Выпускная квалификационная работа по теме "Создание сборника занимательных заданий для развития вычислительных навыков на уроках математики в начальных классах".
учебно-методический материал на тему

Павлов Владимир Алексеевич

Выпускная квалификационная работа по теме "Создание сборника занимательных заданий для развития вычислительных навыков на уроках математики в начальных классах".

Скачать:


Предварительный просмотр:

Министерство образования и науки Челябинской области

 ГБПО «Челябинский педагогический колледж №1»

Павлов Владимир Алексеевич

СОЗДАНИЕ СБОРНИКА ЗАНИМАТЕЛЬНЫХ ЗАДАНИЙ ДЛЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНЫХ НАВЫКОВ НА УРОКАХ МАТЕМАТИКИ В НАЧАЛЬНЫХ КЛАССАХ

        

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

ВКР  защищена                                                     Специальность 44.02.02.             

с оценкой _______________                                Преподавание в начальных классах

 «   » ____________ 2016 года                              Курс 4, группа 41

                                                                       Руководитель: Дрокина М.В

                                                                     

Челябинск, 2016

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

3

ГЛАВА 1. ЗАНИМАТЕЛЬНЫЕ ЗАДАЧИ В ПРОЦЕССЕ ОБУЧЕНИЯ  МАТЕМАТИКЕ

6

1.1 Занимательность при обучении математике

6

1.2 Сущность и типология занимательных задач

8

1.3 Приемы составления занимательных заданий

12

1.4  Теоретический аспект понятия «вычислительный навык»

15

1.5 Задания, направленные на формирование вычислительных навыков в начальной школе

23

1.6 Особенности содержания и методики использования сборника занимательных заданий для развития вычислительных навыков «Заниматика»

34

1.7 Апробация сборника «Заниматика» для развития вычислительных  навыков у младших школьников на уроках математики.

35

ЗАКЛЮЧЕНИЕ

41

СПИСОК  ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

42

ПРИЛОЖЕНИЯ

44

ВВЕДЕНИЕ

Уча других, мы учимся сами.

Сенека.

Актуальность исследования: Важная особенность занимательной математики состоит в том, что она побуждает к работе мысли. Насыщенная задачами, головоломками, вопросами и проблемами, она вовлекает ученика в активное сотрудничество с учителем на уроке, будит любознательность и поощряет его к первым самостоятельным открытиям.

Таким образом, главный фактор занимательности – это приобщение учащихся к творческому поиску, активизация их к самостоятельной исследовательской деятельности.

Логику можно и нужно развивать, причем осуществлять это нужно с самого детства. Отличные помощники в этом – кроссворды, загадки, и, конечно же, различные математические занимательные задания, которые формируют вычислительные навыки.

 Проблема  формирования у учащихся вычислительных умений и навыков всегда привлекала особое внимание психологов, дидактов, методистов, учителей. В методике математики известны исследования Е.С. Дубинчук, А.А. Столяра, С.С. Минаевой, Н.Л. Стефановой, Я.Ф. Чекмарева, М.А. Бантовой,  М.И. Моро, Н.Б. Истоминой,  С.Е. Царевой и др.

Глубоко и всесторонне вопросы совершенствования устных и письменных вычислений учащихся исследовались лишь в 60-70 гг. ХХ века.  Исследования последующих лет посвящены преимущественно разработке качеств вычислительных навыков (М.А. Бантова), рационализации вычислительных приемов (М.И. Моро, С.В. Степанова и др.),  применению средств ТСО (В.И. Кузнецов), дифференциации и индивидуализации процесса формирования вычислительных умений и навыков (Т.И. Фаддейчева).

Одна из важнейших задач обучения школьников математике – формирование у них вычислительных навыков, основой которых является осознанное и прочное усвоение приемов устных и письменных вычислений.

Вычислительные навыки необходимы как в практической жизни каждого человека, так и в учении. Ни один пример, ни одну задачу по математике, физике, химии и т. д. нельзя решать, не обладая элементарными способами вычислений.

В век компьютерной грамотности значимость вычислительных навыков, несомненно, уменьшилась. Использование компьютера, калькулятора во многом облегчает процесс вычислений. Но пользоваться техникой без осознания вычислительных навыков невозможно, да и микрокалькулятор не всегда может оказаться под рукой.  Следовательно, владение вычислительными навыками необходимо. Научиться быстро и правильно выполнять вычисления важно для младших школьников как в плане продолжающейся работы с числами, так и в плане практической значимости для дальнейшего обучения. Поэтому вооружение учащихся прочными вычислительными навыками продолжает оставаться серьезной педагогической проблемой.

Глубоко и всесторонне вопросы совершенствования устных и письменных вычислений учащихся исследовались лишь в 60-70 гг. ХХ века.  Исследования последующих лет посвящены преимущественно разработке качеств вычислительных навыков (М.А. Бантова), рационализации вычислительных приемов (М.И. Моро, С.В. Степанова и др.),  применению средств ТСО (В.И. Кузнецов), дифференциации и индивидуализации процесса формирования вычислительных умений и навыков (Т.И. Фаддейчева).[3;6]

Каждое из этих исследований внесло определенный вклад в разработку и совершенствование той методической системы, которая использовалась в практике обучения, и нашло отражение в учебниках   математики.

Действующие на сегодняшний день программы по математике  обеспечивают достаточный уровень формирования вычислительных навыков школьников. Изучение вычислительного приема происходит после того, как школьники усвоят его теоретическую основу (определения арифметических действий, свойства действий и следствия, вытекающие из них). Причем в каждом конкретном случае учащиеся осознают сам факт использования соответствующих теоретических положений, лежащих в основе вычислительного приема,  конструируют различные приемы для одного случая вычислений, используя различные теоретические положения. В начальном курсе математики предусмотрен такой порядок введения вычислительных приемов, при котором постепенно вводятся приемы, включающие большее число операций, а приемы, усвоенные ранее, включаются в новые в качестве основных операций.

Переориентация методической системы на приоритет развивающей функции по отношению к образовательной, характеризующейся изменением характера деятельности учащихся, личностно-ориентированным подходом к обучению, несколько ослабила внимание к развитию и закреплению вычислительных навыков у учащихся.

Учебники математики ориентированы на общие вычислительные навыки, и учитель может легко обучить алгоритму вычислений. Но в учебниках, к сожалению, нет «отработки частных способов вычислений», равно как нет и общих способов.

Вычислять быстро, подчас на ходу – это требование времени. Числа окружают нас повсюду, а выполнение арифметических действий над ними приводит к результату, на основании которого мы принимаем то или иное решение. Понятно, что без вычислений не обойтись как в повседневной жизни, так и во время учебы в школе. Этим, кстати, объясняется столь стремительное развитие удобных калькуляторов. Тем не менее калькулятор не может обеспечить ответ на все возникающие вопросы. Он не всегда имеется под рукой и бывает достаточно определить лишь примерный результат.

Многие навыки, сопутствующие вычислениям, неизбежно требуются и в быту, и в школьной практике. Так, нередко может потребоваться замена числа близким ему числом, например, 25% - это 0,25, т. е. четверть, сравнение чисел на основе качественных оценок.

Отмечается ухудшение качества вычислений учащихся, обучающихся и по обычным, и по развивающим учебникам. Особенно пострадала культура устного счета. «Стремление учителей изменить ситуацию приводит к тому, что одни учителя используют в работе два учебника: один выполняет развивающие функции, другой (традиционный) — нацелен на формирование вычислительных умений и навыков. Другие учителя увеличивают объем домашних заданий. Это приводит к перегрузкам школьников, провоцирует стрессовые ситуации, снижает интерес к математике.  

На основании обозначенной проблемы сформулирована тема исследования: «Создание сборника занимательных заданий для развития вычислительных навыков на уроках математики в начальных классах».

Цель исследования: На основе анализа современных методических подходов разработать сборник занимательных заданий по развитию вычислительных навыков у младших школьников и выявить целесообразность его использования в образовательном процессе в начальной школе.

Объект исследования: Процесс обучения математике учащихся 3 класса начальной школы.

Предмет исследования: Методика применения занимательных заданий на уроках математики в 3  классе Дубровской средней школы Коркинского района Челябинской области.  

Гипотеза исследования: Если в образовательный процесс на уроках математике целенаправленно вводить занимательные задания, то вычислительные навыки учащихся будут развиваться более успешно.

Задачи:

  1. На основе анализа научной психолого-педагогической литературы представить возможности по развитию вычислительных навыков;
  2. Путем изучения методической литературы отобрать наиболее рациональные приемы для современного образовательного процесса.
  3. Разработать сборник занимательных заданий по формированию вычислительных навыков на уроках математики в начальных классах.
  4. Провести экспериментальную работу по развитию вычислительных навыков на преддипломной практике.
  5. Сделать выводы о целесообразности экспериментальной работы и разработать методические рекомендации по использованию сборника.

Методы исследования:

Теоретические: (анализ, сравнение, обобщение, систематизация психолого-педагогической литературы, научное обобщение)

Эмпирические: (наблюдение, анкетирование, сравнение, педагогический эксперимент)

Методологическая и/или теоретическая основа исследования:

Понятие вычислительный навык

Понятие занимательные задания

Практическая значимость: заключается в разработке сборника занимательных заданий для развития вычислительных навыков на уроках математики в начальных классах.

ГЛАВА I ЗАНИМАТЕЛЬНЫЕ ЗАДАЧИ В ПРОЦЕССЕ ОБУЧЕНИЯ МАТЕМАТИКИ

1.1 ЗАНИМАТЕЛЬНОСТЬ ПРИ ОБУЧЕНИИ МАТЕМАТИКЕ

Что такое занимательность? Однозначного ответа на данный вопрос нет. Обработав достаточное количество литературы по педагогике, философии, психологии, частным методикам, можно заключить, что практически все авторы, говоря о занимательности, определяют ее через способность восприятия обучаемыми материала. Упоминаются такие качества занимательности, как привлекательность, притягательность, необычность, оригинальность, вызывание возбуждения и др. В ряде работ указывается, что занимательность может проявляться через определенные формы обучения или специфические средства. Некоторые авторы пытаются объяснить занимательность на примере работы с конкретным средством [3,с.3].

Иногда перед учителями встает вопрос: выдал материал в одном классе — ученики активно приступили к работе, у них появился интерес, слышатся оригинальные ответы, а выдал тот же самый материал в другом классе — и наблюдаешь прямо противоположную картину — как были ученики безразличны к предмету, так и остались равнодушными, им не интересно слушать, включаться в обсуждение вопросов. В чем тут дело? Скорее всего, у детей  нет основы, опираясь на которую они осознают суть подготовленного занимательного материала. В этом и кроется субъективность занимательности, которую многие педагоги предпочитают не замечать, виня при неудачах не себя за незнание основ педагогики и психологии, а саму занимательность и материалы, через которые она включается в обучение. Предлагаемый учебный материал, облекаемый в занимательную форму, должен быть знаком ученикам, но либо его подача осуществляется в необычной форме, либо для решения используются нестандартные приемы [1,с.62].

Существует большое количество организационных форм обучения, через которые можно реализовать занимательность. Наиболее часто такие формы используются в начальной школе — это уроки-путешествия, уроки-сказки, уроки-викторины и т. д.

Обучение – это ремесло, использующее бесчисленное количество маленьких трюков. В методической литературе нет общепринятого определения понятия «занимательность обучения математике». Оно считается интуитивно ясным.

Обучение начинается с дошкольного возраста. Дети обучаются в процессе игры. Дошкольники обучаются, не замечая этого, они думают, что просто играют. Но незаметно для себя считают, складывают, вычитают, более того решают разного рода логические задачи, формирующие определённые логические структуры мышления. Дети любят играть и им это интересно. А дальше на фоне успеха можно переходить и к более сложным иллюстрированным или занимательным задачам.

Знания нужны не ради знаний, а как важная составляющая личности. Основная роль математики – в умственном воспитании, в развитии интеллекта. Результатом обучения математике является определённый стиль мышления. В математике заложены огромные возможности для развития детей в процессе их обучения с самого раннего возраста. Развивающий эффект авторской методики достаточно высок. Необходимо также учитывать, что формирование и развитие логических структур мышления должно осуществляться своевременно. Упущения трудно восполняемы. Известно, что основные логические структуры мышления формируются примерно в возрасте от 5 до 11 лет. Запоздалое формирование этих структур протекает с большими трудностями и часто остаётся незавершенным.

Единственно правильный путь, ведущий к ускорению познания, состоит в применении методов обучения, способствующих ускорению интеллектуального развития (разумеется, без ущерба физическому развитию, а в гармоничном единстве с ним).

Под занимательностью на уроке понимают те компоненты урока (способы подачи учебного материала, а иногда и организации обучения), которое содержит в себе элементы необычного, удивительного, неожиданного, комического, вызывают интерес у школьников к учебному предмету и способствуют созданию положительной эмоциональной обстановке учения.

В дидактике и методике математике уже выдвинуты и обоснованы основные положения, касающиеся занимательности обучения.

Во-первых, всю занимательность обучения, следуя К.Д. Ушинскому, принято делить на «внешнюю» (не связанную с содержанием урока) и «внутреннюю», причем «внутренняя» занимательность предпочтительней «внешней» и удельный вес ее должен постепенно увеличиваться.

Во-вторых, все материалы занимательного характера обычно разбивают на три группы: материалы, занимательные по содержанию; материалы, занимательные по форме; материалы, занимательные и по форме, и по содержанию.

В-третьих, основу занимательности, используемой на уроках, должны составлять задания, непосредственно связанные с программным материалом.

Сделать учебную работу насколько возможно интересной для ребенка и не превратить этой работы в забаву – это одна из труднейших и важнейших задач дидактики. Сознательно и прочно усвоить современный курс математики начальной школы без должного прилежания нельзя. Прилежание же зависит от доброй воли, которая ни принуждением не внушается, ни сама не приходит, а является чаще всего вслед за познавательным интересом, который можно развивать посредством решения занимательных задач.

Через занимательность проникает в сознание ученика сначала ощущение прекрасного, а затем, при последующем систематическом изучении математики, и понимание красоты ее методов.

Важная особенность занимательной математики состоит в том, что она побуждает к работе мысли. Насыщенная задачами, головоломками, вопросами и проблемами, она вовлекает ученика в активное сотрудничество с учителем на уроке, будит любознательность и поощряет его к первым самостоятельным открытиям [7,с.45]

1.2 СУЩНОСТЬ И ТИПОЛОГИЯ ЗАНИМАТЕЛЬНЫХ ЗАДАЧ

В повседневной жизни мы часто слышим: «занимательный материал», «занимательная игра», «занимательная задача». Обычно «занимательное» понимается как увлекательное, интересное, притягивающее к себе. Это происходит, прежде всего, благодаря необычности, нетрадиционности сюжета, положительно влияющего на эмоциональный настрой аудитории, когда в качестве исходных данных и ситуаций используются вымышленные или реальные персонажи, определенными средствами достигающие заданной цели.

Задачей будем называть некую ситуацию, включающую в себя набор исходных данных, используя которые требуется ответить на поставленный в условии вопрос.

Существуют различные классификации и типологизации задач, применяемых в учебном процессе, например по способу подачи информации (текстовые, графические, задачи-рисунки), по способу решения (арифметические, алгебраические, геометрические, графические), по содержанию (количественные и качественные), по функциональным возможностям в обучении (задачи с дидактическими функциями, задачи с познавательными функциями, задачи с развивающими функциями) и так далее.

Например,классификация, предложенная И.В.Егорченко [6,с.27], когда выделяются стандартные прикладные задачи, нестандартные прикладные задачи, нестандартные задачи, не являющиеся прикладными, и материалы, вообще не являющиеся задачами. При этом под «нестандартными» И.В. Егорченко [6,с.28] понимает именно занимательные задачи. Последние дополнительно подразделяются в зависимости от нестандартной формы, способа решения и особенностей. При этом учитываются: 1) постановка задачи, 2) процесс решения, 3) представление ответов, 4) осуществление проверки решения.

Наиболее интересны задачи, подпадающие под первый тип. К ним И.В. Егорченко относит:

задачи с лишними, недостающими или противоречивыми данными;

задачи без явной постановки вопроса или с неявной его постановкой;

задачи с нестандартной формой изложения данных (рисунок, схема, диаграмма);

задачи с реккурентным способом постановки данных и условий (когда данные задаются опосредованно, один вопрос через другой);

задачи, направленные на установление взаимосвязи, проведение аналогии, обобщения;

задачи, имеющие нестандартную фабулу постановки и задания вопроса;

задачи в форме игр либо заданий практической или лабораторной работы;

задачи, данные в которых представлены в непривычных (нестандартных) единицах измерения;

задания на нахождение ошибок, подтверждение истинности или обнаружение смысловых противоречий.

Не менее интересна и классификация нестандартных задач, не являющихся прикладными. Среди них И.В. Егорченко [6,с.24] называет:

задачи, направленные на поиск взаимосвязей между заданными объектами, процессами или явлениями;

задачи, неразрешимые или не решаемые средствами школьного курса на данном уровне знаний учащихся;

задачи, в которых необходимо:

проведение и использование аналогий, определение различий заданных объектов, процессов или явлений, установление противоположности заданных явлений и процессов или их антиподов;

осуществление практической демонстрации, абстрагирование от тех или иных свойств объекта, процесса, явления или конкретизации той или иной стороны данного явления;

установка причинно-следственных отношений между заданными объектами, процессами или явлениями;

построение аналитическим или синтетическим путем причинно-следственных цепочек с последующим анализом получившихся вариантов;

правильное осуществление последовательности определенных действий, избегая ошибок-«ловушек»;

осуществление перехода от плоскостного к пространственному варианту заданного процесса, объекта, явления или наоборот.

Количество занимательных задач достаточно велико. Среди их многообразия особо выделяют четыре типа, с успехом применяемые в обучении информатике: задачи-рисунки, логические мини-задачи, задачи-шутки и задачи с неполным условием. В настоящее время в качестве средства обучения в основном применяются задачи двух последних типов.

Задачи первого типа ( задачи-рисунки ) представляют собой рисунки или схемы каких-либо объектов, сделанные в необычных ракурсах, т.е. с тех сторон, с которых данный объект мы видим наименее часто. При решении такой задачи учитель (ведущий, загадывающий) задает аудитории вопросы типа: «Что изображено на рисунке?», «С какой стороны изображен предмет?», - либо вопросы о принадлежности данного объекта кому или чему-либо.

Если обучаемые затрудняются сразу дать правильный ответ, то их следует подвести к нему через систему наводящих подсказок, которые могут быть даны как словесно, так и в виде рисунков. Кроме того, ученики сами могут задавать учителю наводящие вопросы, отвечая на которые (верно, но уклончиво) учитель позволяет им собрать как можно больше полезной информации.

К задачам второго типа ( логическим мини-задачам ) относятся короткие по формулировке задачи; обычно состоящие из единственного предложения-вопроса, где ключевые (как кажется на первый взгляд) данные явно или неявно уводят в сторону от правильного ответа.

К третьему типу принадлежат задачи с завуалированной некорректностью поставленных вопросов, ответы на которые можно дать лишь при определенном уровне знания материала. Обычно такие вопросы «провоцируются диалогом, ведущимся в неуточненном контексте» и в них либо заложена ложная посылка, либо для ответа требуется некоторая дополнительная информация, либо когда неправильно использовано вопросное слово, либо когда в вопросе присутствует шутка, которую обучаемые должны распознать и выдать адекватный ответ.

В некоторых ситуациях при решении задач-шуток допускаются ответы также шутливого характера, не несущие в себе конкретной информации, но такие ответы не должны переходить грань дозволенного в общении учителя с учеником, поэтому здесь требуется особая осторожность. Задача-шутка может состоять из серии вопросов, часть из которых поставлены корректно («правильные»), а один вопрос поставлен некорректно (не обязательно последний по счету!).

Дидактические игры. В игре всегда содержится элемент неожиданности и необычности, решается какая-либо задача, проблема, т.е. игра выполняет на уроке те же функции, что и занимательная задача.

Так как дидактическая игра может носить и репродуктивный, и творческий характер, то можно выделить два вида таких игр: игровая ситуация, когда ученика увлекает форма задания; математическая игра, когда ученика увлекает содержание задания.

Игровая ситуация. В подобных случаях внимание школьников привлекает необычная форма задания или неожиданная организация выполнения задания. Очень часто здесь присутствует соревновательный элемент. Возможности для создания игровых ситуаций чрезвычайно велики. Рассмотрим примеры.

Задумай число. Учитель предлагает каждому ученику задумать число и после этого дает указания, какие действия с этим числом надо произвести. В конце концов, учитель угадывает результат. Учащиеся заинтересованы, хотят узнать, в чем тут дело. Этому желанию и соответствует задание: обосновать «угадывание» ответа.

Назови формулу. Один из учащихся выходит к доске и берет у учителя карточку, на которой записана формула некоторой линейной функции. Один из учеников называет любое значение х. Ученик у доски записывает его в таблицу и, подставив это значение в формулу, записывают соответствующее значение у. Ему называют еще одно значение аргумента, он записывает его в следующую клетку и внизу пишет соответствующее значение функции. Ему могут задать еще несколько значений х. Выигрывает ученик, который первый назовет формулу, записанную на карточке.

Математическое лото. Эту игровую ситуацию можно использовать при проведении обобщающих уроков.

В барабан помещают шарики с номерами пунктов учебника, которые уже изучены. Класс делится на группы, обычно по рядам. Команды составляют по 4 – 5 вопросов по каждому пункту. Вызванный ученик крутит барабан, достает шарик, показывает номер. Соперники задают вопрос. Вопрос оценивается в 1 балл, ответ – в 3 балла. Участвуют все. Затем подсчитывается сумма баллов у каждой группы. Определяется группа победитель. Учащиеся повторяют материал с желанием и интересом.

Приемы занимательности, связанные с подачей задания. Приемы этой группы дают возможность то или иное задание облечь в занимательную форму, способствуя тем самым, развитию познавательной активности учащихся.

Математический герой. В урок вводится какой-либо математический герой, который или решает задание, или предлагает его для решения, или придумывает фокус и т.д.

Например, однажды Витя Верхоглядкин записал выражение 25· х· 4. Потом он вместо х стал подставлять в это выражение по очереди числа 13, 21, 39, 47. Получив значение каждого произведения, он очень удивился тому, что все числа оказались «круглыми». Не могли бы вы объяснить почему?

Необычная запись, чертеж, схема. Ярким примером данного приема является задание, связанное с занимательным квадратом. Занимательный квадрат – это квадрат, разбитый на 9 клеток; в каждую клетку записывается один элемент так, чтобы суммы или произведения всех элементов по любой горизонтали, вертикали удовлетворяли определенному условию ( например, были бы равны одному и тому же элементу).

Задумай. Учитель (ученик) задумывает математический объект, а ученики (учитель) должны отгадать то, что задумано, или то, что связано с задуманным.

Пример. Я задумал два числа. Задайте только один вопрос и, выслушав ответ, скажите, одинакового ли они знака.

Найдите ошибку. Ученику предлагается отыскать ошибку (ошибки) в решении (ответе) одного или нескольких заданий.

Нарушение стереотипа. Старые, неполные знания довлеют над людьми даже после получения новых, более полных знаний. Например, изучая в течении нескольких лет положительные числа, для которых всегда справедливы неравенства х < 2х, с > 1/c , учащиеся с трудом осознают, что при прохождении темы «Отрицательные числа» эти неравенства верны не всегда. Чтобы ускорить понимание этого факта, полезно использовать задания, которые помогают школьникам сделать обобщение.

Ученые приходят к выводу, что умению работать творчески, можно специально учиться. На первых порах желательно познакомиться с опытом творческой деятельности других. Однако этого мало. Узнать новую идею – это не то же самое, что выдвинуть, предложить ее. Основное препятствие на пути поиска нового – шаблонность мышления. Поэтому ученые предлагают на первых этапах творческой деятельности использовать специальные указатели, которые помогают сдвинуть сознание с мертвой точки. Опыт показывает, что среди таких указателей могут быть приемы занимательности.

Возникает вопрос, почему именно занимательность стимулирует создание нового. Оба понятия «творчество» и «занимательность» тесно связаны. Главное заключается в том, что они оба обладают общей важнейшей характеристикой: и то и другое должно быть необычным.

Связь этих понятий подтверждается еще и тем, что они могут взаимно обогащать друг друга. Так, некоторые приемы занимательности сходны с приемами творческого мышления. И те и другие не только дают необычное направление мысли, но и часто являются непосредственным руководством к творческому действию. Таким образом, неожиданно открывается еще одно достоинство занимательного подхода: он помогает выработке творческого мышления.

Достаточно продуктивны следующие общие направления мыслительной деятельности: необычный подход к рассмотрению вопроса; поиск ассоциаций; перенос идеи из другой области знаний; «игра» с объектами и идеями [1,с.43].

1.3 ПРИЕМЫ СОСТАВЛЕНИЯ ЗАНИМАТЕЛЬНЫХ ЗАДАНИЙ

Рассматривать занимательность обучения только с учетом связи с учебным материалом и без учета воздействия их на мыслительную деятельность ученика нецелесообразно. Поэтому в основу разбиения материалов занимательного характера необходимо положить два существенных свойства понятия «учебная занимательность»: связь с учебным материалом и воздействие на мыслительную деятельность учащихся.

Получаем следующее разбиение:

  • организационная занимательность;
  • информационная занимательность;
  • внеучебные задания занимательного характера;
  • учебные занимательные задания.

Под организационной занимательностью понимают занимательность, связанную с организацией урока и лишь косвенно связанную с учебным материалом. [5,с.16]

Например, лучший «решатель» устных упражнений награждается значком «Самый смекалистый» и может носить его до следующего урока. Фамилии лучших «решателей» заносятся в специальный альбом, один из разделов которого озаглавлен «Смекалистые в нашем классе (школе)». Учащимся, блестяще проявившим себя на уроке, предоставляется право решать задачу из специального альбома или из какой-нибудь математической книги.

Под информационной занимательностью понимают информацию учебно-познавательного характера, которая вызывает любопытство учащихся. Обычно эта информация не ставит перед учащимися проблемы, а заставляет их задуматься об общих вопросах математики.

Например, во время изучения понятия степени занимателен и полезен для учащихся будет следующий рассказ: «Представьте себе гору (высотой километр) в миллион раз тверже алмаза. Один раз в миллион лет к горе прилетает птичка и слегка касается клювом камня. В конце концов в результате этих прикосновений гора износится до основания. Трудно представить промежуток времени, необходимый для этого. Однако с помощью степеней записать его легко. Вычисления показали, что это произойдет через 10 лет».

Под внеучебными занимательными заданиями понимают задачи, обычно не связанные непосредственно с программным материалом.

Например, зачеркните все 9 точек четырьмя отрезками, не отрывая карандаша от бумаги.

Под учебными занимательными заданиями понимают задания, непосредственно связанные с программным материалом и способствующие усвоению и закреплению его учащимися.

Учебные задания занимательного характера ценны тем, что они наряду с привитием школьникам интереса к учению способствуют также определенному накоплению учебных знаний, умений и навыков.

Занимательные задания можно разбивать и дальше с учетом воздействия их на мыслительную деятельность учащихся. Эти занимательные задания могут быть как репродуктивного, так и творческого характера [2,с.32].

Составляя задачи первого типа (что, впрочем, верно и для трех других типов), нужно, прежде всего, определить тему, согласно которой делается рисунок, выбирается загадываемый объект, определяется ракурс объекта, под которым обучаемые наблюдают объект наименее часто.

Для помощи в распознавании объектов следует подготовить ряд наводящих подсказок, среди которых может быть упоминание о материале объекта, его области применения, свойствах (вес, цвет, габариты), качественных признаках (мягкий, липкий, холодный) и так далее, но без указания в словесных подсказках названия объекта. Подсказками могут также служить рисунки зашифрованного объекта, выполненные с других ракурсов, либо рисунки объектов, принадлежащих тому же классу, что и отгадываемый. При этом в первом случае изображения объектов не должны быть пространственными, а во втором можно не соблюдать четкость линий и использовать типовые рисунки, но требуется выделять существенные свойства объектов. К ответу ученики могут прийти и посредством наводящих вопросов, которые они сами задают учителю.

Составление задач второго типа после определения соответствующей темы основано на выборе двух или более объектов и одного из свойств или качеств того объекта, который будет фигурировать в правильном ответе. Далее подбирается свойство, принадлежащее другому объекту (другим объектам), и к нему добавляется усиливающее или ослабляющее определение.

Для задач-шуток, которых имеется пять возможных подтипов, требуется учитывать индивидуальные особенности составления (табл. 1).

Таблица 1

Тип вопроса

Особенность составления

В вопросе заложена ложная посылка.

Выбирается объект и некоторый признак, которым данный объект не обладает. Однако выбранный признак должен быть правдоподобным и им должны обладать объекты того класса, что и загадываемый. Вопрос формулируется так, чтобы между признаком и объектом располагалось несколько других слов.

Вопрос с недостаточной информацией.

Берется такой объект, что обозначающее его слово может иметь другие смысловые значения. Ставится вопрос, на который невозможно дать однозначный ответ без получения дополнительной информации.

В вопросе неправильно использовано вопросное слово.

Выбирается объект и принадлежащий ему признак. Формулируется такой вопрос, что на него можно дать правдоподобный ответ, но затем в этом вопросе одно из вопросных слов заменяется другим, чтобы количество правдоподобных ответов увеличивалось.

В вопросе содержится шутка.

Берется такой объект, что обозначающее его слово может иметь другие смысловые значения, и выбирается такое вопросное слово, которое делает вопрос шутливым.

В вопросе явно содержится правильный ответ.

Выбирается объект и один из его признаков. Вопрос формулируется так, чтобы признак объекта и сам объект располагались рядом друг с другом.

Труднее всего составлять занимательные задачи с неполным условием: в них надо предусмотреть такой набор данных, чтобы все они в той или иной степени помогали решить задачу, но часть данных была по возможности скрыта (явно или неявно) от отгадывающего.

1.4.  ТЕОРЕТИЧЕСКИЙ АСПЕКТ ПОНЯТИЯ «ВЫЧИСЛИТЕЛЬНЫЙ  НАВЫК»

Формирование вычислительных умений и навыков традиционно считается одной из самых «трудоемких» тем. Вопрос о значимости формирования устных вычислительных навыков на сегодняшний день является весьма дискуссионным в методическом плане. Широкое распространение калькуляторов ставит необходимость «жестокой» отработки этих умений под сомнение, поэтому многие не связывают хорошее овладение арифметическими вычислениями с математическими способностями и математической одаренностью. Однако внимание к устным арифметическим вычислениям является традиционным для образовательной школы. В связи с этим значительная часть заданий всех существующих сегодня учебников математики направлена на формирование устных  вычислительных умений и навыков

Что же в педагогике  понимается под словами «вычислительные навыки»?                      М.А. Бантова определила что  Вычислительный навык – это высокая степень овладения вычислительными приемами.

Приобрести вычислительные навыки — значит, для каждого случая знать, какие операции и в каком порядке следует выполнять, чтобы найти результат арифметического действия, и выполнять эти операции достаточно быстро». [11, с.39]

Вычислительные навыки рассматриваются как один из видов учебных навыков, функционирующих и формирующихся в процессе обучения. Они входят в структуру учебно-познавательной деятельности и существуют в учебных действиях, которые выполняются посредством определенной системы операций. Полноценный вычислительный навык обучающихся характеризуется следующими показателями: правильностью, осознанностью, рациональностью, обобщенностью, автоматизмом и прочностью.

Правильность – ученик правильно находит результат арифметического действия над данными числами, т.е. правильно выбирает и выполняет операции, составляющие прием.

Осознанность – ученик осознает, на основе каких знаний выбраны операции и установлен порядок их выполнения. Это для ученика своего рода доказательство правильности выбора системы операции. Осознанность проявляется в том, что ученик в любой момент может объяснить, как он решал пример и почему можно так решать. Это, конечно, не значит, что ученик всегда должен объяснять решение каждого примера. В процессе овладения навыком объяснение должно постепенно свертываться.

Рациональность – ученик, сообразуясь с конкретными условиями, выбирает для данного случая более рациональный прием, т. е. выбирает те из возможных операций, выполнение которых легче других и быстрее приводит к результату арифметического действия. Разумеется, что это качество навыка может проявляться тогда, когда для данного случая существуют различные приемы нахождения результата, и ученик, используя различные знания, может сконструировать несколько приемов и выбрать более рациональный. Как видим, рациональность непосредственно связана с осознанностью навыка.

Обобщенность – ученик может применить прием вычисления к большему числу случаев, т. е. он способен перенести прием вычисления на новые случаи. Обобщенность так же, как и рациональность, теснейшим образом связана с осознанностью вычислительного навыка, поскольку общим для различных случаев вычисления будет прием, основа которого - одни и те же теоретические положения.

Автоматизм (свернутость) – ученик выделяет и выполняет операции быстро и в свернутом виде, но всегда может вернуться к объяснению выбора системы операции. Осознанность и автоматизм вычислительных навыков не являются противоречивыми качествами. Они всегда выступают в единстве: при свернутом выполнении операции осознанность сохраняется, но обоснование выбора системы операции происходит свернуто в плане внутренней речи. Благодаря этому ученик может в любой момент дать развернутое обоснование выбора системы операции. Высокая степень автоматизации должна быть достигнута по отношению к табличным случаям (5+3, 8-5,9+6, 15-9, 7-6, 42:6). Здесь должен быть достигнут уровень, характеризующийся тем, что ученик сразу же соотносит с двумя данными числами третье число, которое является результатом арифметического действия, не выполняя отдельных операций. По отношению к другим случаям арифметических действий происходит частичная автоматизация вычислительных навыков: ученик предельно быстро выделяет и выполняет систему операций, не объясняя, почему выбрал эти операции и как выполнял каждую из них.

Прочность – ученик сохраняет сформированные вычислительные навыки на длительное время.

Формирование вычислительных навыков, обладающих названными качествами, обеспечивается построением курса математики и использованием соответствующих методических приемов.

Вместе с тем, ученик при выполнении вычислительного приёма должен отдавать отчёт в правильности и целесообразности каждого выполненного действия, то есть постоянно контролировать себя, соотнося выполняемые операции с образцом - системой операций. О сформированности любого умственного действия можно говорить лишь тогда, когда ученик сам, без вмешательства со стороны, выполняет все операции приводящие к решению. Умение осознано контролировать выполняемые операции позволяет формировать вычислительные навыки более высокого уровня, чем без наличия этого умения.

В целях формирования осознанных, обобщенных и рациональных навыков начальный курс математики строится так, что изучение вычислительного приема происходит после того, как учащиеся усвоят материал, являющийся теоретической основой этого вычислительного приема. Например, сначала ученики усваивают свойство умножения суммы на число, а затем это свойство становится теоретической основой приема внетабличного умножения. Так, при умножении 15 на 6 выполняется следующая система операций, составляющая вычислительный прием:

1) число 15 заменяем суммой разрядных слагаемых 10 и 5;

2) умножаем на 6 слагаемое 10, получится 60;

3) умножаем на 6 слагаемое 5, получится 30;

4) складываем полученные произведения 60 и 30, получится 90.

Как видим, здесь применение свойства умножения суммы на число (термин «распределительный закон» в начальном курсе не вводится) определило выбор всех операций, поэтому и говорят, что прием внетабличного умножения основан на свойстве умножения суммы на число или что свойство умножения суммы на число — теоретическая основа приема внетабличного умножения.
Легко заметить, что кроме свойства умножения суммы на число здесь использованы и другие знания, а также ранее сформированные вычислительные навыки: знание десятичного состава чисел (замена числа суммой разрядных слагаемых), навыки табличного умножения и умножения числа 10 на однозначные числа, навыки сложения двузначных чисел. Однако выбор именно этих знаний и навыков диктуется применением свойства умножения суммы на число. Общеизвестно, что теоретической основой вычислительных приемов служат определения арифметических действий, свойства действий и следствия, вытекающие из них. Имея это в виду и принимая во внимание методический аспект, можно выделить группы приемов в соответствии с их общей теоретической основой, предусмотренной действующей программой по математике для начальных классов, что даст возможность использовать общие подходы в методике формирования соответствующих навыков.

Назовем эти группы приемов:        
1.       Приемы, теоретическая основа которых — конкретный смысл арифметических действий. К ним относятся: приемы сложения и вычитания чисел в пределах 10 для случаев вида а + 2, а + 3, а + 4, а + 0; приемы табличного сложения и вычитания с переходом через десяток в пределах 20; прием нахождения табличных результатов умножения, прием нахождения табличных результатов деления (только на начальной стадии) и деления с остатком, прием умножения единицы и нуля. Это первые приемы вычислений, которые вводятся сразу после ознакомления учащихся с конкретным смыслом арифметических действий. Они, собственно, и дают возможность усвоить конкретный смысл арифметических действий, поскольку требуют применения конкретного смысла. Вместе с тем эти первые приемы готовят учащихся к усвоению свойств арифметических действий.
Таким образом, хотя в основе некоторых из названных приемов и лежат свойства арифметических действий (так, прибавление двух по единице выполняется на основе использования свойства прибавления суммы к числу), эти свойства учащимся явно не раскрываются. Названные приемы вводятся на основе выполнения операций над множествами.

2.       Приемы, теоретической основой которых служат свойства арифметических действий. К этой группе относится большинство вычислительных приемов. Это приемы сложения и вычитания для случаев вида 53 ± 20, 47  ±  3, 30 – 6, 9 + 3, 12 – 3, 35 ± 7, 40 ± 23, 57 ± 32, 64 ± 18; аналогичные приемы для случаев сложения и вычитания чисел больших, чем 100, а также приемы письменного сложения и вычитания; приемы умножения и деления для случаев вида 14  5, 5  14, 81 : 3, 18  40, 180 : 20, аналогичные приемы умножения и деления для чисел больших 100 и приемы письменного умножения и деления.
Общая схема введения этих приемов одинакова: сначала изучаются соответствующие свойства, а затем на их основе вводятся приемы вычислений.

3.       Приемы, теоретическая основа которых — связи  между  компонентами  и  результатами  арифметических действий. К ним относятся приемы для случаев вида 9  7, 21 : 3, 60 : 20, 54 : 18, 9 : 1, 0 : 6. При введении этих приемов сначала рассматриваются связи между компонентами и результатом соответствующего арифметического действия, затем на этой основе вводится вычислительный прием.

4.       Приемы, теоретическая основа которых  —  изменение результатов арифметических действий в зависимости от изменения одного из компонентов. Это приемы округления при выполнении сложения и вычитания чисел (46 + 19, 512 – 298) и приемы умножения и деления на 5, 25, 50. Введение этих приемов также требует предварительного изучения соответствующих зависимостей.
         5.       Приемы, теоретическая основа которых — вопросы нумерации чисел. Это приемы для случаев вида а ± 1, 10 + 6, 16 – 10, 16 – 6, 57
 10, 1200 : 100; аналогичные приемы для больших чисел. Введение этих приемов предусматривается после изучения соответствующих вопросов нумерации (натуральной последовательности, десятичного состава чисел, позиционного принципа записи чисел).

6.       Приемы, теоретическая основа которых — правила. К ним относятся приемы для двух случаев: а  1, а  0. Поскольку правила умножения чисел на единицу и нуль есть следствия из определения действия умножения целых неотрицательных чисел, то они просто сообщаются учащимся и в соответствии с ними выполняются вычисления.

Целый ряд случаев может быть отнесен не только к указанной группе приемов, но и к другой. Например, случаи вида 46 + 19 можно отнести не только к четвертой группе, но и ко второй. Это зависит от выбора теоретической основы вычислительного приема. Как видим, все вычислительные приемы строятся на той или иной теоретической основе, причем в каждом случае учащиеся осознают сам факт использования соответствующих теоретических положений, лежащих в основе вычислительных приемов. Это — реальная предпосылка овладения учащимися осознанными вычислительными навыками. [14, с.153]
Общность подходов к раскрытию вычислительных приемов каждой группы — есть залог овладения учащимися обобщенными вычислительными навыками. Возможность использования различных теоретических положений при конструировании различных приемов для одного случая вычисления (например, для случая сложения 46 + 19) является предпосылкой формирования рациональных гибких вычислительных навыков.

В ходе формирования вычислительных навыков М.А. Бантова[11, с.137]  выделяет следующие этапы:

1. Подготовка к введению нового приёма.

На этом этапе создается готовность к усвоению вычислительного приёма, а именно, учащиеся должны усвоить те теоретические положения, на которых основывается приём вычислений, а также овладеть каждой операцией, составляющей приём.
Например, можно считать, что ученики подготовлены к восприятию вычислительного приёма ±2, если они ознакомлены с конкретным смыслом действий сложения и вычитания, знают состав числа 2 и овладели вычислительными навыками сложения и вычитания вида ±1; готовностью к введению приёма внетабличного умножения (13
 6) будет знание учащимся правила умножения суммы на число, знание десятичного состава чисел в пределах 100 и овладение навыками табличного умножения, навыками умноженная числа 10 на однозначные числа, навыками сложения двузначных чисел.
Центральное звено при подготовке к введению нового приёма - овладение учеником основными операциями.

2. Ознакомление с вычислительным приёмом.

На этом этапе ученики усваивают суть приёма:  какие операции надо выполнять, в каком порядке и почему именно так можно найти результат арифметического действия.
При введении большинства вычислительных приёмов важно использовать наглядность. В некоторых случаях это оперирование множествами. Например, прибавляя к 6 число 3, придвигаем к 6 квадратам 3 квадрата по одному.
В других случаях в качестве наглядности используется развернутая запись. Например, при введении приёма внетабличного умножения выполняется запись:

13  6=(10 + 3)  6=10  6 + 3  6 = 60 + 18 = 78

Выполнение каждой операции важно сопровождать пояснениями вслух.
Сначала эти пояснения выполняется под руководством учителя, а потом самостоятельно учащимися.

3. Закрепление знаний приёма и выработка вычислительного навыка.

На этом этапе ученики должны твердо усвоить систему операций, составляющие приём, и быстро выполнить эти операции; то есть овладеть вычислительным навыком.
В процессе работы здесь важно предусмотреть этапы в становлении у учащихся вычислительных навыков:

На первом этапе закрепляется знание приема: учащиеся самостоятельно выполняют все операции, составляющие прием, комментируя выполнение каждой из них вслух и одновременно производя развернутую запись 34   5 = (30 + 4)  5 = 30  5 + 4  5 = 3  10  5 + 20 = 3  5  10 + 20 = 15  10 + 20 = 150 + 20 = (100 + 50) + 20 = 100 + (50 + 20) = 100 + 70 = 170

На втором этапе происходит частичное свертывание выполнения операций: учащиеся про себя выделяют операции и обосновывают выбор, порядок их выполнения, вслух же они проговаривают выполнение основных операций, т.е. промежуточных вычислений. Надо учить детей выделять основные операции в каждом вычислительном приёме. Развёрнутая запись не выполняется. Сначала проговаривание ведётся под руководством учителя, а затем самостоятельно. Проговаривание вслух помогает выделить основные операции, а выполнение про себя вспомогательных операций способствует их свёртыванию.

34  5 = (30 + 4)  5 = 30  5 + 4  5 = 150 + 20 = 170

На третьем этапе происходит полное свертывание выполнения операций: учащиеся про себя выделяют и выполняют все операции, т.е. здесь происходит свёртывание и основных операций. Учитель предлагает детям выполнять про себя и промежуточные вычисления, а называть или записывать только окончательный результат.  34  5 = 170

На четвёртом этапе наступает предельное свёртывание выполнения операций. Учащиеся выполняют все операции в свёрнутом плане, предельно быстро, т.е. они овладевают вычислительными навыками. Это достигается в результате выполнения достаточного числа тренировочных упражнений.

На всех этапах формирования вычислительного навыка решающую роль играют задания на применение вычислительных приёмов, причём содержание заданий должно подчиняться целям, которые ставятся на соответствующем этапе. Важно, чтобы было достаточное число заданий, чтобы они были разнообразными как по форме, так и по числовым данным. Надо иметь в виду, что свёртывание выполнение операций не у всех учащихся происходит одновременно, поэтому важно время от времени возвращаться к полному объяснению и развёрнутой записи приёма. Продолжительность каждого этапа определяется сложностью приёма, подготовленностью учащихся и целями, которые ставятся на каждом этапе. Правильное выделение этапов позволит учителю управлять процессом усвоения учащимися вычислительного приёма, постепенного свёртывания выполнения операций, образования вычислительных навыков.

В системе Л. В. Занкова[24, с.247]  формирование навыков проходит три принципиально различных этапа, при этом учитель может использовать два пути: прямой и косвенный.

Прямой путь в чистом виде предполагает сообщение учащимся образца, алгоритма выполнения операции, на основании которого школьники многократно ее выполняют. В результате такой репродуктивной деятельности достигается запоминание предложенного алгоритма и вырабатывается запланированный навык.
Косвенный путь предполагает, прежде всего, включение учеников в продуктивную творческую деятельность, в самостоятельной поиск алгоритма выполнения операции.
В системе общего развития Л.В. Занкова главным является именно косвенный путь формирования вычислительных навыков, прямой же использует учитель тогда и в той мере, как это необходимо, так как в чистом виде ни один из путей использовать нельзя.

Первый этап – осознание основных положений, лежащих в фундаменте выполнения операции, создание алгоритма ее выполнения. На этом обязательно прослеживается, оценивается и создается каждый шаг в рассуждениях детей, устные рассуждения переводятся в запись математическими знаками. Отсюда вытекает характерный признак этого этапа - подробная запись выполнения операции, с которой в данный момент работают ученики. На этом этапе практически не используется прямой путь. Он возникает только при выполнении промежуточных, знакомых детям операций. Результатом этого этапа является выработка алгоритма выполнения операции и его осознание.

284  25 = 284  (20 + 5) = 284  20 + 284  5 = 284  (2  10) + 1420 = (284  2)  10 + 1420 = 568  10 + 1420 = 5680 + 1420 = 7100.

На этом этапе почти не используем прямой путь, если только при выполнении знакомых детям операций, т.е. промежуточных (умножение на однозначное число, на единицу с нулями и выполнение сложения).
В результате деятельности на этом этапе появляется алгоритм выполнения операции.

Главным направлением второго этапа является формирование правильного выполнения операции. Для достижения этой цели  необходимо не только использование выработанного на первом этапе алгоритма выполнения операции, но, может быть, в еще большей степени, свободная ориентация в ее нюансах, умение предвидеть. К чему приведет то или иное изменение компонентов операции. В силу этого на втором этапе используются оба пути формирования навыков, однако косвенный путь продолжает быть ведущим, прямой же используется в качестве подчиненного. Ученикам даются такие задания, которые ставят детей в позицию активного творческого поиска, где они используют свои знания в нестандартном преобразованном виде.
Например, даем задание: изменить в произведении 284
 25 одну цифру так, чтобы значение произведения стало пятизначным числом.
В результате найденных преобразований каждый ученик получает от 6 – до 12 произведений, изменяя цифру во втором или в первом множителе:
284
 35, 284  45, 284  55,  284  65, 284  75 (85, 95, 55)
384
 25, 484  25 (584, 684, 784, 884,984)  25.

От учащихся не требуется нахождения и составления всех возможных решений. Мы объединяем все случаи, которые нашли разные ученики, анализируем, находим с ними определенную закономерность, отыскиваем пропущенные варианты.
Важная особенность таких заданий – возможность индивидуализации их выполнения каждым учеником, так как нет жестких установок на количество требуемых решений, а только рекомендации: «Постарайся найти не одно решение».
Третий этап формирования навыка нацелен на достижение высокого темпа выполнения операции. Именно на этом этапе на первый план выходит прямой путь формирования навыка. Главная задача учителя – построить работу так, чтобы дети хотели выполнять необходимые вычисления и получали от этого удовольствие.

Формирование вычислительных умений и навыков - это сложный длительный процесс, его эффективность зависит от индивидуальных особенностей ребенка, уровня его подготовки и организации вычислительной деятельности.

На современном этапе развития образования необходимо выбирать такие способы организации вычислительной деятельности школьников, которые способствуют не только формированию прочных вычислительных умений и навыков, но и всестороннему развитию личности ребенка.

При выборе способов организации вычислительной деятельности необходимо ориентироваться на развивающий характер работы, отдавать предпочтение обучающим заданиям. Используемые вычислительные задания должны характеризоваться вариативностью формулировок, неоднозначностью решений, выявлением разнообразных закономерностей и зависимостей, использованием различных моделей (предметных, графических, символических), что позволяет учитывать индивидуальные особенности ребенка, его жизненный опыт, предметно-действенное и наглядно-образное мышление и постепенно водить ребенка в мир математических понятий, терминов и символов.

  1. ЗАДАНИЯ, НАПРАВЛЕННЫЕ НА ФОРМИРОВАНИЕ ВЫЧИСЛИТЕЛЬНЫХ НАВЫКОВ В НАЧАЛЬНОЙ ШКОЛЕ.

На уроке математики формирование вычислительных навыков занимает большое место. Одной из форм работы по формированию вычислительных навыков являются задания. Овладение вычислительными навыками имеет большое образовательное, воспитательное и практическое значение:

- образовательное значение: устные вычисления помогают усвоить многие вопросы теории арифметических действий, а также лучше понять письменные приемы;

- воспитательное значение: устные вычисления способствуют развитию мышления, памяти, внимания, речи, математической зоркости, наблюдательности и сообразительности;

- практическое значение: быстрота и правильность вычислений необходимы в жизни, особенно когда письменно выполнить действия не представляется возможным (например, при технических расчетах у станка, в поле, при покупке и продаже). [17,с.84]

В своей работе учителя придерживаются определенных принципов. Один из них (наиболее важный) можно сформулировать следующим образом: работа в классе на каждом уроке должна выполняться всем классом, а не учителем и группой успевающих учеников. То есть необходимо создать такую ситуацию - ситуацию «успеха», при которой каждый ученик смог бы почувствовать себя полноценным участником учебного процесса. Ведь одна из задач учителя заключается не в доказательстве незнания или слабого знания ученика, а во вселении веры в ребенка, что он может учиться лучше, что у него получается. Нужно помочь ребенку поверить в собственные силы, мотивировать его на учебу.

Рассмотрим основные типы заданий:

Задания с использованием сравнений:

Для активизации познавательной деятельности учащихся при формировании вычислительных можно использовать метод наблюдений. В процессе наблюдения учащиеся сравнивают, анализируют, делают выводы. Полученные таким образом знания являются более осознанными и тем самым лучше усваиваются.

В качестве примера рассмотрим изучение такого вопроса, как изменение суммы в зависимости от изменения одного из слагаемых. В основе познания учениками данной зависимости лежит прием сравнения.

Задание 1. Решите примеры и сравните их:

2 + 1,   2 + 2.

Необходимо обращать внимание учеников на то, что в одном  и в другом примере стоит знак «+», а первые слагаемые одинаковы. Эти примеры схожи. Затем выявляются различия: в первом примере второе слагаемое равно 1, во втором 2, сумма в первом примере равна 3, а во втором – 4.

Ребята  отмечают, что во втором примере прибавляем большее (2 > 1), поэтому и получаем большую сумму.

Переходя к сравнению выражений подбираем такие выражения, в которых ученики смогут усмотреть различные признаки различия и сходства.

Задание 2. На доске записаны примеры:

5 + 3,   4 + 3,   8 – 3,   6 + 3,   7 – 3,   9 – 3

Угадайте сходство или различие записанных выражений. Ученики обычно указывают такие признаки сходства, как знак действия, затем обращают внимание на то, что в первой группе прибавляется число 3, а во второй – вычитается число 3. Затем целесообразно поставить вопрос: «Что произойдет с ответами примеров в первой группе и во второй? Почему ответы в первой группе больше, чем ответы во второй?»

Очень полезно задание и такое:

Задание 3. Что вы замечаете в данных примерах?

1 + 1,   2 + 1,   3 + 1,   4 + 1,   6 + 1,   7 + 1

Ученики должны обратить внимание не только на тот факт, что во всех примерах знак «+» и второе слагаемое везде равно 1, но и на то, что последовательность 1, 2, 3, 4 …  нарушена, т.к. пропущен пример 5 + 1.

Подобные задания способствуют развитию математической наблюдательности  учеников, их умению видеть сходства и различия, выявлять определенные закономерности. В процессе выполнения таких заданий уясняется смысл понятия «сравнить».

Так же могут предлагаться задания с ошибками, которые требуют исправления:

Задание 4. Найди ошибку:

Могут предлагаться задания, у которых уже дан знак отношения  и  одно  из выражений, а другое выражение надо составить или дополнить:

8 · (10 + 2)=8 · 10 + …

Выражения таких заданий могут включать различный числовой материал: однозначные, двузначные, трехзначные числа и величины. Выражения могут быть с разными действиями.

Главная роль таких заданий – способствовать усвоению  теоретических знаний об арифметических  действиях,  их  свойствах,  о  равенствах,  о неравенствах и др. Также они помогают выработке вычислительных навыков.

Задания на классификацию и систематизацию знаний.

Умение выделять признаки предметов и устанавливать между ними сходство и различие - основа заданий на классификацию. Из курса математики известно, что при разбиении множества на классы необходимо выполнять следующие условия:

1) ни одно из подмножеств не пусто;

2) подмножества попарно не пересекаются;

3) объединение всех подмножеств составляет данное множество.

Предлагая детям задания на классификацию, эти условия необходимо учитывать.

Задание 1. Найди значения разностей

742 - 531                           898 - 769

374 - 223                           586 - 218

457 -132                            465  -427

По какому признаку распределены разности по этим столбикам?

Задания на выявление общего и различного.

Выделение существенных признаков математических объектов, их свойств и отношений - основная характеристика таких заданий. Благодаря им учащиеся могут самостоятельно «открывать» математические свойства и способы действий (правила), которые в математике строго доказываются.

Задание 1. Рассмотрите рисунок и попробуйте быстро подсчитать, сколько окон в доме.

Дети могут предложить следующие способы: 3+3+3+3, 4+4+4 или 3*4=12; 4*3=12.

Учитель предлагает сравнить полученные равенства, т. е. выявить их сходство и различие. Отмечается, что оба произведения одинаковые, а множители переставлены.

Вывод: «Если множители переставить, то произведение не изменится» или «От перестановки множителей значение произведения не изменится».

Задания с многовариантными решениями.

Многовариантные задания - это система упражнений, выполнение которых поможет глубоко и осознано усвоить правило и выработать необходимый вычислительный навык на его основе.

Задание 1. Запиши число 30 тремя одинаковыми цифрами и знаками действий.

Постарайся найти несколько разных решений.

Задание 2. Какое число надо прибавить к 25, чтобы получить круглое?

Задания с элементами занимательности.

Такие задания, в основном, направлены на отработку вычислительных навыков. Элемент занимательности увлекает детей, они стремятся выполнить все действия правильно и посмотреть к чему это приведет.

"Магические или занимательные квадраты" - это занимательная форма тренировки в сложении вычитания и размещения чисел. Решение магических квадратов увлекает школьников всех возрастов.

Задания на нахождение значений математических выражений.

Предлагается в той или иной форме математическое выражение, требуется  найти его  значение.  Эти  задания  имеют  много  вариантов.  Можно  предлагать числовые математические выражения и буквенные (выражение с переменной),  при этом  буквам  придают  числовые  значения  и   находят   числовое   значение полученного выражения, например:

- найдите разность чисел 100 и 9.

- найдите значение выражения С – К, если С = 100, К = 9.

Выражения могут предлагаться в разной словесной форме:

- из 100 – 9; 100 минус 9

- уменьшаемое 100, вычитаемое 9, найдите разность

- найти разность чисел 100 и 9

- уменьшить 100 на 9 и т.д.

Эти формулировки использует не только учитель, но и ученики.

Выражения могут быть даны с ошибками, которые детям предстоит найти:

Задание 1. Найди ошибки в выражениях:

Выражения  могут  включать  одно  и  более  действий.  Выражения  с несколькими действиями могут включать  действия  одной  ступени  или  разных ступеней, например:

47 + 24 – 56

72 : 12 · 9

400 – 7 · 4 и др.

Могут быть со скобками или без скобок: (90 – 42) : 3, 90 – 42 : 3. Как  и  выражения в одно действие, выражения  в  несколько  действий  имеют  разную  словесную формулировку, например:

- из 90 вычесть частное чисел 42 и 3

- уменьшаемое 90, а вычитаемое выражено частным чисел 42 и 3.

Выражения могут быть заданы в разной области чисел:  с  однозначными числами

(7 – 4), с двузначными (70 – 40, 72 – 48), с трехзначными  (700 – 400,  720 – 480) и т.д., с натуральными числами и величинами (200 – 15, 2м – 15см).  Однако, как правило, приёмы устных  вычислений  должны  сводиться  к  действиям  над числами в пределах 100. Так, случай  вычитания  четырехзначных  чисел  7200 – 4800 сводится к вычитанию двузначных чисел (72сотни – 48сотен) и значит  его можно предлагать для устных вычислений.

Выражения можно давать и в форме таблицы:

Задание 2. Заполни таблицы:

Уменьшаемое

12

14

15

17

28

Вычитаемое

10

10

10

10

10

Разность

Так же такие задания могут быть представлены в виде раз личных «цепочек»:

Задание 3: Реши цепочки:

Основное значение заданий на нахождение значений выражений  –  выработать у учащихся твердые вычислительные навыки, а также они способствуют  усвоению вопросов теории арифметических действий.

Могут предлагаться задания, у которых уже дан знак отношения  и  одно  из выражений, а другое выражение надо составить или дополнить:

8 · (10 + 2)=8 · 10 + …

Выражения таких заданий могут включать различный числовой материал: однозначные, двузначные, трехзначные числа и величины. Выражения могут быть с разными действиями.

Главная роль таких заданий – способствовать усвоению  теоретических знаний об арифметических  действиях,  их  свойствах,  о  равенствах,  о неравенствах и др. Также они помогают выработке вычислительных навыков.

Комбинаторные задачи.

Комбинаторика - один из разделов современной математики.

Комбинаторные задачи служат средством развития мышления детей, воспитания у них умения применять полученные знания в различных ситуациях посредством выработки навыков и повторения пройденного. Умение выполнять разбиение множеств, составлять комбинации по определенным признакам и классифицировать лежит в основе разнообразных сфер человеческой деятельности.

Задание 1. При умножении двух однозначных чисел получилось число 16

Чему были равны множители?

Найди всевозможные решения.

Задание 2. На складе находилось 7 полных бочонков меда, 7 наполовину заполненных медом и 7 пустых бочонков. Как распределить все бочонки между тремя покупателями так, чтобы каждый получил одинаковое количество меда и бочонков. (мед не нужно перекладывать из одного бочонка в другой.)

Использование на уроках математики заданий различного типа возбуждает у детей интерес, стимулирует их к активной деятельности и позволяет более прочно сформировать вычислительные навыки. [32, с.3]

1.6. ОСОБЕННОСТИ СОДЕРЖАНИЯ И МЕТОДИКИ ИСПОЛЬЗОВАНИЯ СБОРНИКА ЗАНИМАТЕЛЬНЫХ ЗАДАНИЙ ДЛЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНЫХ НАВЫКОВ «ЗАНИМАТИКА»

        Формирование вычислительных навыков — одна из главных задач, которая должна быть решена в ходе обучения детей в начальной школе, поскольку вычислительные навыки необходимы при изучении арифметических действий. Этому способствует использование на уроках занимательных  заданий.  Исходя из этого мы разработали сборник занимательных заданий для развития вычислительных  навыков  у младших школьников на уроках математики.

        Материал сборника «Заниматика» предназначен для развития вычислительных навыков на уроках математики в начальных классах.

Сборник представлен в виде брошюры, которая состоит из следующих разделов:

  • Предисловие
  • Занимательные задания для 1 класса
  • Занимательные задания для 2 класса
  • Занимательные задания для 3 класса
  • Занимательные задания для 4 класса
  • Числовые головоломки
  • Задачи-смекалки
  • Спичечный конструктор
  • Математические фокусы
  • Интеллектуальные разминки
  • Список литературы

        Задача состоялась в том, чтобы помочь учителю в подборе упражнений для развития вычислительных навыков у младших школьников на уроках математики в соответствии с требованиями ФГОС НОО.

Содержание сборника «Заниматика» направлено на воспитание интереса к предмету, развитию наблюдательности, умения анализировать, догадываться, рассуждать, доказывать, умения решать учебную задачу творчески. Содержание может быть использовано для показа учащимся возможностей применения тех знаний и умений, которыми они овладевают на уроках математики. Все вопросы и задания рассчитаны на работу учащихся на занятии. Для эффективной деятельности желательно, чтобы работа проводилась в малых группах с опорой на индивидуальную деятельность, с последующим общим обсуждением полученных результатов. Предлагаемые задания должны стать личностно значимыми для ребенка. Только тогда они станут интересными для него и цели учителя не будут чужды ученику.

1.7. АПРОБАЦИЯ СБОРНИКА «ЗАНИМАТИКА» ДЛЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНЫХ НАВЫКОВ У МЛАДШИХ ШКОЛЬНИКОВ НА УРОКАХ МАТЕМАТИКИ.

Для подтверждения гипотезы: «Если в образовательный процесс на уроках математике целенаправленно вводить занимательные задания, то вычислительные навыки учащихся будут развиваться более успешно» нами была проведена апробация в ЧОУ ООШ № 52 Коркинского района поселка Дубровка в 3 классе.

Задачи апробации:

  1. Отобрать занимательные задания  для уроков математики в 3 классе в соответствии с проблемой исследования.
  2. Провести апробацию сборника упражнений по проблеме исследования, обобщить результаты апробации и сделать выводы о проделанной работы.
  3. Сделать вывод о рациональности применения сборника занимательных заданий  для развития вычислительных навыков  у младших школьников на уроках математики.

Характеристика базы практики.

        В группу апробации входили учащиеся 3 класса. Экспериментальная группа характеризуется:

1) Физический возраст учащихся: 9 – 10 лет.

2) Половой состав: 2 мальчика, 3 девочки.

3) Занимаемые позиции в семье: большинство детей воспитываются в полных семьях, в доброжелательной атмосфере. Двое детей из многодетной семьи, остальные ребята из семей, в которых два ребенка.

        Коллектив 3  класса существует с 1 класса. У учащихся наблюдается большой познавательный потенциал и высокий уровень самообразовательной активности. На уроках проявляют интерес к учебной деятельности, практически всегда подготовлены, могут высказывать собственное мнение на поставленные вопросы, при подготовке домашних заданий используют дополнительную литературу.

        В данном классе работает опытный педагог с высшей квалификационной категорией Иванова Светлана Анатольевна. Преподаватель отличается прекрасным умением работать с детьми. На уроках Светлана Анатольевна уделяет достаточное внимание развитию навыков чтения и развитию коммуникативных способностей учащихся, но работа, направленная на развитие вычислительных навыков,  учителем на уроках проводится в рамках базового уровня обучения.  

Учащиеся 3  класса умеют анализировать, обобщать, делать самостоятельные выводы. Сообразительны, могут проявлять творчество в умственной деятельности. Владеют навыками самостоятельного труда. Успеваемость класса средняя. Но имеется группа детей успешных в обучении. Класс активно участвует во многих конкурсах, олимпиадах, спортивных мероприятиях.

Ход и динамика апробации

Для отслеживания результатов апробации была выделена экспериментальная подгруппа из 5 человек. Для получения достоверного результата в экспериментальную подгруппу были отобраны учащиеся с разным уровнем знаний.

Проведенная практическая работа осуществлялась в естественных и привычных для учеников условиях.  В ходе апробации нами были выделены три этапа: констатирующий (К1), формирующий, контрольный (К2). Апробация проводилась в ходе урока. Было спланировано  и выдано 20 уроков математики, проведено 2 контрольных среза.

        Цель контрольных срезов – выявить, насколько хорошо учащиеся владеют вычислительными навыками.

        Ход проведения – учащимся предлагается тест, состоящий из десяти базовых вопросов и трёх дополнительных творческих заданий. Каждому ученику необходимо прочитать внимательно вопрос и выбрать один из предлагаемых вариантов ответа, который, по его мнению, является верным. Обработка данных проводилась согласно критериям. Результаты констатирующего этапа представлены в таблице 1.7.3. Результаты контрольного этапа представлены в таблице 1.7.4. Сравнительный анализ констатирующего и контрольного этапов представлен в таблице 1.7.5.  Баллы: за каждый правильный ответ – 1 балл.  Проанализировав полученные результаты, мы увидели, что у 3 детей был средний уровень подготовки в выполнении заданий.  

        Предварительно были выделены следующие критерии и показатели оценки отслеживаемых результатов:

Таблица 1.7.1.

Критерии сформированности вычислительных навыков.

Критерии

Показатели

Правильность выполнения заданий

-все задания выполнены правильно;

-правильный выбор и выполнение операций, составляющие прием.

Осознанность выполнения заданий

-с пониманием определены операции и установлен порядок их выполнения;

-умение применять базовые знания в нестандартных ситуациях.

Рациональность выполнения заданий

-умение выбрать рациональный прием, то есть те операции, выполнение которых легче других и быстрее приводит к результату;

-умение выполнять и выбирать операции быстро и в свернутом виде.

Таблица 1.7.2.

Уровни сформированности вычислительных навыков.

Уровни

Показатели

Высокий

-Все задания выполнены верно;

-Способен переносить приемы вычисления на новые случаи;

- Умеет выполнять операции в свернутом виде.

Средний

-Частично выполнены задания обязательного уровня (от 7 до 9 заданий);

-Не всегда может переносить приемы вычисления на новые случаи (выполнено хотя бы 1 дополнительное задание);

-С помощью учителя выполняет операции в свернутом виде.

Низкий

- Выполнено менее 5 заданий обязательного уровня;

-Не способен переносить приемы вычисления на новые случаи;

-Не умеет выполнять операции в свернутом виде.

На формирующем этапе апробации мы активно использовали на уроках занимательные задания из сборника «Заниматика».  По окончании апробации был проведен контрольный срез . Его результаты показали , что уровень сформированности  у учащихся   вычислительных навыков  повысился.

Результаты констатирующего среза:

Таблица  1.7.3.

Учащиеся

Правильность выполнения заданий

Осознанность выполнения заданий

Рациональность выполнения заданий

Уровень сформированности

Полина Ш.

Средний

Ксюша С.

Низкий

Ульяна М.

Средний

Матвей С.

Средний

Ярослав Н.

Низкий

- Высокий     - Средний              - Низкий

Результаты контрольного  среза:

Таблица  1.7.4..

Учащиеся

Правильность выполнения заданий

Осознанность выполнения заданий

Рациональность выполнения заданий

Уровень сформированности

Полина Ш.

Средний

Ксюша С.

Низкий

Ульяна М.

Высокий

Матвей С.

Высокий

Ярослав Н.

Средний

Сравнительные показатели констатирующего и контрольного этапов

Таблица 1.7.5.

Учащиеся

Правильность выполнения заданий

Осознанность выполнения заданий

Рациональность выполнения заданий

Уровень сформированности

К1

К2

К1

К2

К1

К2

К1

К2

Полина Ш.

Ксюша С.

Ульяна М.

Матвей С.

Ярослав Н.

   

 - высокий    

- средний                

  - низкий

        По результатам проведенных срезов мы составили сравнительную диаграмму уровней сформированности вычислительных навыков учащихся 3 класса.

Сравнительные результаты работы по развитию вычислительных навыков учащихся 3 класса при помощи занимательных заданий.

Рис. 1. Гистограмма «сравнительный результат констатирующего и контрольного этапа».

        Сравнивая   результаты констатирующего и контрольного этапов, мы пришли к выводу, что  уровень развития вычислительных навыков  значительно улучшился. Учитель отметила, что  занимательные задания повысили уровень развития  вычислительных навыков.

        Таким образом, результаты, полученные нами в ходе апробации, подтвердили гипотезу  и показали эффективность использования материалов сборника для развития вычислительных навыков у младших школьников.

ЗАКЛЮЧЕНИЕ

Вычислять быстро, подчас на ходу – это требование времени. Числа окружают нас повсюду, а выполнение арифметических действий над ними приводит к результату, на основании которого мы принимаем то или иное решение. Понятно, что без вычислений не обойтись как в повседневной жизни, так и во время учебы в школе. Этим, кстати, объясняется столь стремительное развитие удобных калькуляторов. Тем не менее калькулятор не может обеспечить ответ на все возникающие вопросы. Он не всегда имеется под рукой и бывает достаточно определить лишь примерный результат.

Многие навыки, сопутствующие вычислениям, неизбежно требуются и в быту, и в школьной практике. Так, нередко может потребоваться замена числа близким ему числом, например, 25% - это 0,25, т. е. четверть, сравнение чисел на основе качественных оценок.

В процессе работы по теме «Формирование вычислительных навыков у младших школьников на уроках математики» нами было охарактеризовано понятие «вычислительный навык» и выделены этапы его формирования (подготовка к введению нового приема, ознакомление с вычислительным приемом, закрепление знаний приема и выработка вычислительного навыка). Так же нами были выбраны и рассмотрены типы заданий, направленных на формирование вычислительных навыков (задания с использованием сравнений, задания на классификацию и систематизацию знаний, задания на выявление общего и различного, задания с многовариантными решениями, задания с элементами занимательности, комбинаторные задачи). Нами было отмечено, что использование выбранных типов заданий на уроках математики возбуждает у детей интерес к предмету, стимулирует их к активной деятельности и позволяет более прочно сформировать вычислительные навыки.

Использование занимательных заданий на уроках для выработки вычислительных навыков  методически оправданно. Включить занимательность в урок можно на материале любой учебной теме.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

  1. Данилов.  И.К. Об игровых моментах на уроках математики //    Математика в школе. – 2005.- №1.-№2
  2. Демченкова Н., Моисеева Е. Формирование познавательного интереса у учащихся // Математика. -2004.- №19.
  3. Минаева С. Формирование вычислительных умении в основной школе // Математика в школе.- 2006.- №2
  4. Ситников. Т.В. Приемы активизации учащихся в 5-6 классах //  Математика в школе. – 2003. -№2.
  5. Федотова Л. Повышение вычислительной культуры учащихся // Математика в школе. - 2004. - №43
  6. Щукина. Г.И. Активизация познавательной деятельности учащихся в учебном процессе: Учебное пособие для студентов педагогических институтов. – М.: Просвещение, 2000.
  7. Актуальные проблемы методики обучения математике в начальных классах / Под ред. М.И.Моро, А.М. Пышкало. — М.: Педагогика, 2007. — 248 с.
  8. Аргинская, И.И., Ивановская, Е.И Математика 2 класс. Часть 1. – С.:,  Издательство    «Корпорация Федоров», 2010 – 128 с.
  9. Бадма – Гаряева, М.В. Развитие вычислительных навыкову учащихся 1 класса // Начальная школа – 1999 –  №11 – с.21 – 23
  10. Бантова, М. А., Бельтюкова, Г. В. Методика преподавания математики в нач. классах: Учеб. пособие для уч-ся школ. отд-ний пед. уч-щ  / Под ред. М. А. Бантовой. - 3-е изд. - М.: Просвещение,1984. - 335 с.
  11. Бантова, М. А. Система формирования вычислительных навыков // Начальная школа – 1993 - №11 – с. 38 – 43
  12. Бахир, В. К. Развивающее обучение // Начальная школа – 1997 - №5  –  с. 26 – 31
  13. Давыдов, В. В. Проблемы развивающего обучения:  опыт  теоретического  и экспериментального психологического исследования.  –  М.:  Педагогика, 1986 – 239 с.
  14. Давыдов, В. В. Содержание и строение учебной деятельности школьников. – М., 2008 – 321 с.
  15. Давыдов, В.В. Теория развивающего обучения. – М.: ИНТОР, 1996 – 544 с.
  16. Давыдов, В. В.  Что такое учебная деятельность  //  Начальная  школа  – 2009 - №7 – с. 12 – 18
  17. Зимняя, И. А. Педагогическая психология. –  Ростов   на  Дону:  Феникс, 2007 – 476 с.
  18. Ильина, О. Н. Проблема формирования вычислительных навыков младших школьников в современных условиях // Интернет журнал СахГУ «Наука, образование, общество». – 2006. - 3 февраля. URL статьи: http://journal.sakhgu.ru.
  19. Истомина, Н.Б. Методика обучения математике в начальных классах. – М., 2007
  20. Клецкина, А.А. Организация вычислительной деятельности младших школьников в системе развивающего обучения // Автореферат диссертации  на соискание ученой степени канд. пед. наук. — М., 2001. — 20 с.
  21. Лавлинская, Е.Ю. Методика формирования вычислительного навыка по системе общего развития Занкова Л.В. – В.: Панорама, 2006.- с.176.
  22. Мельникова, Н. А. Развитие вычислительной культуры учащихся // Математика в школе.- 2001.- №18.- С. 9-14.
  23. Менчинская, Н. А. Моро М. И. Вопросы методики и психологии обучения арифметики в начальных классах.- М.: Просвещение, 1965.- 224 с.
  24. Методика начального обучения математике: Учебное пособие для студентов пед. ин-тов по спец-ти «Педагогика и методика начального обучения» // Под ред. Л. Н. Скаткина. –  М.: просвещение, 1972.- 320с.
  25. Моро, М.И., Бантова, М.А., Бельтюкова, Г.В.  Математика 2 класс. В 2 ч. Ч.1 – М.: Просвещение, 2009 – 96 с.
  26. Моро, М.И., Бантова, М.А., Бельтюкова, Г.В.  Математика 2 класс. В 2 ч. Ч.1 – М.: Просвещение, 2009 – 96 с.
  27. Петерсон, Л.Г. Математика. 2 класс. Часть 1. – М.: Издательство «Юнента», 2010. 80 с.
  28. Петерсон, Л.Г. Математика. 2 класс. Часть 2. – М.: Издательство «Юнента», 2005. 112 с.
  29. Реализация  межпредметных  и  внутрипредметных  связей  в  обучении  и воспитании младших школьников: Межвузовский сборник научных трудов.  –
  30. Л., 1984 – 132 с.
  31. Репкина,  Г.В.  Заика  Е.В.  Оценка  уровня  сформированности  учебной деятельности. Томск: Пеленг, 2003 – 62 с.
  32. Шуба М. Ю. Занимательные задания в обучении математики // книга для учителя Просвещение, 1994 – 222 с.
  33. Федотова, Л. Повышение вычислительной культуры учащихся // Математика в школе. - 2004. - №35. - С. 3-7.
  34. Федотова, Л. Повышение вычислительной культуры учащихся //            Математика в школе. - 2004. - №43. - С. 2-5.


По теме: методические разработки, презентации и конспекты

Формирование вычислительных навыков на уроках математики в начальной школе.

Задача формирования вычислительных навыков  является     центральной в курсе преподавания математики в начальной школе. Однако, не всегда вычислительные навыки у учащи...

Виды заданий для развития логического мышления на уроках математики в начальной школе

Этот материал можно использовать на уроках математики для развития логического мышления во 2-4-ых классах....

Сборник заданий "Формирование устных вычислительных навыков на уроках математики"

Данная разработка содержит сборник упражнений для формирования устных вычислительных навыков на уроках математики: дидактические игры, веселые задачи, задачи на логическое мышление, магические квадрат...

Формирование устного счета и вычислительных навыков на уроках математики в начальной школе.

В методической разработке широко представлен материал, на котором ребёнок может отработать вычислительные навыки по таблице умножения. Материал представлен в виде игрой технологии, где дети в форме иг...

Сборник творческой группы учителей города Ачинска"Оргдиалог на уроках математики в начальных классах"

Данный сборник материалов является итогом работы коллектива Межмуниципального Инновационного   Комплекса «Разработка различных средств оргдиалога в начальных классах» города Ачин...

Формирование вычислительных навыков на уроках математики в начальной школе

Формирование у школьников вычислительных навыков остаётся одной из главных задач начального обучения математики, поскольку вычислительные навыки необходимы как в практической жизни каждого человека, т...

Курсовая работа на тему "Формирование вычислительных навыков на уроках математики в начальной школе"

предмет математики изучается ребенком с дошкольного возраста и на протяжении всего периода обучения в школе, во-вторых, научиться быстро и правильно выполнять устные и письменные вычислительные действ...