Рабочая программа. Алгебра. 9 класс. Макарычев
рабочая программа по алгебре (9 класс) по теме
Предварительный просмотр:
Государственное Общеобразовательное Учреждение Средняя Общеобразовательная Школа № 500 с углубленным изучением предметов эстетического цикла.
«Утверждаю»
Приказ директор ГОУ №500
№ ______от_____ «_______»_____
Рабочая программа по алгебре.
Учитель: Коротаева Галина Николаевна
Класс: 9 а, в
Количество часов: 132. Уровень: базовый.
2011-2012 учебный год
Составлено на основе федерального компонента государственного стандарта основного общего образования по математике.
Пояснительная записка.
Данная рабочая программа реализуется на основе следующих документов:
1. Программы общеобразовательных учреждений. Алгебра. 7-9 классы. / Сост. Бурмистрова Т.А. – М. «Просвещение», 2009 г. Авторская программа по алгебре Ю.Н. Макарычев, Н.Г. Миндюк и др.
2. Стандарт основного общего образования по математике. Стандарт основного общего образования по математике //Математика в школе. – 2004 г.
3. Сборник нормативных документов. Математика / сост. Э.Д. Днепров, А.Г. Аркадьев. – М.: Дрофа, 2007.
4. Федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2011-2012 учебный год,
5. Бурмистрова Т. А, « Программы общеобразовательных учреждений . Алгебра. 7-9 класс.» Изд. «Просвещение», 2009 .
Рабочая программа по алгебре в 9 классе рассчитана на 132 часов, из расчета 4 часа в неделю.
При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Арифметика», «Алгебра», «Элементы логики, комбинаторики, статистики и теории вероятностей».
В ходе освоения содержания курса учащиеся получают возможность:
- развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
- овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
- изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
- развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
- получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
- сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Задачи:
● систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры; формирование и расширение алгебраического аппарата;
● формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности;
● получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов;
● формирование у школьников представлений о роли математики в развитии цивилизации и культуры;
● развитие представлений о вероятностно-статистических закономерностях в окружающем мире;
● совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развитие логического мышления.
Цели
Изучение алгебры в 9 классе направлено на достижение следующих целей:
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
Основные развивающие и воспитательные цели
Развитие:
- Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- Математической речи;
- Сенсорной сферы; двигательной моторики;
- Внимания; памяти;
- Навыков само и взаимопроверки.
Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.
Воспитание:
- Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
- Волевых качеств;
- Коммуникабельности;
- Ответственности.
В ходе преподавания математики в 9 классе, работы над формированием у учащихся, перечисленных в программе знаний и умений, следует обратить внимание на то, чтобы они овладевали умениями обще учебного характера, разнообразными способами деятельности, приобретали опыт:
-работы с математическими моделями, приемами их построения и исследования;
-методами исследования реального мира, умения действовать в нестандартных ситуациях;
-решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
-исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
-ясного, точного, грамотного изложения своих мыслей в устной и письменной речи;
-использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации;
-проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
-поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Учебно-методический комплект:
Для учителя:
1. Учебник: Ю.Н. Макарычев, Н.Г. Миндюк « Алгебра. 9 класс», М.: «Просвещение», 2010
2. Т. М. Ерина «Поурочное планирование по алгебре» М.: «Просвещение», 2008
3. Ю. Н. Макарычев «Дидактические материалы по алгебре для 9 класса»
4. .П. Ершова « Самостоятельные и контрольные работы по алгебре и геометрии для 9 класса» М:Илекса, 2008
5. Л.Б. Крайнева « Сборник тестовых заданий для тематического и итогового контроля. Алгебра. 9 класс». М.: «Интеллект-Центр», 2007
6. Т. А. Бурмистрова « Программа общеобразовательных учреждений. Алгебра. 7-9 классы» М. Просвещение, 2009
Для ученика:
1. Учебник: Ю.Н. Макарычев, Н.Г. Миндюк « Алгебра. 9 класс», М.: «Просвещение», 2010
2. Ю. Н. Макарычев «Дидактические материалы по алгебре для 9 класса», 2009 г
3. Л.Б. Крайнева « Сборник тестовых заданий для тематического и итогового контроля. Алгебра. 9 класс». М.: «Интеллект-Центр», 2007
Для проведения промежуточного контроля используется:
- Государственная итоговая аттестация выпускников 9 классов в новой форме. Алгебра. 2009/ ФИПИ. – М.: Интеллект-Центр, 2009. – 128 с.
- Алгебра. 9 класс. Тематические тесты для подготовки к ГИА – 2010. Учебно-методическое пособие/ Под ред. Ф.Ф. Лысенко. – Ростов н/Д: Легион – М, 2009. – 256 с.
- Алгебра: сб. заданий для подгот. к гос. итоговой аттестации в 9 кл. /Л. В. Кузнецова, С. Б. Суворова, Е. А. Бунимович и др. – 4-е изд., перераб. – М.: Просвещение, 2009. – 240 с.: ил.
Адреса сайтов:
www.fipi.ru
http://www.prosv.ru
http:/www.drofa.ru
http://school-collection.edu.ru
Электронные учебники:
Рабочая программа по алгебре для 9 класса
Создана к учебнику Макарычева Ю.Н . и др. для учащихся общеобразовательных учреждений "Алгебра 9 класс".
Объем рабочей программы: 23 страницы без приложений.
Приложения включают в себя 28 самостоятельных работ, 7 тематических тестов, 7 контрольных работ, 16 демонстрационных материалов, 19 упражнений для устного счета.
ФОРМЫ ОРГАНИЗАЦИИ УЧЕБНОГО ПРОЦЕССА
При организации учебного процесса будет обеспечена последовательность изучения учебного материала: новые знания опираются на недавно пройденный материал; обеспечено поэтапное раскрытие тем с последующей реализацией; закрепление в процессе практикумов, тренингов и итоговых собеседований; будут использоваться уроки-соревнования, уроки консультации, зачеты.
Формы организации учебного процесса:
- индивидуальные;
- групповые;
- индивидуально-групповые;
- фронтальные;
- практикумы
Формы контроля.
Основными видами классных и домашних письменных работ обучающихся являются обучающие работы.
По алгебре в 9 классе проводятся текущие и одна итоговая письменные контрольные работы, самостоятельные работы, контроль знаний в форме теста. На четвертом уроке проводится входная контрольная работа, рассчитанная на урок. Учащиеся смогут подготовиться к ней на уроках и за счёт часов неаудиторной занятости..
Текущие контрольные работы имеют целью проверку усвоения изучаемого и проверяемого программного материала. На контрольные работы отводится 1 час. Контрольная работа №11 – итоговая, на неё отводится 2 часа.
Итоговая контрольная работа проводится в конце учебного года.
Самостоятельные работы и тестирование рассчитаны на часть урока (15-25 мин), в зависимости от цели проведения контроля.
Формы контроля ЗУН (ов):
- наблюдение
- беседа
- фронтальный опрос
- опрос в парах
- практикум
- самостоятельная работа
- тестирование
- письменная контрольная работа
Общеучебные умения, навыки и способы деятельности
В ходе изучения алгебры обучающиеся приобретают опыт:
• планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
• решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
• исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
• ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации,
интерпретации, аргументации и доказательства;
• проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
• поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Требования к уровню подготовки учащихся.
В результате изучения алгебры выпускник основной школы должен
знать/понимать
• существо понятия математического доказательства; приводить примеры доказательств;
• существо понятия алгоритма; приводить примеры алгоритмов;
• как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
• как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
• как потребности практики привели математическую науку к необходимости расширения понятия числа;
• вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
• смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.
Арифметика
уметь
• выполнять устно арифметические действия: сложение и вычитание двузначных
чисел и десятичных дробей с двумя знаками, умножение однозначных чисел,
арифметические операции с обыкновенными дробями с однозначным знаменателем
и числителем;
• переходить от одной формы записи чисел к другой, представлять десятичную дробь
в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной,
проценты — в виде дроби и дробь – в виде процентов; записывать большие и малые
числа с использованием целых степеней десятки;
• выполнять арифметические действия с рациональными числами, сравнивать
рациональные и действительные числа; находить в несложных случаях значения
степеней с целыми показателями и корней; находить значения числовых выражений;
• округлять целые числа и десятичные дроби, находить приближения чисел с
недостатком и с избытком, выполнять оценку числовых выражений;
• пользоваться основными единицами длины, массы, времени, скорости, площади,
объема; выражать более крупные единицы через более мелкие и наоборот;
• решать текстовые задачи, включая задачи, связанные с отношением и с
пропорциональностью величин, дробями и процентами.
Использовать приобретенные знания и умения в практической деятельности и
повседневной жизни для:
• решения несложных практических расчетных задач, в том числе c использованием
при необходимости справочных материалов, калькулятора, компьютера;
• устной прикидки и оценки результата вычислений; проверки результата вычисления,
с использованием различных приемов;
• интерпретации результатов решения задач с учетом ограничений, связанных с
реальными свойствами рассматриваемых процессов и явлений.
Алгебра
уметь
• составлять буквенные выражения и формулы по условиям задач; осуществлять в
выражениях и формулах числовые подстановки и выполнять соответствующие
вычисления, осуществлять подстановку одного выражения в другое; выражать из
формул одну переменную через остальные;
• выполнять основные действия со степенями с целыми показателями, с
многочленами и с алгебраическими дробями; выполнять разложение многочленов на
множители; выполнять тождественные преобразования рациональных выражений;
• применять свойства арифметических квадратных корней для вычисления значений и
преобразований числовых выражений, содержащих квадратные корни;
• решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к
ним, системы двух линейных уравнений и несложные нелинейные системы;
• решать линейные и квадратные неравенства с одной переменной и их системы,
• решать текстовые задачи алгебраическим методом, интерпретировать полученный
результат, проводить отбор решений, исходя из формулировки задачи;
• изображать числа точками на координатной прямой;
• определять координаты точки плоскости, строить точки с заданными координатами;
изображать множество решений линейного неравенства;
• распознавать арифметические и геометрические прогрессии; решать задачи с
применением формулы общего члена и суммы нескольких первых членов;
• находить значения функции, заданной формулой, таблицей, графиком по ее
аргументу; находить значение аргумента по значению функции, заданной графиком
или таблицей;
• определять свойства функции по ее графику; применять графические представления
при решении уравнений, систем, неравенств;
• описывать свойства изученных функций, строить их графики.
Использовать приобретенные знания и умения в практической деятельности и
повседневной жизни для:
• выполнения расчетов по формулам, для составления формул, выражающих
зависимости между реальными величинами; для нахождения нужной формулы в
справочных материалах;
• моделирования практических ситуаций и исследовании построенных моделей с
использованием аппарата алгебры;
• описания зависимостей между физическими величинами соответствующими
формулами, при исследовании несложных практических ситуаций;
• интерпретации графиков реальных зависимостей между величинами.
Элементы логики, комбинаторики, статистики и теории вероятностей
уметь
• проводить несложные доказательства, получать простейшие следствия из известных
или ранее полученных утверждений, оценивать логическую правильность
рассуждений, использовать примеры для иллюстрации и контрпримеры для
опровержения утверждений;
• извлекать информацию, представленную в таблицах, на диаграммах, графиках;
составлять таблицы, строить диаграммы и графики;
• решать комбинаторные задачи путем систематического перебора возможных
вариантов и с использованием правила умножения;
• вычислять средние значения результатов измерений;
• находить частоту события, используя собственные наблюдения и готовые
статистические данные;
• находить вероятности случайных событий в простейших случаях.
Использовать приобретенные знания и умения в практической деятельности и
повседневной жизни для:
• выстраивания аргументации при доказательстве и в диалоге;
• распознавания логически некорректных рассуждений;
• записи математических утверждений, доказательств;
• анализа реальных числовых данных, представленных в виде диаграмм, графиков,
таблиц;
• решения практических задач в повседневной и профессиональной деятельности с
использованием действий с числами, процентов, длин, площадей, объемов, времени,
скорости;
• решения учебных и практических задач, требующих систематического перебора
вариантов;
• сравнения шансов наступления случайных событий, для оценки вероятности
случайного события в практических ситуациях, сопоставления модели с реальной
ситуацией;
• понимания статистических утверждений.
Содержание программы. (132 часов)
Тема 1. « Повторение курса алгебры 7-8 класса» 4 часа.
Разделы математики.
- Числа и вычисления
- Выражения и преобразования
- Уравнения и неравенства
- Функции
Обязательный минимум содержания образовательной области математика.
- Действия с обыкновенными и десятичными дробями.
- Формулы сокращенного умножения.
- Тождественные преобразования алгебраических выражений.
- Степень с натуральным показателем.
- Линейные уравнения и неравенства с одной переменной.
- Квадратные уравнения.
Требования к математической подготовке
Уровень обязательной подготовки обучающегося
Уметь выполнять действия с обыкновенными и десятичными дробями.
Уметь выполнять тождественные преобразования алгебраических выражений.
Знать формулы сокращенного умножения.
Уметь решать линейные уравнения и неравенства и их системы.
Уметь решать квадратные уравнения.
Уровень обязательной подготовки выпускника
Уровень возможной подготовки выпускника
Квадратичная функция (29 ч)
Функция. Область определения и область значений функции. Свойства функций.
Квадратный трехчлен и его корни. Разложение квадратного трехчлена на множители.
Квадратичная функция и ее график. Функция у = х. Корень п-ой степени.
В результате изучения данной темы обучающийся должен
знать/понимать: определение квадратного трехчлена, формулировку теоремы о
разложении на множители квадратного трехчлена; определение степенной функции с
натуральным показателем; свойства степенной функции с четным и нечетным
показателем; определение корня п-ой степени с рациональным показателем;
уметь: выделять квадрат двучлена из квадратного трехчлена; раскладывать трехчлен на
множители, если есть корни; схематически изображать график функции у=х при
различных п и описывать свойства; вычислять значение корня п-ой степени; упрощать
выражения со степенями.
Использовать приобретенные знания и умения в практической деятельности и
повседневной жизни для: чтения графиков функций, решения несложных
алгебраических задач.
Уровень обязательной подготовки выпускника
Уровень возможной подготовки выпускника
Уравнения и неравенства с одной переменной (20 ч)
Целое уравнение и его корни. Дробные рациональные уравнения. Решение неравенств
второй степени с одной переменной Решение неравенств методом интервалов.
В результате изучения данной темы обучающийся должен
знать/понимать: понятия целого рационального уравнения; способы разложения
многочлена на множители; определение биквадратного, дробно-рационального
уравнений; алгоритм решения дробно-рациональных уравнений; определение
неравенства 2-ой степени с одной переменной; графический способ решения неравенств
(алгоритм); метод интервалов;
уметь: определять виды уравнений; владеть различными способами разложения
многочлена на множители; применять алгоритм решения дробно-рациональных
уравнений для их решения; определять неравенства 2-ой степени с одной переменной;
применять графический способ для их решения; применять метод интервалов.
Использовать приобретенные знания и умения в практической деятельности и
повседневной жизни для: решения целых рациональных, биквадратных, дробно-
рациональных уравнений.
Уровень обязательной подготовки выпускника
Уровень возможной подготовки выпускника
Уравнения и неравенства с двумя переменными (23ч)
Уравнения с двумя переменными и его график. Графический способ решения систем уравнений. Решение систем уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными. Системы неравенств с двумя переменными.
В результате изучения данной темы обучающийся должен
знать/понимать: определение решения уравнения с двумя переменными; определение графика уравнения с двумя переменными; что значит решить систему уравнений второй степени, (алгоритм решения); определение решения неравенств с двумя переменными;
решение системы неравенства с двумя переменными;
уметь: графически решать системы уравнений; применять способ подстановки; решать
задачи с помощью систем уравнений второй степени; графически иллюстрировать
множества решений некоторых систем неравенств с двумя переменными и их систем.
Использовать приобретенные знания и умения в практической деятельности и
повседневной жизни для: решения уравнений, систем уравнений и систем неравенств с
двумя переменными.
Уровень обязательной подготовки выпускника
Уровень возможной подготовки выпускника
Арифметическая и геометрическая прогрессии (16 ч)
Последовательности. Определение арифметической прогрессии. Формула п-го члена
арифметической прогрессии. Определение геометрической прогрессии. Формула п-го
члена геометрической прогрессии. Формула суммы первых п членов геометрической
прогрессии.
В результате изучения данной темы обучающийся должен
знать/понимать: понятие последовательности; смысл понятия «п-й» член
последовательности; определение арифметической и геометрической прогрессий;
определение разности арифметической прогрессии и знаменателя геометрической
прогрессий; формулы п-го члена и суммы п – членов арифметической и геометрической
прогрессий; характеристика свойства арифметической и геометрической прогрессий;
уметь: использовать индексное обозначение; применять формулы п-го члена и суммы п-
членов арифметической и геометрической прогрессий для выполнения упражнений.
Использовать приобретенные знания и умения в практической деятельности и
повседневной жизни: для решения задач.
Уровень обязательной подготовки выпускника
Уровень возможной подготовки выпускника
Элементы комбинаторики и теории вероятности (17 ч)
Примеры комбинаторных задач. Перестановки. Размещения. Сочетания.
Относительная частота случайного события. Вероятность равновозможных событий.
В результате изучения данной темы обучающийся должен
знать/понимать: комбинаторное правило умножения; определение перестановок,
размещений, сочетаний; понятия отношений частоты и вероятности случайного события;
формулы для подсчета их числа; понятия «случайное событие», «относительная
частота», «вероятность случайного события»;
уметь: различать понятия «размещение» и «сочетания»; определять о каком виде
комбинаций идет речь в задачах; решать задачи, в которых требуется составлять те или
иные комбинации элементов и подсчитать их число; вычислять вероятность случайного
события при классическом подходе.
Использовать приобретенные знания и умения в практической деятельности и
повседневной жизни для: решения комбинаторных задач.
Уровень обязательной подготовки выпускника
- Сколькими способами могут разместиться 6 человек в салоне автобуса на шести свободных местах?
- Сколько трехзначных чисел, в которых нет одинаковых цифр, можно составить из цифр 1, 2, 3, 4, 5?
- Из 12 членов туристической группы надо выбрать трех дежурных. Сколькими способами можно сделать такой выбор?
- Какова вероятность того, что при бросании игрального кубика выпадет более 4 очков?
Уровень возможной подготовки выпускника
- Из 20 вопросов к экзамену Вова 12 вопросов выучил, 5 совсем не смотрел, а в остальных что-то знает, а что-то нет. На экзамене в билете будет три вопроса.
а) Сколько существует вариантов билетов?
б) Сколько из них тех, в которых Вова знает все вопросы?
в) Сколько из них тех, в которых есть вопросы всех трех типов?
г) Сколько из них тех, в которых Вова выучил большинство вопросов?
- Случайным образом одновременно выбирают две буквы из 33 букв русского алфавита. Найдите вероятность того, что:
а) обе они гласные;
б) среди них есть буква «ь»;
в) среди них нет буквы «а»;
г) одна буква гласная, а другая согласная.
Комплексное повторение (26 ч)
Раздел математики.
- Числа и вычисления.
- Выражения и преобразования.
- Уравнения и неравенства.
- Функции.
По теме: методические разработки, презентации и конспекты
Рабочая программа алгебра 7, Макарычев, 4 недельных часа
Планирование составлено по учебнику Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, под редакцией СА Теляковского. 4 часа в неделю - всего 136 часов....
Рабочая программа 7 класс алгебра Макарычев
Данные рабочие программы помогут учителям в разработках своих программ....
Рабочая программа Алгебра Макарычев 7 класс
РАБОЧАЯ ПРОГРАММА ПО УЧЕБНИКУ МАКАРЫЧЕВА АЛГЕБРА 7...
Рабочая программа алгебра 9 класс Макарычев
Рабочая программа Алгебра 9 класс Макарычев...
Рабочая программа алгебра 8 класс Макарычев ФГОС
Разработка рабочей программы по алгебре 8 класс, авторы учебника: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворов С.Б., согласно требованиям ФГОС...
Рабочая программа алгебра 7 класс( Ю.Н.Макарычев)
Рабочая программа по алгебре для 7 класса расчитана на 4 часа в неделю...