм=350см.

 

3мин.5с.=185с;

3сут.5ч.=77ч.;

3г.5мес.=41мес.

 

З а д а н и е 2. Вставь пропущенные единицы величины, чтобы записи стали верными:

4…-2…=38…;

4…-2…=398…;

4…-2…=3998…;

     Подбери такие единицы величин, чтобы результат не заканчивался цифрой 8.

О т в е т:

4т-2ц=38ц;

4ц-2кг=398кг;

4кг-2г=3998г;

 

4кг-2кг=2кг;

4г.-2мес.=46мес.;

4сут.-2ч.=94ч.;

 

З а д а н и е 3. Неверное равенство 3м-20см=10см исправили, изменив результат:

3м-20см=280см.

Как по-другому можно исправить неверное равенство, сделав только одно изменение? Рассмотри разные варианты.

 

О т в е т:

3дм-20см=10см;

3м-20см   10см.

 

          Во всех предыдущих заданиях ученик был нацелен на поиск различных вариантов. Но важно, чтобы он сам стремился выяснить при выполнении заданий, нет ли других решений. Необходимо строить работу над показателем самостоятельности вариативности мышления.

          Задания, способствующие развитию самостоятельности в проявлении вариативности, не должны содержать специальное указание на поиск различных вариантов. При их выполнении не является принципиальным, сколько вариантов приведено учеником, главное, что он сам, без посторонней подсказки стал искать разные варианты.

          Сначала формулировки заданий могут содержать некоторый намек на наличие многовариантного ответа, например, как это сделано в задании 1:

 

З а д а н и е 1: Какие числа можно вставить, чтобы равенства были верными?

 

а) 700:10= __ + __ ;

 

б) 5*__ = __ -400;

 

в) __ +8= __ :50;

 

г) 630: __ =70- __ .

 

О т в е т:

 

а) 700:10= 1+69, 700:10=2+68 и т.д.;

 

б) 5*1=405-400, 5*2=410-400 и т.д.;

 

в) 0+8=400:50, 1+8=450:50 и т.д.;

 

г) 630:9=70-7, 630:10=70-7 и т.д.

 

        При выполнении такого задания ученики замечают возможность нахождения разных вариантов и могут задать вопрос: «Сколько вариантов нужно записать?» Можно ограничить время выполнения задания, и тогда каждый ученик запишет столько вариантов, сколько успеет.

 

З а д а н и е 2: Из трехзначного числа вычитают двузначное число. Сколько цифр будет в записи их разности? Приведи пример, подтверждающий твой ответ.

О т в е т: 3 цифры : 634 – 12=621;

                2 цифры: 104 – 14=90;

                 1 цифра: 100 – 99-1.

В этом задании формулировка уже не наталкивает на поиск различных вариантов, ученики должны проявить самостоятельность.

 

З а д а н и е 3: Составь примеры по схемам, где это возможно. Вычисли. Где невозможно составить пример? Объясни, почему.

а) __  __ + __ = __  __  __ ;

 

б) __  __ - __ = __  __  __ ;

 

в) __  __ - __ = __  __ ;

 

г) __  __  __ - __  __ = __  __ ;

 

д) __ + __ + __ = __  __  __ ;

 

е) __  __  __ - __ - __ = __ .

О т в е т:

а) 99+1=100, 99+2=101, 99+3=102 и т.д.; 98+2=100, 98+3=101 и т.д.;

б) нельзя;

в) 11-1=10, 12-2=10 и т.д.;

г) 100-10=90, 100-11=89 и т.д.; 101-10=91, 101-11=99 и т.д.;

д) нельзя;

е) нельзя.

        В задании 3 создана более сложная ситуация в проявлении самостоятельности мышления, так как для одной части равенств дается однозначный ответ, а для другой многовариантный ответ.

        Названные виды заданий должны включаться в обучение последовательно.

      При работе по развитию вариативного мышления наблюдается и развитие таких качеств как:

- логическое мышление;

- умение выбирать удобный способ решения;

- зрительное восприятие;

- навыки анализа, синтеза, сравнения, классификации;

- дифференцированный и индивидуальный подход;

- самостоятельность мышления (умение делать выбор и принимать решение).

                          В качестве одного из важнейших средств формирования осознанных и прочных знаний по математике можно использовать метод варьирования текстовых задач как способ  конструирования учебного материала и как метод организации учебной деятельности учащихся.

Приведу некоторые приемы работы по развитию вариативного мышления у учащихся начальных классов:

  1. В готовое условие вставляется одно, а затем и два пропущенных числовых данных.
  2. К готовому условию ставятся вопросы.
  3. К вопросу подбирается условие задачи.
  4. Составление задач:

- по инсценировке.

- по иллюстрациям (картинке, плакату, чертежу и т.д.)

      - по числовым данным.

- по готовому решению.

- по готовому плану.

- составление аналогичных задач.

5. Изменение отношений между данными условия задачи и выяснение, как это изменение отразится на решении задачи

6. Изменение вопроса задачи.

7. Изменение условия задачи, привнесение в него дополнительного данного или изъятие какого-либо данного.

 

Очень важно, если для составления задач учащиеся используют материал, «добываемый» ими во время экскурсий, из справочников, газет, журналов и др., т.е. – из своего жизненного опыта.

Приведу пример работы над задачей:

 

Расстояние между двумя автобусными остановками 1 км. От этих остановок отошли два автобуса. Один из них прошел 140 м, а другой – 160 м. Каким стало расстояние между автобусами?  (Задача содержит новый для ребенка сюжет: движение двух тел). Такое движение может быть трех видов:

1)      навстречу друг другу;

2)      в противоположные стороны;

3)      вдогонку один другому.

      При выполнении таких заданий школьники не только демонстрируют знания, умения, навыки, но и показывают, насколько развито их логическое мышление, сформулировано умение анализировать, сравнивать, классифицировать, преобразовывать по следующим показателям:

а) способность выполнять любое задание по самостоятельно выбранному пути (что позволяет судить о сформированности отдельных операций и умений комплексно использовать их);

б) использование вариативности при выполнении  задания;

в) способность к переключению с одного основания поиска на другое.

             Использование вариативности характеризует глубину ума, так как в этой способности проявляется умение выделять и использовать в работе основную идею, позволяющую системно выявлять все возможные варианты и находить из них самый оптимальный

 Общеизвестно, что наряду с формированием основных математических понятий, изучением свойств чисел, арифметических действий в начальном обучении важнейшее место всегда занимало формирование у школьников вычислительных навыков. Сегодня значимость названных навыков уменьшилась в связи с широким внедрением во все сферы человеческой деятельности электронной вычислительной техники, использование которой, несомненно, облегчает процесс вычислений.  

Из исследований прошлых лет наибольшим авторитетом пользуются работы М.А. Бантовой, опубликованные дважды в методическом журнале «Начальная школа» [№10, 1975 и №11, 1983].

Вычислительный навык М.А. Бантова определила как «высокую степень овладения вычислительными приемами» и выделила следующие его характеристики — правильность, осознанность, рациональность, обобщенность, автоматизм, прочность. [2,  с. 39] 

Вычислительное умение — это развернутое осуществление действия, в котором каждая операция осознается и контролируется. Вычислительное умение предполагает усвоение вычислительного приема. Любой вычислительный прием можно представить в виде последовательности операций, выполнение каждой из которых связано с определенным математическим понятием или свойством.

Опираясь на конкретный смысл арифметических действий, их свойства, связи и зависимости между результатами и компонентами действий, а также десятичный состав чисел, раскрываются приемы устных и письменных вычислений. Такой подход к изучению приемов вычислений обеспечивает, с одной стороны, формирование осознанных умений и навыков, т.к. учащиеся смогут обосновать любой вычислительный прием, а с другой стороны, при такой системе лучше усваиваются свойства действий, их законы и т.д.

Одновременно с изучением свойств арифметических действий и соответствующих приемов вычислений раскрываются на основе операций над множествами или над числами связи между компонентами и результатами арифметических действий, ведутся наблюдения за изменением результатов арифметических действий в зависимости от изменения одного из компонентов.

Остановимся более подробно на таком качестве вычислительного навыка как рациональность, которая напрямую связана с вариативностью. 

 Вариативность мышления  связана с умением «видеть» несколько возможных ситуаций, в которых сохраняются существенные свойства объекта, но изменяются несущественные.

 Рациональность вычислений — это выбор тех вычислительных операций из возможных, «выполнение которых легче других и быстрее приводит к результату арифметического действия».[2,с.39].

Усиление внимания к рационализации вычислений связано с практической направленностью математического образования, которая означает развитие умений школьников применять полученные знания, действовать не только по образцу, но и в нестандартных ситуациях, комбинируя известные способы решения учебной задачи. Знакомство с рационализацией вычислений развивает вариативность мышления, показывает ценность знаний, которые при этом используются. Применение свойств арифметических действий позволяет учителю воспитывать интерес к математике, вызвать у детей желание научиться вычислять наиболее быстрыми, лёгкими и удобными способами. Такой подход позволит поддерживать стремление к использованию математических знаний в повседневной жизни.

Умение рационально выполнять вычисления опирается на осознанное использование законов арифметических действий, применение этих законов в нестандартных условиях, использование искусственных (универсальных) приемов упрощения вычислений.

Свойства арифметических действий (переместительное и сочетательное свойства сложения и умножения, распределительное свойство умножения относительно сложения) не являются специальным предметом изучения в начальной школе, а рассматриваются в связи с формированием устных приёмов  вычислений. Это означает, что в процессе обучения на конкретных простых числовых примерах рассматриваются различные способы прибавления числа к сумме, суммы к числу; вычитания числа из суммы, суммы из числа; умножения суммы на число и др. с целью формирования умения осознанно выбирать те способы, которые позволяют рационально осуществлять процесс вычислений.

В начальном курсе математики изучение вычислительного приема происходит после того, как школьники усвоят его теоретическую основу (определения арифметических действий, свойства действий и следствия, вытекающие из них). Причем в каждом конкретном случае учащиеся осознают сам факт использования соответствующих теоретических положений, лежащих в основе вычислительного приема,  конструируют различные приемы для одного случая вычислений, используя различные теоретические положения.[2, с.41].

В учебниках математики представлены приемы рациональных вычислений с точки зрения методики. Превалирование же действий по образцу в вычислительной деятельности младших школьников в условиях массового обучения обусловливает становление вычислительных стереотипов, применение которых возможно лишь в знакомой ситуации.

Проблема рациональных вычислений неоднократно поднималась на страницах журнала «Начальная школа». [3, 4, 5]. Авторы публикаций достаточно подробно описывают теоретические основы различных вычислительных приемов, часть из  них может успешно применяться учителями при обучении младших школьников. Это способ группировки, умножения и деления на 11, 5, 50, 15, 25 и др., округления одного из компонентов арифметического действия и др.; теоретическая основа  их — свойства арифметических действий, ознакомление с которыми происходит в начальном курсе математики [5].  Остановимся на некоторых из  способах вычислений, которые, на наш взгляд, посильны  учащимся, но не используются в практике обучения младших школьников.

Прием округления, основанный на изменении результата вычисления при изменении одного или нескольких  компонентов.

  1. Сложение. Для нахождения значения суммы используется прием округления одного или нескольких слагаемых.

при увеличении (уменьшении) слагаемого на несколько единиц сумму уменьшаем (увеличиваем) соответственно на столько же единиц:

  • 224+48=224+(48+2)-2=(224+50)-2=274-2=272 или
  • 224+48=(220+50)+4-2=270+4-2=272.
  1. Вычитание
  1. при увеличении (уменьшении) уменьшаемого на несколько единиц разность уменьшаем (увеличиваем) на столько же единиц:

397-36=(400-36)-3=364-3=361;

  1. при увеличении (уменьшении)  вычитаемого на несколько единиц разность увеличиваем (уменьшаем) на столько же единиц:

434-98=(434-200)+2=234+2=236;

  1. при увеличении (уменьшении) уменьшаемого и вычитаемого на несколько единиц разность не измениться:

231-96=(231+4)-(96+4)=235-100=135.

  1. Умножение

 При увеличении (уменьшении) одного из множителей на несколько единиц умножаем полученное целое число и прибавленные (отнятые) единицы на другой множитель и  из первого произведения вычитаем второе произведение (полученные произведения складываем)

97х6=(100-3)х6=100х6-3х6=600-18=582.

Данный прием представления одного из сомножителей в виде разности позволяет легко умножать на 9, 99, 999. Для этого достаточно умножить число на 10 (100, 1000) и из полученного  целого числа вычесть число, которое умножали: 154х9=154х10-154=1540-154=1386.

Но еще проще ознакомить детей с правилом — «чтобы умножить число на 9 (99, 999)достаточно вычесть из этого числа число его десятков (сотен, тысяч), увеличенное на единицу, и к полученной разности приписать дополнение его цифры единиц до 10 (дополнение до 100 (1000) числа, образованного двумя (тремя) последними цифрами этого числа):

154х9=(154-16)х10+(10-4)=138х10+6=1380+6=1386

Интересны школьникам и способы сокращенного умножения, к которым относится умножение на 15, 150, 11 и др., теоретической основой которых  является умножение числа на сумму.

Например, при умножении на 15, если число нечетное, умножают его на 10 и прибавляют половину полученного произведения: 23х15=23х(10+5)=230+115=345; если же число четное, то поступаем еще проще — к числу прибавляем его половину и результат умножаем на 10:

18х15=(18+9)х10=27х10=270.

При умножении числа на 150 пользуемся тем же приемом и умножаем результат на 10, т.к.150=15х10: 

24х150=((24+12)х10)х10=(36х10)х10=3600.

Теоретической основой умножения двузначных чисел является правило умножения суммы на число.  Например, 18х16.  Сначала число 18 представляют в виде «суммы удобных (разрядных) слагаемых», потом выполняют последовательные вычисления, используя распределительный закон умножения относительно сложения: (10+8)х16=10х16+8х16=160+128=288.

Найти значение данного выражения устно можно проще: к одному из чисел надо прибавить количество единиц другого, эту сумму умножить на 10 и прибавить к ней произведение единиц данных чисел: 18х16=(18+6)х10+8х6= 240+48=288.   Описанным способом можно умножать двузначные числа, меньшие 20, а также числа, в которых одинаковое количество десятков: 23х24 = (23+4)х20+4х6=27х20+12=540+12=562. Способ отличается от тех «рациональных вычислений», которым обучают детей в школе.

 

В учебной литературе описываются и другие универсальные способы быстрого счета (рациональных вычислений), которые всегда можно обосновать  математически и основываются они на известных законах и свойствах арифметических действий [2, 6 ]. 

Перебор вариантов при решении математических задач тренирует вариативность мышления и его подвижность.

Приведу примеры  по перебору вариантов.
Обучающий дает устное задание из таблицы. Этой таблицей пользуется только обучающий. В ней 4 колонки разных чисел. Берутся только 2 числа, стоящие по вертикали рядом.
Пример выполнения задания:
"Какие действия необходимо произвести с числом 32, чтобы получить последующее число 2?"
Учащиеся в уме перебирают варианты математических действий с числом 32 для получения 2. Этими действиями могут быть сложение, вычитание, умножение и деление. Для данных чисел возможны варианты:
32:16=2 32-30=2
Затем в соответствии с таблицей обучающий предлагает выполнить новое задание: "Какие действия необходимо произвести с числом 2, чтобы получить 60?" После перебора вариантов учащиеся получают:
2*30 = 60 2+58 = 60ит.д.
Время для выполнения задания желательно постепенно сокращать.
Предшествующее задание можно усложнить, предлагая в уме методом перебора вариантов решить задачу уже с 3 числами. Задания даются устно обучающим по таблице "Знакоискатель".
Задаваемые числа находятся в первой колонке таблицы. Во второй колонке напротив строчки с задаваемыми числами находятся 3 числа, которые показывают результаты различных действий с задаваемыми числами. В последней колонке, напротив каждой строки с задаваемыми числами и возможными результатами действий с ними, даны 3 набора знаков. В каждом наборе-2 математических знака. Они расположены по горизонтали. Два знака в первом наборе показывают, какие действия следует произвести с задаваемыми знаками, чтобы получить результат, данный в первом числе набора результатов.
Например:
Задаваемые числа: 11.4.7. Результат: 49.8.22. Знаки: - •;+-; ++.
Если произвести действие с первым набором знаков т.е. вычитание и умножение, то получим 49 = (11 — 4) • 7.
Если произвести действия со вторым набором знаков (сложение и вычитание) получим число 8=11+4-7.
Обучающий дает задание: "Решить в уме задачу - какие действия необходимо произвести с числами 11.4.7. чтобы получить результат 49?" Учащиеся в уме перебирают варианты действий с задаваемыми числами для получения результата 49. Пример решения смотри выше. Первое время можно разрешать записывать условия. Третья знаковая колонка является ключом. Он предназначен только для облегчения работы обучающего.
Тренажер предназначен для решения в уме задач с 3 числами методом перебора вариантов возможных математических действий. Он позволяет интенсифицировать работу по поиску необходимого результата

           Таким образом,  использование вариативности характеризует глубину ума, так как в этой способности проявляется умение выделять и использовать в работе основную идею, позволяющую системно выявлять все возможные варианты и находить из них самый оптимальный.

Вариативность вычислительных навыков школьников формирует интерес, положительную мотивацию к вычислительной деятельности.

 

Использованная литература:

  1. Бантова М.А. Система формирования вычислительных навыков // Начальная школа. — 1993. — № 11. — С. 38-43.
  2. Гельфан Е.М. Арифметические игры и упражнения. — М.: Просвещение, 1968. — 112с.
  3. Демидова Т.Е., Тонких А.П. Приемы рациональных вычислений в начальном курсе математики // Начальная школа. — 2002. — №2. — С. 94-103.
  4. Зимовец Н.А., Пащенко В.П. Интересные приемы устных вычислений // Начальная школа. — 1990. — №6. — С. 44-46.
  5. Фаддейчева Т.И. Обучение устным вычислениям // Начальная школа. — 2003. — №10. — С. 66-69.
  6. Чекмарев Я.Ф. Методика устных вычислений. — М.: Просвещение, 1970. — 238с.


По теме: методические разработки, презентации и конспекты

Комплекс дидактических игр способствующих развитию познава- тельной активности младших школьников на уроках математики.

Традиционно  проблема активизации познавательной деятельности ребёнка решается применением дидактических средств активизации учения, таких как: умелое использование учебника, проблемное обучение,...

Развитие логического мышления у младших школьников на уроках математики.

Статья посвящена развитию логического мышления у младших школьников на уроках математики....

Педагогический проект «Развитие алгоритмического мышления у младших школьников на уроках информатики»

Данная работа представляет собой изучение научно-методической литературы  по вопросам развития алгоритмического мышления у младших школьников и примерный план-проект по развитию алгоритмического ...

Развитие креативного мышление у младших школьников на уроке русского языка

В данной статье описаны формы работы по развитию креативного мышления на уроке  русского языка. Его значимость в процессе обучения и способы формирования....

Доклад «Развитие мышления аномальных младших школьников на уроках математики».

Большое значение для развития мышления детей имеет овладение математическими знаниями, умениями решать математические задачи, применять свои знания на практике....

Статья "Технологии диалогового взаимодействия как средство развития умений самостоятельной деятельности младших школьников на уроках математики."

Технологии диалогового взаимодействия как соедство развития умений самостоятельной деятельности младших школьников на уроках математики...

Развитие функциональной грамотности у младших школьников на уроках математики и во внеурочное время

Развитие функциональной грамотности младших школьников определяется как одна из приоритетных целей образования. Инновации в обучении математики связаны с актуализацией математической грамотности как с...