Главные вкладки

    Методическая разработка по алгебре (7 класс):
    Исследование линейной функции y=kx+l

    Кадыскина Елена Витальевна

    Цель работы рассмотреть примеры функциональных зависимостей, выявить среди них линейные зависимости, задать их формулами, построить графики

    Скачать:

    Предварительный просмотр:

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

    Подписи к слайдам:

    Слайд 1

    Исследование линейной функции y = kx+l Тема урока:

    Слайд 2

    «Душа науки – это практическое применение ее открытий» У.Томсон

    Слайд 3

    Повторение 1. Какой формулой задается график линейной функции? y = kx+l 2. Что обозначает x в данной формуле? Независимая переменная 3. Что такое k и l ? Некоторые числа, причем k – угловой коэффициент 4. Что является графиком линейной функции? прямая

    Слайд 4

    5. Сколько необходимо координат для построения графика линейной функции? Две координаты 6. Что такое прямая пропорциональность? Прямая пропорциональность – это функция, задаваемая формулой y = kx , где k не равно 0 . 7. Определите, какие из следующих функций являются линейными? а) у = 2х - 3; б) у = Зх 2 ; в) у = -2/ x + 3 ; г) у = 7 – 4х?

    Слайд 5

    В данном тексте исправить допущенные ошибки, применяя полученные знания по теме . ТЕКСТ: Функции бывают различные. Линейную функцию можно задать формулой у= k х+ b х . Графиком линейной функции является прямая, обязательно проходящая через начало координат. Для построения графика функции надо найти координаты нескольких точек, отметить их координатной прямой и соединить эти точки отрезком .

    Слайд 6

    Проверь себя ТЕКСТ: Функции бывают различные. Линейную функцию можно задать формулой у= k х+ l . Графиком линейной функции является прямая. Для построения графика функции надо найти координаты двух точек, отметить их координатной плоскости и соединить эти точки прямой .

    Слайд 7

    I. Роль параметра k y = k x + l

    Слайд 8

    y = 2 x + 4 a) k > 0

    Слайд 9

    При k > 0 функция возрастающая (0, 4) (-2, 0 )

    Слайд 10

    y = - 2 x + 4 b) k < 0

    Слайд 11

    При k < 0 функция убывающая Y X

    Слайд 12

    y = 4 c) k = 0

    Слайд 13

    При k = 0 функция принимает одно и то же значение при любом x . Называется постоянной функции или константой .

    Слайд 14

    II. Роль параметра l y = k x + l

    Слайд 15

    Ответьте на вопросы Какие данные можно вносить в ячейки электронной таблицы? Число Текст Формула Дата Время Каковы правила записи формул в электронных таблицах? ВСЕ ФОРМУЛЫ НАЧИНАЮТСЯ СО ЗНАКА =

    Слайд 16

    Запишите приведенную формулу в виде пригодном для MS Excel , учитывая, что значение х находится в ячейке А1 : Проверьте себя: = -3/7*А1+12

    Слайд 17

    Алгоритм построения графика функции (определите порядок действий) Составить таблицу значений зависимости переменной у от х на заданном промежутке Выделить таблицу Перейти на закладку меню «Вставка» Из перечня диаграмм выбрать «Точечная» Пользуясь вкладками «Конструктор», «Макет», «Формат» отформатировать диаграмму

    Слайд 18

    I группа y = 2 x и y = -2 x II группа y = 2 x + 3 y = 2 x III группа y = 2 x – 3 y = 2 x IV группа y = -2 x + 3 y = -2 x V группа y = -2 x – 3 y = -2 x

    Слайд 19

    Y X 0 -1 -2 -3 -4 -5 5 4 3 2 1 5 4 3 2 1 -1 -2 -3 -4 -5 Y X 0 -1 -2 -3 -4 -5 5 4 3 2 1 5 4 3 2 1 -1 -2 -3 -4 -5 y = 2x y = 2 x + 3 y = 2 x - 3 y = -2x y = - 2 x + 3 y = - 2 x - 3

    Слайд 20

    Выводы: Коэффициент l отвечает за сдвиг графика вдоль оси ординат : если l > 0 , то график функции y = kx + l получается из графика y = kx путем смещения на l единиц вверх вдоль оси ординат ; если l < 0 , то график функции y = kx + l получается из графика y = kx путем смещения на l единиц вниз вдоль оси ординат.

    Слайд 21

    Задание Заполните таблицу на бланках с заданиями, определив знаки отношений, входящих в уравнение линейной функции ( > 0, < 0, = 0 )

    Слайд 22

    Y 0 X k  0 и l  0 Y 0 X k  0 и l  0 Y 0 X k  0 и l  0 Y 0 X k  0 и l  0 Y 0 X a b ) k  0 и l  0 ) k  0 и l  0 Y 0 X k  0 и l  0 Y 0 X k  0 и l  0

    Слайд 23

    Y 0 X k < 0 и l > 0 Y 0 X k > 0 и l > 0 Y 0 X k > 0 и l < 0 Y 0 X k < 0 и l < 0 Y 0 X a b ) k = 0 и l > 0 ) k = 0 и l < 0 Y 0 X k > 0 и l = 0 Y 0 X k < 0 и l = 0

    Слайд 24

    Определите отношение к сегодняшнему уроку путем голосования

    Слайд 25

    Домашнее задание y = 3,5 x + 6

    Слайд 26

    СПАСИБО ЗА ВНИМАНИЕ!



    Предварительный просмотр:

    МЕТОДИЧЕСКАЯ РАЗРАБОТКА УРОКА

    Тема урока: Исследование линейной функции y = kx+l

    Цель урока:

    закрепление знаний и умений учащихся по исследованию свойств линейной функции, используя графическое моделирование.

    Задачи урока:

    Личностные:

    • Развитие умения построения речевых высказываний, ведение диалога;
    • Формирование умения оценивать себя, работу в паре.

    Метапредметные:

    • Создание условий для анализа, обобщения результатов исследования;
    • Умение выделять существенные признаки для решения учебных задач.

    Предметные:

    • Систематизировать знания о линейной функции, ее свойствах;
    • Построение графика функции путем моделирования в электронных таблицах.

    Планируемые результаты:

    Личностные:

    • Формирование коммуникативной компетентности в процессе образовательной, творческой, учебно-исследовательской деятельности;
    • Формирование ответственного отношения к учению.

    Метапредметные:

    • Развитие умения создавать модели и графики для решения учебных задач;
    • Развитие компетентности в области использования ИКТ.

    Предметные:

    • Формировать умение строить графики и диаграммы, исследовать их, работать с табличным процессором;

    Методы работы: частично поисковый, репродуктивный (проблемный), интегрированный

    Формы организации работы детей: устная, письменная, индивидуальная, групповая.

    Технологии: проблемное обучение 

    Технологические особенности:

    Оборудование урока:

    • компьютеры IBM PC с операционной системой MS Windows XP и MS Office 2007;
    • мультимедийный проектор;
    • презентация;
    • маркерная доска.

    УМК:

    • Учебник И.Г.Семакин «Информатика и ИКТ», 8 класс
    • Учебник Г.В. Дорфеев «Алгебра», 8 класс

    Этапы интегрированного урока:

    • Организация начала урока, постановка цели урока
    • Актуализация полученных знаний по математике
    • Применение теоретических положений в условиях решения учебных задач: выполнение практических работ по математике
    • Актуализация полученных знаний по информатике
    • Самостоятельное творческое использование сформированных умений и навыков: решение практических задач по информатике
    • Обобщение усвоенного и включение его в систему ранее полученных знаний, умений, навыков, систематизация знаний
    • Подведение итогов урока
    • Информация о домашнем задании, инструкция о его выполнении, рефлексия деятельности.


    Ход урока

    Этап урока

    Содержание этапа урока, деятельность учителя

    Деятельность ученика

    Работа с приложениями

    УУД

    1

    Организация начала урока, постановка цели урока

    Проверка готовности учащихся к уроку. 

    Учитель математики (УМ): Тема нашего сегодняшнего урока  «Исследование графика линейной функции вида y = kx+l». Цель которого – не просто научиться строить графики функций, но и суметь проанализировать изменения, происходящие с ним при изменении параметров, а также смоделировать такие ситуации с помощью электронных таблиц.

     Эпиграфом к нему можно выбрать слова «Душа науки – это практическое применение ее открытий» У. Томсона.

    Давайте повторим основные понятия и определения, которые помогут нам справиться с заданиями сегодняшнего урока.

    Презентация слайд 1-2

    2

    Актуализация полученных знаний по математике

    Вопросы и задания для повторения:

    1. Какой формулой задается график линейной функции?

    2. Что обозначает x в данной формуле?

    3. Что такое k и l?

    4. Что является графиком линейной функции?

    5. Сколько необходимо координат для построения графика линейной функции?

    6. Что такое прямая пропорциональность?

    7. Определите, какие из следующих функций являются линейными?

    а) у = 2х - 3;                          

    б) у = Зх2;            

    в) у = -2/x  + 3;

    г) у =  7 – 4х?

    УМ: А теперь, давайте исправим ошибки,  допущенные учениками в математическом тексте.

    УМ: поменяйтесь, пожалуйста, листочками и по образцу проверьте выполненное задание соседа, ориентируясь на слайд презентации

    y = kx+l 

    Независимая переменная

    Некоторые числа, причем k – угловой коэффициент

    Прямая

    Две координаты

    Прямая пропорциональность – это функция, задаваемая формулой y = kx, где k не равно 0

    а) у = 2х - 3;                          

    г) у =  7 – 4х?

    Учащиеся на своих листах исправляют ошибки.

    Учащиеся обмениваются работами и исправляют ошибки

    Презентация слайд 3-4

    Презентация слайд 5-6

    Раздаточный материал – задание 1

    Построение речевых высказываний, ведение диалога;

    Умение слушать и слышать

    Осуществление контроля;

    Умение адекватно оценивать себя, работу в паре

    3

    Применение теоретических положений в условиях решения учебных задач

     I Роль параметра k

    УМ: На выданных вам бланках для работы давайте построим график функции

    1. y = 2x + 4

    УМ: давайте проанализируем: 

    УМ: А теперь построим график функции

    1. y = -2x + 4

    УМ: Скажите, пожалуйста, чем отличается уравнение функции a) от уравнения функции b)?

    УМ: А что произошло с графиком этой функции?

    УМ: то есть…

    УМ: А возможны ли какие-либо еще варианты коэффициента k?

    УМ: Давайте рассмотрим данную ситуацию и построим график такой функции:

    1. k = 0; y = 4

    УМ: Что вы можете сказать о графике функции?

    .

    УМ: сделайте, пожалуйста, вывод о роли коэффициента k при построении графика линейной функции.

    II. Роль параметра l

    УМ: мы определили значение коэффициента k, но есть ли в линейной функции еще какой-либо параметр, позволяющий влиять на график нашей функции?

    УМ: Давайте проанализируем и понаблюдаем за поведением функции при различных  условиях, но делать мы это будем с помощью компьютера.

    Учитель информатики (УИ): Скажите, пожалуйста, какая прикладная программа в наибольшей степени удобна для решения задачи, поставленной учителем математики?

    Ученики проводят построение на выданных бланках с шаблонами координатной плоскости, и одновременно ведется работа у доски.

    коэффициент k стал отрицательным

    он стал убывающим

    то есть коэффициент k влияет на 

    Да, он может быть нулевым

    Он становится постоянным или константой

    Учащиеся работают с бланками заданий

    Да. Это свободный коэффициент l.

    Это табличный процессор, так как его основная задача – автоматические вычисления над  данными и построение графиков и диаграмм.

    Презентация слайды 7-13

    Раздаточный материал – задание I «Роль параметра k»

    Анализ, обобщение результатов наблюдений

    Умение выделять существенные признаки

    Анализ, обобщение результатов наблюдений;

    исследование объекта, постановка проблемы

    4

    Актуализация полученных знаний по информатике

    УИ: Правильно. Вспомним основные приемы и правила работы с электронными таблицами.

    1. Какие данные можно вносить в ячейки электронной таблицы?

    1. Каковы правила записи формул в электронных таблицах?

     

    1. Запишите приведенную формулу в виде пригодном для MS Excel, учитывая, что значение х находится в ячейке А1:

    Пользуясь бланками с заданиями, определите правильный порядок действий при построении графика функции с помощью программы MS Excel 2007

    1. Число
    2. Текст
    3. Формула
    4. Дата
    5. Время

    ВСЕ ФОРМУЛЫ НАЧИНАЮТСЯ СО ЗНАКА     =

    = -3/7*А1+12

    Учащиеся нумеруют действия при построении графиков и диаграмм на бланках заданий

    Презентация слайды 14-17

    Раздаточный материал – задание 2

    Построение речевых высказываний, ведение диалога

    5

    Самостоятельное творческое использование сформированных умений и навыков: решение практических задач по информатике

    УМ: Какие варианты для коэффициента l можно рассмотреть?

    УИ: Для эффективной работы и исследования графика функции давайте разобьемся на мини-группы по два человека

    I  группа строит график функции y = 2x и y = -2x

    II группа строит график функции y = 2x + 3

    III группа строит график функции y = 2x – 3

    IV группа строит график функции y = -2x + 3

    V группа строит график функции y = -2x – 3

    УИ: Итак, посмотрим на графики функций первой группы. Как можно их описать? Чем они отличаются?

    Что в них общего?

    Результат построения графиков функций II и IV выглядит следующим образом (на слайде на тех же координатных плоскостях, что и графики I группы). Что можно сказать о них?

    Результат построения графиков функций III и V выглядит так (на слайде на тех же координатных плоскостях, что и графики I группы). Что можно сказать о них?

    Рассмотрев все возможные варианты коэффициента l, можно сделать общий вывод о его роли. Давайте объединим все графики на  координатных плоскостях и самостоятельно обобщим результаты наблюдений (на бланках заданий).

    l=0, l>0, l<0.

    График функции  y = 2x возрастающий, а

    y = -2x - убывающий

    Это прямые, проходящие через начало координат

    Эти графики сместились вдоль оси ординат на 3 единицы вверх относительно графиков I группы. Причем, знак коэффициента k значения не имеет

    Эти графики сместились вниз вдоль оси ординат на 3 единицы относительно графиков I группы. Причем, знак коэффициента k значения не имеет

    При любом коэффициенте k и l>0 график функции смещается на l единиц вверх относительно графика прямой y = kx.

    При любом коэффициенте k и l<0 график функции смещается на l единиц вниз относительно графика прямой y = kx.

    Презентация слайды 18-21

    Раздаточный материал – задание II «Роль параметра l»

    Постановка проблемы, составление плана решения;

    анализ, обобщение результатов наблюдений;

    умение планировать учебное сотрудничество

    6

    Обобщение усвоенного и включение его в систему ранее полученных знаний, умений, навыков, систематизация знаний

    Последним этапом нашего урока станет небольшая самостоятельная работа. Пользуясь таблицей на бланке с заданиями, определить  знак коэффициентов, входящих в линейную функцию (>0, <0, =0)

    Самостоятельная работа со сводной таблицей

    Презентация слайд 22-23

    Сводная таблица бланка заданий

    Итоговый контроль;

    анализ, обобщение результатов наблюдений

    7

    Подведение итогов урока, выставление оценок

    Информация о домашнем задании, инструкция о его выполнении, рефлексия деятельности

    УИ: какой на ваш взгляд способ построения графика функции более удобен? Почему? Можно ли пользоваться таким способом для исследования графиков других (не линейных) функций?

    Домашнее задание + рефлексия.

    В качестве домашнего задания выполните построение графика функции y = 3,5x+6, исследуя все возможные варианты коэффициентов k и l. Выберите наиболее удобный для вас способ исследования (графический в тетради или в MS Excel).

    И, наконец, чтобы определить - насколько работа была успешной и плодотворной, давайте проголосуем.

    Умение анализировать, обобщать результаты наблюдений


    По теме: методические разработки, презентации и конспекты

    Исследование графика линейной функции

    Урок -презентация по алгебре для учащихся 7 класса (УМК по учебнику Алимова)...

    Урок-исследование Взаимное расположение графиков линейной функции

    Аннотация к методической разработке урока по алгебре на тему «Взаимное расположение графиков линейных функций» (7 класс). Методическая разработка предназначена для проведения урока – исследования...

    Урок по алгебре в 8 классе. Тема "Уравнение прямой вида y = kx + l".

    Цели: Предментые: знать геометрический смысл коэффициентов к и l в уравнении прямой у = кх  + l,   уметь по уравнению прямой  определять взаимное расположение графиков  развив...

    Урок-исследование по алгебре "Уравнение прямой y=kx+l"

    Урок-исследование по алгебре с применением УМК "Живая математика"....

    Планы-конспекты 8 уроков алгебры по теме "Линейная, квадратичная и дробно-линейная функции" в 8-м классе

    Представлены 8 планов-конспектов уроков алгебры по теме "Линейная, квадратичная и дробно-линейная функции" в 8-м классе....

    Линейная функция и её график. Взаимное расположение графиков линейных функций

    Данная разработка, выполненая в Excel, поможет наглядно продемонстрировать учителю на уроке, как может распологаться график линейной функции в координатной плоскости (зависимость угла наклона прямой к...

    Презентация к уроку-исследованию по теме "Взаимное расположение графиков линейных функций"

    Данный материал позволит, в ходе исследования, сформулировать условия параллельности и перпендикулярности графиков линейных функций....