Металлы побочных подгрупп
материал для подготовки к егэ (гиа) по химии (11 класс)

Хажирокова Фатимат Хасановна

Подготовка к ЕГЭ по химии. Металлы: медь, цинк, хром, железо.

Скачать:

ВложениеРазмер
Файл 2.2.med_tsink_hrom_zhelezo.docx99.28 КБ

Предварительный просмотр:

Характеристика переходных элементов (меди, цинка, хрома, железа) по их положению в Периодической системе химических элементов Д.И. Менделеева и особенностям строения их атомов

У атомов переходных элементов (меди, цинка, хрома и железа) происходит заполнение энергетического d-подуровня.

Рассмотрим строение электронной оболочки этих элементов. У атомов цинка и железа заполнение электронной оболочки происходит согласно энергетическому ряду орбиталей (подуровней), который рассмотрен в статье Строение атома. Электронная конфигурация атома железа:

+26Fe   [Ar]3d64s2                       [Ar] 4s   3d 

У атома цинка на происходит полное заполнение 3d-подуровня:

+30Zn   [Ar]3d104s2                     [Ar] 4s 3d 

У атомов хрома и меди наблюдается «проскок» или «провал» электрона, когда один электрон переходит с более энергетически выгодного 4s-подуровня на менее выгодный 3d-подуровень. Этот переход обусловлен тем, что в результате образуются более устойчивые электронные конфигурации (3d5 у атома хрома и 3d10 у атома меди). Дело в том, что энергетически более выгодно, когда d-орбиталь заполнена наполовину или полностью.

+29 Сu 3d104s1      

+24 Cr   3d4 4s1     

Мы используем, конечно же, реальную электронную конфигурацию меди и хрома, теоретическая будет неверной.

Обратите внимание! У всех 3d-элементов внешним энергетическим уровнем считается четвертый уровень и 4s-подуровень. При образовании катионов атомы металлов отдают электроны с внешнего энергетического уровня.

Атом 

Электронная конфигурация

Характерные валентности

Число электронов на внешнем энергетическом уровне

Характерные степени окисления

Хром

[Ar]3d54s1

II, III. VI

1

+2, +3, +6

Железо

[Ar]3d64s2

II, III. VI

2

+2, +3, +6

Медь

[Ar]3d104s1

I, II

1

+1, +2

Цинк

[Ar]3d104s2

II

2

+2

Рассмотрим характеристики хрома, железа, меди и цинка:

 Свойства соединений железа, меди, цинка и хрома.

Для хрома характерны степени окисления +2, +3 и +6. Оксид и гидроксид хрома (II) (CrO и Cr(OH)2) проявляют основные свойства. Степени окисления +3 соответствуют амфотерные  оксид и гидроксид: Cr2O3 и Cr(OH)3 соответственно. Соединения хрома +6 проявляют сильные кислотные свойства: оксид CrOи сразу две сильных кислоты: хромовая H2CrO4 и дихромовая H2Cr2O7. Соединения хрома (II) проявляют сильные восстановительные свойства, соединения хрома (VI) проявляют только сильные окислительные свойства.

Характерные степени окисления железа: +2 и +3. Оксид и гидроксид железа (II) — основные (FeO и Fe(OH)2), а соединения железа (III) проявляют амфотерные свойства (Cr2O3 и Cr(OH)3 соответственно) с преобладанием основных. Соединения железа (II) проявляют также восстановительные свойства.

Для меди характерны степени окисления +1 и +2. Оксид меди (I) CuO и гидроксид меди (I) CuOH — основные. Оксид и гидроксид меди (II) проявляют амфотерные свойства с преобладанием основных: CuO и Cu(OH)2.

Характерная степень окисления цинка +2. Соединения цинка (II) проявляют амфотерные свойства: ZnO и Zn(OH)2.

Элемент

Степень окисления

Тип и формула оксида

Тип и формула гидроксида

Окислительно-восстановительные свойства

Хром

+2

CrO, основный

Cr(OH)2, основание

восстановитель, слабый окислитель

+3

Cr2O3, амфотерный

Cr(OH)3, амфотерный гидроксид

окислитель и восстановитель

+6

CrO3, кислотный

H2CrO4 и H2Cr2O7, кислоты

окислитель

Железо

+2

FeO, основный

Fe(OH)2, основание

восстановитель и слабый окислитель

+3

Fe2O3, амфотерный

Fe(OH)3, амфотерный гидроксид

окислитель, очень слабый восстановитель

Медь

+1

Cu2O, основный

CuOH, основание

восстановитель и слабый окислитель

+2

CuO, основный

Cu(OH)2, основание

окислитель

Цинк

+2

ZnO, амфотерный

Zn(OH)2, амфотерный гидроксид

слабый окислитель

 

Способы получения меди

 Медь получают из медных руд и минералов. Основные методы получения меди — электролиз, пирометаллургический и гидрометаллургический.

  • Гидрометаллургический метод: растворение медных минералов в разбавленных растворах серной кислоты, с последующим вытеснением металлическим железом.

Напримервытеснение меди из сульфата железом:

CuSO4 + Fe = Cu + FeSO4

  • Пирометаллургический методполучение меди из сульфидных руд. Это сложный процесс, который включает большое количество реакций. Основные стадии процесса:

1) Обжиг сульфидов:

2CuS + 3O2 = 2CuO + 2SO2

2) восстановление меди из оксида, например, водородом:

CuO + H2 = Cu + H2O

  • Электролиз растворов солей меди:

2CuSO4 + 2H2O → 2Cu + O2 + 2H2SO4

 Качественные реакции на ионы меди (II)

 Качественная реакция на ионы меди +2 – взаимодействие солей меди (II) с щелочамиПри этом образуется голубой осадок гидроксида меди(II).

Напримерсульфат меди (II) взаимодействует с гидроксидом натрия:

CuSO4   +   2NaOH   →   Cu(OH)2   +  Na2SO4

Соли меди (II) окрашивают пламя в зеленый цвет.

Химические свойства меди

В соединениях медь может проявлять степени окисления +1 и +2.

1. Медь — химически малоактивный металл. При нагревании медь может реагировать с некоторыми неметаллами: кислородом, серой, галогенами.

1.1. При нагревании медь реагирует с достаточно сильными окислителяминапример, с кислородомобразуя CuО, Cu2О в зависимости от условий:

4Cu  +  О2 → 2Cu2О

2Cu  +  О2 → 2CuО

 1.2. Медь реагирует с серой с образованием сульфида меди (II):

Cu  +  S  → CuS

 

1.3. Медь взаимодействует с галогенамиПри этом образуются галогениды меди (II):

Cu  +  Cl2  =  CuCl2

Сu  +  Br =  CuBr2

Но, обратите внимание: 

2Cu + I2 = 2CuI

1.4. С азотом, углеродом и кремнием медь не реагирует:

Cu   +  N2    ≠  

Cu   +  C    ≠  

Cu   +  Si    ≠  

1.5. Медь не взаимодействует с водородом.

Cu   +  H2    ≠  

 1.6. Медь взаимодействует с кислородом с образованием оксида:

2Cu  +  O2  →  2CuO

 2. Медь взаимодействует и со сложными веществами:

2.1. Медь в сухом воздухе и при комнатной температуре не окисляется, но во влажном воздухе, в присутствии оксида углерода (IV) покрывается зеленым налетом карбоната гидроксомеди (II):

2Cu   +  H2O  +  CO2  + O2 =  (CuOH)2CO3

 2.2. В ряду напряжений медь находится правее водорода и поэтому не может вытеснить водород из растворов минеральных кислот (разбавленной серной кислоты и др.).

Напримермедь не реагирует с разбавленной серной кислотой:

Cu   +  H2SO4 (разб.)    ≠  

2.3. При этом медь реагирует при нагревании с концентрированной серной кислотойПри нагревании реакция идет, образуются оксид серы (IV)сульфат меди (II) и вода:

Cu  +  2H2SO4(конц.) →  CuSO4  +  SO2  +  2H2O

 2.4. Медь реагирует даже при обычных условиях с азотной кислотой.

С концентрированной азотной кислотой:

Cu  +  4HNO3(конц.)  =  Cu(NO3)2  +  2NO2  +  2H2O

С разбавленной азотной кислотой:

3Cu  +  8HNO3(разб.)  =  3Cu(NO3)2  +  2NO  +  4H2O

 2.5. Растворы щелочей на медь практически не действуют.

2.6. Медь вытесняет металлы, стоящие правее в ряду напряжений, из растворов их солей.

Напримермедь реагирует с нитратом ртути (II) с образованием нитрата меди (II) и ртути:

Hg(NO3)2   +  Cu  =   Cu(NO3)2   +  Hg

2.7. Медь окисляется оксидом азота (IV) и солями  железа (III)

2Cu   +   NO2   =   Cu2O   +  NO

2FeCl  +   Cu  =  2FeCl2  +  CuCl2

Оксид меди (II)

 Оксид меди (II) CuO – твердое кристаллическое вещество черного цвета.

Способы получения оксида меди (II)

Оксид меди (II) можно получить различными методами:

1. Термическим разложением гидроксида меди (II) при 200°С: 

Cu(OH)2   →   CuO   +  H2O

2. В лаборатории оксид меди (II) получают окислением меди при нагревании на воздухе при 400–500°С:

2Cu   +   O2      2CuO           

 3. В лаборатории оксид меди (II) также получают прокаливанием солей (CuOH)2CO3, Cu(NO3)2:

(CuOH)2CO3     2CuO   +   CO2   +   H2O

2Cu(NO3)2       2CuO    +   4NO  +   O2

Химические свойства оксида меди (II)

Оксид меди (II) – основный оксид (при этом у него есть слабо выраженные амфотерные свойства)При этом он является довольно сильным окислителем.

1. При взаимодействии оксида меди (II) с сильными и растворимыми кислотами образуются соли.

Напримероксид меди (II) взаимодействует с соляной кислотой:

СuO  +  2HBr  =  CuBr2  +  H2O

CuO  +  2HCl  =  CuCl2  +  H2O

2. Оксид меди (II) вступает в реакцию с кислотными оксидами. 

Напримероксид меди (II) взаимодействует с оксидом серы (VI) с образованием сульфата меди (II):

CuO  + SO3  → CuSO4

3. Оксид меди (II) не взаимодействует с водой.

4. В окислительно-восстановительных реакциях соединения меди (II) проявляют окислительные свойства:

Напримероксид меди (II) окисляет аммиак:

3CuO + 2NH→ 3Cu + N2 + 3H2O

Оксид меди (II) можно восстановить углеродом, водородом или угарным газом при нагревании:

СuO + C  → Cu + CO

Более активные металлы вытесняют медь из оксида.

Напримералюминий восстанавливает оксид меди (II):

3CuO + 2Al = 3Cu + Al2O3

Оксид меди (I)

Оксид меди (I) Cu2O – твердое кристаллическое вещество коричнево-красного цвета.

Способы получения оксида меди (I)

В лаборатории оксид меди (I) получают восстановлением свежеосажденного гидроксида меди (II), например, альдегидами или глюкозой:

CH3CHO   +  2Cu(OH)2  → CH3COOH   +   Cu2O↓   +   2H2O

CH2ОН(CHOН)4СНО   +  2Cu(OH)2   →  CH2ОН(CHOН)4СООН  +   Cu2O↓   +   2H2O

Химические свойства оксида меди (I)

1. Оксид меди (I) обладает основными свойствами.

При действии на оксид меди (I) галогеноводородных кислот получают галогениды меди (I) и воду:

Например, соляная кислота с оксидом меди (I) образует хлорид меди (I):

Cu2O  +  2HCl   =   2CuCl↓   +  H2O

2. При растворении Cu2O в концентрированной серной, азотной кислотах образуются только соли меди (II):

Cu2O  +  3H2SO4(конц.)   =  2CuSO4  +  SO2  + 3H2O

Cu2O  +  6HNO3(конц.)  =  2Cu(NO3)2  +  2NO2  +  3H2O

5Cu2O  +  13H2SO4   +  2KMnO4   =  10CuSO +  2MnSO4  +   K2SO4  + 13H2O

3. Устойчивыми соединениями меди (I) являются нерастворимые соединения (CuCl, Cu2S) или комплексные соединения [Cu(NH3)2]+. Последние получают растворением в концентрированном растворе аммиака оксида меди (I), хлорида меди (I):

Cu2O  +  4NH3  +  H2O  =  2[Cu(NH3)2]OH

CuCl   +  2NH3   =  [Cu(NH3)2]Cl

Аммиачные растворы солей меди (I) взаимодействуют с ацетиленом:

СH ≡ CH + 2[Cu(NH3)2]Cl    →   СuC ≡ CCu  +  2NH4Cl + 2NH3

 4. В окислительно-восстановительных реакциях соединения меди (I) проявляют окислительно-восстановительную двойственность:

Например, при взаимодействии с угарным газом, более активными металлами или водородом оксид меди (II) проявляет свойства окислителя:

Cu2O  +  CO  =  2Cu  +  CO2

Cu2O  +  H2  =  2Cu  + H2O

 3Cu2O  +  2Al  =  6Cu  +  Al2O3

А под действием окислителей, например, кислорода — свойства восстановителя:

2Cu2O  +  O2  =  4CuO

 

Гидроксид меди (II)

Способы получения гидроксида меди (II)

 1. Гидроксид меди (II) можно получить действием раствора щелочи на соли меди (II).

Напримерхлорид меди (II) реагирует с водным раствором гидроксида натрия с образованием гидроксида меди (II) и хлорида натрия:

CuCl +  2NaOH   →   Cu(OH)2  +  2NaCl

Химические свойства

Гидроксид меди (II) Сu(OН)2 проявляет слабо выраженные амфотерные свойства (с преобладанием основных).

 1. Взаимодействует с кислотами.

Напримервзаимодействует с бромоводородной кислотой с образованием бромида меди (II) и воды:

Сu(OН)2  +  2HBr  =  CuBr2  +  2H2O

Cu(OН)2  +  2HCl  =  CuCl2  +  2H2O

 2. Гидроксид меди (II) легко взаимодействует с раствором аммиака, образуя сине-фиолетовое комплексное соединение:

Сu(OH)2  +  4(NH· H2O)   =  [Cu(NH3)4](OH)2   +  4H2O

Cu(OH)2  +  4NH3  =  [Cu(NH3)4](OH)2

 3. При взаимодействии гидроксида меди (II) с концентрированными (более 40%) растворами щелочей образуется комплексное соединение:

Cu(OH)2  + 2NaOH(конц.)  =  Na2[Cu(OH)4]

Но этой реакции в ЕГЭ по химии пока нет!

 4. При нагревании гидроксид меди (II) разлагается:

Сu(OH)2 → CuO  +  H2O

Соли меди

Соли меди (I)

 В окислительно-восстановительных реакциях соединения меди (I) проявляют окислительно-восстановительную двойственность. Как восстановители они реагируют с окислителями.

Например, хлорид меди (I) окисляется концентрированной азотной кислотой:

CuCl  +  3HNO3(конц.)  =  Cu(NO3)2  +  HCl  +  NO2  +  H2O

Также хлорид меди (I) реагирует с хлором:

2CuCl   +  Cl2   =  2CuCl2

 Хлорид меди (I) окисляется кислородом в присутствии соляной кислоты:

4CuCl   +  O2  +  4HCl   =   4CuCl2   +  2H2O

Прочие галогениды меди (I) также легко окисляются другими сильными окислителями:

2CuI  +  4H2SO4  +  2MnO2  =  2CuSO4  +  2MnSO4  +  I2  +  4H2O

Иодид меди (I)  реагирует с концентрированной серной кислотой:

4CuI   +   5H2SO4(конц.гор.)  =  4CuSO4   +  2I2   +   H2S   +  4H2O

Сульфид меди (I) реагирует с азотной кислотой. При этом образуются различные продукты окисления серы на холоде и при нагревании:

Cu2S  +  8HNO3(конц.хол.)   =  2Cu(NO3)2  +  S  +  4NO2  +  4H2O

Cu2S  +  12HNO3(конц.гор.)   =  Cu(NO3)2  +  CuSO4   +  10NO2  +  6H2O

 Для соединений меди (I) возможна реакция диспропорционирования:

2CuCl  =  Cu   +  CuCl2

Комплексные соединения типа [Cu(NH3)2]+ получают растворением в концентрированном растворе аммиака:

CuCl  +  3NH3  +  H2O  →   [Cu(NH3)2]OH  +  NH4Cl

Соли меди (II)

 В окислительно-восстановительных реакциях соединения меди (II) проявляют окислительные свойства.

Напримерсоли меди (II) окисляют иодиды и сульфиты:

2CuCl2  +  4KI = 2CuI  +  I2  +  4KCl

2CuCl2  +  Na2SO3  +  2NaOH  =  2CuCl  +  Na2SO4  +  2NaCl  +  H2O

 Бромиды и иодиды меди (II) можно окислить перманганатом калия:

 5CuBr2  +  2KMnO4  +  8H2SO4  =  5CuSO4  +  K2SO4  +  2MnSO4  +  5Br2  +  8H2O

 Соли меди (II) также окисляют сульфиты:

 2CuSO4  +  Na2SO3   +  2H2O   =  Cu2O   +  Na2SO4     +  2H2SO4

 Более активные металлы вытесняют медь из солей.

Напримерсульфат меди (II) реагирует с железом:

CuSO4  +  Fe  =  FeSO4  +  Cu

Cu(NO3)2   + Fe  =  Fe(NO3)2   +  Cu

 Сульфид меди (II) можно окислить концентрированной азотной кислотой. При нагревании возможно образование сульфата меди (II):

CuS  +  8HNO3(конц.гор.)   =   CuSO4   +   8NO2   +  4H2O

 Еще одна форма этой реакции:

CuS  +  10HNO3(конц.)     =  Cu(NO3)2  +  H2SO4  +    8NO2↑ +  4H2O

 При горении сульфида меди (II) образуется оксид меди (II)  и диоксид серы:

2CuS  +  3O2    2CuO  +  2SO2

 Соли меди (II) вступают в обменные реакции, как и все соли.

Напримеррастворимые соли меди (II) реагируют с сульфидами:

CuBr2  +  Na2S  =  CuS↓  +  2NaBr

 При взаимодействии солей меди (II) с щелочами образуется голубой осадок гидроксида меди (II):

CuSO4  +  2NaOH  =  Cu(OH)2↓  +  Na2SO4

 Электролиз раствора нитрата меди (II):

2Cu(NO3)2    +   2Н2О →  2Cu   +   O2  +  4HNO3

 Некоторые соли меди при нагревании разлагаютсянапример, нитрат меди (II):

2Cu(NO3)2 → 2CuO  +  4NO2  +  O2

 Основный карбонат меди разлагается на оксид меди (II), углекислый газ и воду:

(CuOH)2CO3 →  2CuO  +  CO2  +  H2O

 При взаимодействии солей меди (II) с избытком аммиака образуются аммиачные комплексы:

CuCl2  + 4NH3  =   [Cu(NH3)4]Cl2

 При смешивании растворов солей меди (II) и карбонатов происходит гидролиз и по катиону слабого основания, и по аниону слабой кислоты:

2CuSO4  +  2Na2CO3  +  H2O  =  (CuOH)2CO3↓  +  2Na2SO4  +  CO2


Способы получения цинка

 Цинк получают из сульфидной руды. На первом этапе руду обогащают, повышая концентрацию сульфидов металлов.  Сульфид цинка обжигают в печи кипящего слоя:

2ZnS + 3O2 → 2ZnO + 2SO2

Чистый цинк из оксида получают двумя способами.

При пирометаллургическом способе, который использовался издавна, оксид цинка восстанавливают углём или коксом при 1200—1300 °C:

ZnO + С → Zn + CO

Далее цинк очищают от примесей.

В настоящее время основной способ получения цинка — электролитический (гидрометаллургический). При этом сульфид цинка обрабатывают серной кислотой:

ZnO + H2SO4 → ZnSO4 + H2O

 При это получаемый раствор  сульфата цинка очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу.

При электролизе чистый цинк осаждается на алюминиевых катодах, с которых его удаляют и  подвергают плавлению в индукционных печах. Таким образом можно получить цинк с высокой чистотой (до 99,95 %). 

Качественные реакции

 Качественная реакция на ионы цинка — взаимодействие избытка солей цинка с щелочами. При этом образуется белый осадок гидроксида цинка

Напримерхлорид цинка взаимодействует с гидроксидом натрия:

ZnCl2 + 2NaOH → Zn(OH)2 + 2NaCl

 

При дальнейшем добавлении щелочи амфотерный гидроксид цинка растворяется с образованием комплексной соли тетрагидроксоцинката:

 

Zn(OH)2 + 2NaOH = Na2[Zn(OH)4]

Обратите внимание,  если мы поместим соль цинка в избыток раствора щелочи, то белый осадок гидроксида цинка не образуется, т.к. в избытке щелочи соединения цинка сразу переходят в комплекс:

ZnCl2 + 4NaOH = Na2[Zn(OH)4] + 2NaCl

Химические свойства

 1. Цинк – сильный восстановитель. Цинк – довольно активный металл, но на воздухе он устойчив, так как покрывается тонким слоем оксида, предохраняющим его от дальнейшего окисления. При нагревании цинк реагирует со многими неметаллами.

 1.1. Цинк реагируют с галогенами с образованием галогенидов:

Zn  +  I2  → ZnI2

 1.2. Цинк реагирует с серой с образованием сульфидов:

Zn +  S  → ZnS

 1.3. Цинк реагируют с фосфором. При этом образуется бинарное соединение — фосфид:

3Zn + 2P → Zn3P2

1.4. С азотом цинк непосредственно не реагирует.

1.5. Цинк непосредственно не реагирует с водородом, углеродом, кремнием и бором.

1.6. Цинк взаимодействует с кислородом с образованием оксида:

2Zn + O2 → 2ZnO

 2. Цинк взаимодействует со сложными веществами:

2.1. Цинк реагирует с парами воды при температуре красного каления с образованием оксида цинка и водорода:

Zn0 + H2+O → Zn+2O + H20

 2.2. Цинк взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой и др.). При этом образуются соль и водород.

Например, цинк реагирует с соляной кислотой:

Zn + 2HCl  ZnCl2 + H2

 Цинк реагирует с разбавленной серной кислотой:

Zn  +  H2SO4  →   ZnSO4  +  H2

 2.3. Цинк  реагирует с концентрированной серной кислотойВ зависимости от условий возможно образование различных продуктов. При нагревании гранулированного цинка с концентрированной серной кислотой образуются оксид серы (IV)сульфат цинка и вода:

Zn  +  2H2SO4(конц.)  → ZnSO4   +   SO2  +  2H2O

 Порошковый цинк реагирует с концентрированной серной кислотой с образованием сероводородасульфата цинка и воды:

4Zn  +  5H2SO4(конц.)  →  4ZnSO4    +   H2S  +   4H2O

 

2.4. Аналогично: при нагревании гранулированного цинка с концентрированной азотной кислотой образуются оксид азота (IV), нитрат цинка и вода:

Zn  + 4HNO3(конц.)→ Zn(NO3)2 + 2NO2 + 2H2O

При нагревании цинка с очень разбавленной азотной кислотой образуются нитрат аммония, нитрат цинка и вода:

4Zn  +  10HNO3(оч. разб.) = 4Zn(NO3)2    +  NH4NO3   +  3H2O

2.5. Цинк – амфотерный металл, он взаимодействует с щелочами. При взаимодействии цинка с раствором щелочи образуется тетрагидроксоцинкат и водород:

Zn  +  2KOH  +  2H2O  =  K2[Zn(OH)4]  +  H2

 Цинк реагирует с расплавом щелочи с образованием цинката и водорода:

Zn  +  2NаОН(крист.)     Nа2ZnО2  +  Н2

 В отличие от алюминия, цинк растворяется и в водном растворе аммиака:

Zn + 4NH3 + 2H2O → [Zn(NH3)4](OH)2 + H2

 2.6. Цинк вытесняет менее активные металлы из оксидов и солей.

Например, цинк вытесняет медь из оксида меди (II):

Zn + CuO → Cu + ZnO

 Еще пример: цинк восстанавливает медь из раствора сульфата меди (II):

CuSO4 + Zn = ZnSO4  + Cu

 И свинец из раствора нитрата свинца (II):

Pb(NO3)2    +   Zn  =   Zn(NO3)2     +   Pb

 Восстановительные свойства цинка также проявляются при взаимодействии его с сильными окислителями: нитратами и сульфитами в щелочной среде, перманганатамисоединениями хрома (VI):

4Zn   +   KNO3   +  7KOH  =  NН3  +  4K2ZnO2  +  2H2O

4Zn   +   7NaOH   +  6H2O  +  NaNO3   =  4Na2[Zn(OH)4]  +  NH3

3Zn    +   Na2SO3  +  8HCl   =   3ZnCl2  +  H2S  +  2NaCl  +  3H2O

Zn    +   NaNO3  +  2HCl    =  ZnCl2  +  NaNO2  +  H2O

Оксид цинка

Способы получения

 Оксид цинка можно получить различными методами:

1. Окислением цинка кислородом: 

2Zn + O2 → 2ZnO

 2. Разложением гидроксида цинка при нагревании:

Zn(OН)2  →   ZnO  + H2O

 3. Оксид цинка можно получить разложением нитрата цинка:

2Zn(NO3)2  →  2ZnO    +   4NO2   +  O2

Химические свойства

Оксид цинка — типичный амфотерный оксид. Взаимодействует с кислотными и основными оксидами, кислотами, щелочами.

1. При взаимодействии оксида цинка с основными оксидами образуются соли-цинкаты.

Например, оксид цинка взаимодействует с оксидом натрия:

ZnO  +  Na2  Na2ZnO2

 2. Оксид цинка взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются солицинкаты, а в растворе – комплексные соли. При этом оксид цинка проявляет кислотные свойства.

Например, оксид цинка взаимодействует с гидроксидом натрия в расплаве с образованием цинката натрия и воды:

ZnO  +  2NaOH      Na2ZnO2  + H2O

Оксид цинка растворяется в избытке раствора щелочи с образованием тетрагидроксоцинката:

ZnO  +  2NaOH + H2O  =  Na2[Zn(OH)4

 3. Оксид цинка не взаимодействует с водой.

ZnO  +  H2O ≠

 4. Оксид цинка взаимодействует с кислотными оксидами. При этом образуются соли цинка. В этих реакциях оксид цинка проявляет основные свойства.

Например, оксид цинка взаимодействует с оксидом серы (VI) с образованием сульфата цинка: 

ZnO + SO3 → ZnSO4

 

5. Оксид цинка взаимодействует с растворимыми кислотами с образованием солей.

Например, оксид цинка реагирует с соляной кислотой:

ZnO  +  2HCl  =  ZnCl2  +  H2O

 

6. Оксид цинка проявляет слабые окислительные свойства.

Например, оксид цинка при нагревании реагирует с углеродом и угарным газом:

ZnO + С(кокс)   →  Zn + СО 

ZnO + СО →  Zn + СО2

7. Оксид цинка — твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например, из карбоната бария:

ZnO + BaCO3 →  BaZnO2  + СО2

Гидроксид цинка

Способы получения

1. Гидроксид цинка можно получить пропусканием углекислого газасернистого газа или сероводорода через раствор тетрагидроксоцинката натрия:

Na2[Zn(OH)4] + 2СО2 = Zn(OH)2 + 2NaНCO3 

Чтобы понять, как протекает эта реакция, можно использовать несложный прием: мысленно разбить исходное вещество Na2[Zn(OH)4] на составные части: NaOH и Zn(OH)2. Далее мы определяем, как реагирует углекислый газ с каждым из этих веществ, и записываем продукты их взаимодействия. Т.к. Zn(OH)2 не реагирует с СО2, то мы записываем справа Zn(OH)2  без изменения.

 

2. Гидроксид цинка можно получить действием недостатка щелочи на избыток соли цинка.

Напримерхлорид цинка реагирует с недостатком гидроксида калия с образованием гидроксида цинка и хлорида калия:

ZnCl2 + 2KOH(недост.) = Zn(OH)2↓+ 2KCl

Химические свойства

1. Гидроксид цинка реагирует с растворимыми кислотами.

Напримергидроксид цинка взаимодействует с азотной кислотой с образованием нитрата цинка:

Zn(OН)2 + 2HNO3 → Zn(NO3)2 + 2H2O

Zn(OН)2  +  2HCl  =  ZnCl2  +  2H2O

Zn(OН)2 +  H2SO4  → ZnSO4  +  2H2O

Zn(OН)2 +  2HBr →  ZnBr2  +  2H2O

 

2. Гидроксид цинка взаимодействует с кислотными оксидами.

Например, гидроксид цинка взаимодействует с оксидом серы (VI) с образованием сульфата цинка:

Zn(OH)2 + SO3 → ZnSO4 + H2O

 

3. Гидроксид цинка взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются солицинкаты, а в растворе – комплексные соли. При этом гидроксид цинка проявляет кислотные свойства.

Например, гидроксид цинка взаимодействует с гидроксидом калия в расплаве с образованием цинката калия и воды:

2KOH  +  Zn(OН)2  → 2KZnO+ 2H2O

 

Гидроксид цинка растворяется в избытке щелочи с образованием тетрагидроксоцинката:

Zn(OН)2  +  2NaOH  =  Na2[Zn(OH)4]

 

4. Гидроксид цинка разлагается при нагревании:

Zn(OH)2 → ZnO + H2O

 

Соли цинка

Нитрат и сульфат цинка

Нитрат цинка при нагревании разлагается на оксид цинкаоксид азота (IV)  и кислород:

2Zn(NO3)2  →  2ZnO    +   4NO2   +  O2

 

Сульфат цинка при сильном нагревании разлагается аналогично — на оксид цинкасернистый газ и кислород:

2ZnSO4 → 2ZnO  + 2SO2 + O2

Комплексные соли цинка

Для описания свойств комплексных солей цинка — гидроксоцинкатов, удобно использоваться следующий прием: мысленно разбейте тетрагидроксоцинкат на две отдельные частицы — гидроксид цинка и гидроксид щелочного металла.

Напримертетрагидроксоцинкат натрия  разбиваем на гидроксид цинка и гидроксид натрия:

Na2[Zn(OH)4разбиваем на NaOH и Zn(OH)2

 

Свойства всего комплекса можно определять, как свойства этих отдельных соединений.

Таким образом, гидроксокомплексы цинка реагируют с кислотными оксидами.

Напримергидроксокомплекс разрушается под действием избытка  углекислого газа. При этом с СО2 реагирует NaOH с образованием кислой соли (при избытке СО2), а амфотерный гидроксид цинка не реагирует с углекислым газом, следовательно, просто выпадает в осадок:

Na2[Zn(OH)4]    +   2CO2    =   Zn(OH)2    +   2NaHCO3

 

Аналогично тетрагидроксоцинкат калия реагирует с углекислым газом:

K2[Zn(OH)4]    +   2CO2    =   Zn(OH)2    +   2KHCO3

 

А вот под действием избытка сильной кислоты осадок не выпадает, т.к. амфотерный гидроксид цинка реагирует с сильными кислотами.

Напримерс соляной кислотой:

 

  Na2[Zn(OH)4]   +  4HCl(избыток)  → 2NaCl  +  ZnCl2  +  4H2O

 

Правда, под действием небольшого количества (недостаткасильной кислоты осадок все-таки выпадет, для растворения гидроксида цинка кислоты не будет хватать:

 

Na2[Zn(OH)4]  +  2НCl(недостаток)   → Zn(OH)2↓  +  2NaCl  +  2H2O

 

Аналогично с недостатком азотной кислоты выпадает гидроксид цинка:

 

Na2[Zn(OH)4] +  2HNO3(недостаток)  → Zn(OH)2↓  +  2NaNO3  +  2H2O

 

Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-цинкат:

Na2[Zn(OH)4]  →  Na2ZnO  +  2H2O↑

K2[Zn(OH)4]  →  K2ZnO  +  2H2O↑

Цинкаты

 Соли, в которых цинк образует кислотный остаток (цинкаты) — образуются из оксида цинка при сплавлении с щелочами и основными оксидами:

ZnO + Na2O → Na2ZnO2

 Для понимания свойств цинкатов их также можно мысленно разбить на два отдельных вещества.

Например, цинкат натрия мы разделим мысленно на два вещества: оксид цинка и оксид натрия.

Na2ZnO2 разбиваем на Na2O и ZnO

 Тогда нам станет очевидно, что цинкаты реагируют с кислотами с образованием солей цинка:

K2ZnO2  +  4HCl (избыток) → 2KCl  +  ZnCl2  +  2H2O

СaZnO2   +   4HCl (избыток)  =   CaCl2   +   ZnCl2   +   2H2O

Na2ZnO2 +  4HNO3  → Zn(NO3)2  +  2NaNO3  +  2H2O

Na2ZnO2 +  2H2SO4  → ZnSO4   +  Na2SO4  +  2H2O

 

Под действием избытка воды цинкаты переходят в комплексные соли:

K2ZnO2 + 2H2O   =  K2[Zn(OH)4]

Na2ZnO2 +  2H2O  =  Na2[Zn(OH)4]

Сульфид цинка

Сульфид цинка — так называемый «белый сульфид». В воде  сульфид цинка нерастворим, зато минеральные кислоты вытесняют из сульфида цинка сероводород (например, соляная кислота):

ZnS  + 2HCl  →  ZnCl2  +  H2S

Под действием  азотной кислоты сульфид цинка окисляется до сульфата:

ZnS    +  8HNO3(конц.)  →  ZnSO4  +  8NO2   +  4H2O

(в продуктах также можно записать нитрат цинка и серную кислоту).

Концентрированная серная кислота также окисляет сульфид цинка:

ZnS   +  4H2SO4(конц.)   =  ZnSO4  +  4SO2  +   4H2O

 При окислении сульфида цинка сильными окислителями в щелочной среде образуется комплексная соль: ZnS  +  4NaOH  +  Br2   =   Na2[Zn(OH)4]  +  S  +  2NaBr

Способы получения хрома

Хром получают из хромита железа. Для восстановления используют кокс:

Fe(CrO2)2   +  4C   →    Fe   +    2Cr +   4CO

Еще один способ получения хрома: восстановление из оксида алюминием (алюмотермия):

2Al   +   Cr2O3  →   2Cr   +  Al2O3

Качественные реакции

Качественная реакция на ионы хрома +2 – взаимодействие избытка солей хрома (II) с щелочами. При этом образуется коричневый аморфный осадок гидроксида хрома (II).

Напримерхлорид хрома (II) взаимодействует с гидроксидом натрия:

CrCl2   +   2NaOH   →   Cr(OH)2   + 2NaCl

Качественная реакция на ионы хрома +3 – взаимодействие избытка солей хрома (III) с щелочами. При этом образуется серо-зеленый аморфный осадок гидроксида хрома (III).

Напримерхлорид хрома (III) взаимодействует с гидроксидом калия:

CrCl3   +   3KOH   →   Cr(OH)3   + 3KCl

При дальнейшем добавлении щелочи амфотерный гидроксид хрома (III) растворяется с образованием комплексной соли:

Cr(OH)3   +   3KOH   →  K3[Cr(OH)6]

Обратите внимание,  если мы поместим соль хрома (III) в избыток раствора щелочи, то осадок гидроксида хрома (III) не образуется, т.к. в избытке щелочи соединения хрома (III) сразу переходят в комплекс:

CrCl3   +   6KOH   →   K3[Cr(OH)6]   + 3KCl

Соли хрома можно обнаружить с помощью водного раствора аммиака. При взаимодействии растворимых солей хрома (II) с водным раствором аммиака также образуется коричневый осадок гидроксида хрома (II).

CrCl2 + 2NH3  + 2H2O   →   Cr(OH)2↓ + 2NH4Cl

Cr2+ + 2NH3   +  2H2O    →   Cr(OH)2↓ + 2NH4+

При взаимодействии растворимых солей хрома (III) с водным раствором аммиака также образуется серо-зеленый осадок гидроксида хрома (III).

CrCl3 + 3NH3   +  3H2O     →    Cr(OH)3↓ + 3NH4Cl

Cr3+ + 3NH3    +  3H2O    →    Cr(OH)3 ↓ + 3NH4+

Химические свойства

В соединениях хром может проявлять степени окисления от +1 до +6. Наиболее характерными являются соединения хрома со степенями окисления +3 и +6. Менее устойчивы соединения хрома со степенью окисления +2. Хром образует комплексные соединения с координационным числом 6.

1. При комнатной температуре хром химически малоактивен из-за образования на его поверхности тонкой прочной оксидной пленки. При нагревании оксидная пленка хрома разрушается, и он реагирует практически со всеми неметаллами: кислородом, галогенами, серой, азотом, кремнием, углеродом, фосфором.

1.1. При взаимодействии хрома с галогенами образуются галогениды:

2Cr  +  3Cl2  → 2CrCl3

1.2. Хром реагирует с серой с образованием сульфида хрома:

2Cr  +  3S  → Cr2S3

1.3. Хром взаимодействует с фосфором. При этом образуется бинарное соединение – фосфид хрома:

Cr  +   P   →  CrP

1.4. С азотом хром реагирует при нагревании до 1000оС с образованием нитрида:

2Cr  +  N2   →   2CrN

1.5. Хром не взаимодействует с водородом.

1.6. Хром взаимодействует с кислородом с образованием оксида:

4Cr  +  3O2  →  2Cr2O3

2. Хром взаимодействует и со сложными веществами:

2.1. Хром реагирует с парами воды в раскаленном состоянии:

2Cr  +  3H2(пар)  → Cr2O3  +  3H2

2.2. В ряду напряжений хром находится левее водорода и поэтому в отсутствии воздуха может вытеснить водород из растворов минеральных кислот (соляной и разбавленной серной кислоты), образуя соли хрома (II).

Например, хром бурно реагирует с соляной кислотой:

Cr   +  2HCl    →   CrCl2   +  H2

В присутствии кислорода образуются соли хрома (III):

4Cr   +   12HCl  +  3O2   →   4CrCl3   +  6H2O

2.3. При обычных условиях хром не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV)сульфат хрома (III) и вода:

2Cr  +  6H2SO4   →   Cr2(SO4)3  +  3SO2  +  6H2O

2.4. Хром не реагирует при обычных условиях с концентрированной азотной кислотой также из-за пассивации.

Только при сильном нагревании концентрированная азотная кислота растворяет хром:

Cr  +  6HNO3   →   Cr(NO3)3  +  3NO2  +  3H2O

2.5. Растворы щелочей на хром практически не действуют.

2.6. Однако хром способен вытеснять многие металлы, например медь, олово, серебро и др. из растворов их солей.

Например, хром реагирует с хлоридом меди с образованием хлорида хрома (III) и меди:

2Cr   +   3CuCl2   →    2CrCl3   +  3Cu

Восстановительные свойства хрома также проявляются при взаимодействии его с сильными окислителями: пероксидом натриянитратами и нитритами, хлоратами в щелочной среде.

Например, при сплавлении хрома с хлоратом калия в щелочи хром окисляется до хромата калия:

Cr  + KClO3  + 2KOH  →  K2CrO4  + KCl  +  H2O

Хлорат калия и нитрат калия также окисляют хром:

2Cr  + KClO3   →   Cr2O3  +  KCl

2Cr  + 3KNO3   →   Cr2O3  +  3KNO2

Оксид хрома (III)

Способы получения

Оксид хрома (III) можно получить различными методами:

1. Термическим разложением гидроксида хрома (III): 

2Cr(OH)3   →   Cr2O3   +  3H2O

2. Разложением дихромата аммония:

(NH4)2Cr2O7    →    Cr2O3   +   N  +   4H2O           

 3. Восстановлением дихромата калия углеродом (коксом) или серой:

2K2Cr2O7   +   3C     →   2Cr2O  +   2K2CO3   +   CO2

K2Cr2O  +   S    →     Cr2O3   +   K2SO4

Химические свойства

Оксид хрома (III) – типичный амфотерный оксид. При этом оксид химически довольно инертен. В высокодисперсном состоянии с трудом взаимодействует с кислотами и щелочами.

1. При сплавлении оксида хрома (III) с основными оксидами активных металлов образуются соли-хромиты.

Например, оксид хрома (III) взаимодействует с оксидом натрия:

Na2O  +  Cr2O3  → 2NaCrO2

2. Оксид хрома (III) взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются солихромиты, а в растворе реакция практически не идет. При этом оксид хрома (III) проявляет кислотные свойства.

Например, оксид хрома (III) взаимодействует с гидроксидом натрия в расплаве с образованием хромита натрия и воды:

2NaOH  + Cr2O3  → 2NaCrO+  H2O

3. Оксид хрома (III) не взаимодействует с водой.

4. Оксид хрома (III) проявляет слабые восстановительные свойства. В щелочных расплавах окислителей окисляется до соединений хрома (VI).

Например, оксид хрома (III) взаимодействует с нитратом калия в щелочной среде:

Cr2O3  +  3KNO3  +  4KOH   →  2K2CrO4  +   3KNO2   +   2H2O

Оксид хрома (III) окисляется бромом в присутствии гидроксида натрия:

Cr2O3  +  3Br2  +  10NaOH  →  2Na2CrO4  +   6NaBr   +   5H2O

Озоном или кислородом:

Сr2O3  +  O3  +  4KOH     →   2K2CrO4  +  2H2O

Cr2O3  +  3O2 +   4Na2CO3  →   2Na2CrO4  + 4CO2

Нитраты и хлораты в расплаве щелочи также окисляют оксид хрома (III):

Сr2O3  +  3NaNO3  +  2Na2CO3   →  2Na2CrO4  +  2CO2  +  3NaNO2

Cr2O3  +   KClO3    +   2Na2CO3    →    2Na2CrO4  +  KCl    +  2CO2

5. Оксид хрома (III) в высокодисперсном состоянии при сильном нагревании взаимодействует с сильными кислотами.

Например, оксид хрома (III) реагирует с серной кислотой:

Cr2O3   +  3H2SO4   →  Cr2(SO4)3   +  3H2O

6. Оксид хрома (III) проявляет слабые окислительные свойства при взаимодействии с более активными металлами.

Например, оксид хрома (III) реагирует с алюминием (термит):

2Al  +  Cr2O →  Al2O3  +  2Cr

7. Оксид хрома (III) – твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например, из карбоната калия:

Cr2O3  +  K2CO3 → 2KCrO2  +  CO2

Оксид хрома (II)

Химические свойства

Оксид хрома (II) имеет основный характер, ему соответствует гидроксид хрома (II), обладающий основными свойствами.

1. При обычной температуре устойчив на воздухе, выше 100°С окисляется кислородом. Все соединения хрома (II) – сильные восстановители.

4CrO  +  O2     →   2Cr2O3

2. При высоких температурах оксид хрома (II) диспропорционирует:

3CrO   →   Cr  +  Cr2O3

3. Оксид хрома (II) не взаимодействует с водой.

4. Оксид хрома (II) проявляет основные свойства. Взаимодействует с сильными кислотами и кислотными оксидами.

Например, оксид хрома (II) взаимодействует с соляной кислотой:

CrO  +  2HCl   →  CrCl2  +  H2O

И с серной кислотой:

CrO  +  H2SO4   →   CrSO4  +  H2O

Оксид хрома (VI)

Оксид хрома (VI) CrO3 – темно-красное кристаллическое вещество. Гигроскопичен, расплывается на воздухе, малоустойчив, разлагается при нормальных условиях.

Способы получения

Оксид хром (VI) можно получить действием концентрированной серной кислоты на сухие хроматы или дихроматы:

Na2Cr2O7   +  2H2SO4  →  2CrO3  + 2NaHSO+ H2O          

Химические свойства

Оксид хрома (VI) – кислотный. Сильно ядовит. Оксиду хрома (VI) соответствуют хромовая (H2CrO4) и дихромовая (H2Cr2O7) кислоты.

1. При взаимодействии оксида хрома (VI) с водой образуется хромовые кислоты:

CrO3  +  Н2O   →  Н2CrO4

2CrO3  +  Н2O  →   Н2Cr2O7

2. Оксид хрома (VI) проявляет кислотные свойства. Взаимодействует с основаниями и основными оксидами.

Например, оксид хрома (VI) взаимодействует с гидроксидом калия с образованием хромата калия:

CrO3 + 2KOH  → K2CrO4 + H2O

Или с оксидом лития с образованием хромата лития:

CrO3  +  Li2O   →   Li2CrO4

3. Оксид хрома (VI) – очень сильный окислительокисляет углерод, серу, иод, фосфор, превращаясь при этом в оксид хрома (III).

Например, сера окисляется до оксида серы (IV):

4CrO3  +  3S   →   2Cr2O3  +  3SO2↑   

Оксид хрома (VI) также окисляет сложные вещества, напримерсульфиты:

2CrO3  +   3K2SO3  +  3H2SO4  →  3K2SO4    +   Cr2(SO4)3    +  3H2O

И некоторые органические веществ, напримерэтанол:

2CrO3   +   3C2H5OH   +   3H2SO  →  Cr2(SO4)3   +   3CH3CHO   +   6H2O

Гидроксид хрома (III)

Гидроксид хрома (III) Cr(OH)3 – это твердое вещество серо-зеленого цвета.

Способы получения

1. Гидроксид хрома (III) можно получить действием раствора аммиака на соли хрома (III).

Например, хлорид хрома (III) реагирует с водным раствором аммиака с образованием гидроксида хрома (III) и хлорида аммония:

CrCl +  3NH3  +  3H2O   →   Cr(OH)3  +  3NH4Cl

2. Пропусканием углекислого газасернистого газа или сероводорода через раствор гексагидроксохромата калия:

K3[Cr(OH)6]  +  3CO  →   Cr(OH)3↓   +   3KHCO3

Чтобы понять, как протекает эта реакция, можно использовать несложный прием: мысленно разбить сложное вещество K3[Cr(OH)6] на составные части: KOH и Cr(OH)3. Далее мы определяем, как реагирует углекислый газ с каждым из этих веществ, и записываем продукты их взаимодействия. Т.к. Cr(OH)3 не реагирует с СО2, то мы записываем справа Cr(OH)3  без изменения. Гидроксид калия реагирует с избытком углекислого газа с образованием гидрокарбоната калия

3. Гидроксид хрома (III) можно получить действием недостатка щелочи на избыток соли хрома (III).

Напримерхлорид хрома (III) реагирует с недостатком гидроксида калия с образованием гидроксида хрома (III) и хлорида калия:

CrCl3  +  3KOH(недост)  →  Cr(OH)3↓ +  3KCl

4. Также гидроксид хрома (III) образуется при взаимодействии растворимых солей хрома (III) с растворимыми карбонатами, сульфитами и сульфидами. Сульфиды, карбонаты и сульфиты хрома (III) необратимо гидролизуются в водном растворе.

Например: бромид хрома (III) реагирует с карбонатом натрия. При этом выпадает осадок гидроксида хрома (III), выделяется углекислый газ и образуется бромид натрия:

2CrBr3  +  3Na2CO3  + 3H2O   →   2Cr(OH)3↓  +  3CO2↑ +  6NaBr

Хлорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

2CrCl3  +  3Na2S  +  6H2O  →   2Cr(OH)3  +  3H2S↑  +  6NaCl

Химические свойства

1. Гидроксид хрома (III) реагирует с растворимыми кислотами. При этом образуются средние соли.

Например, гидроксид хрома (III) взаимодействует с соляной кислотой с образованием хлорида хрома (III):

Cr(OH)3  +   3HCl  →   CrCl3  +  3H2O

2Cr(OH)3  +  3H2SO4   →  Cr2(SO4)3  +  6H2O

Cr(OH)3  +  3HBr  →   CrBr3  +  3H2O

2. Гидроксид хрома (III) взаимодействует с кислотными оксидами сильных кислот.

Например, гидроксид хрома (III) взаимодействует с оксидом серы (VI) с образованием сульфата хрома (III):

2Cr(OH)3  +  3SO3  →  Cr2(SO4)3  + 3H2O

3. Гидроксид хрома (III) взаимодействует с растворимыми основаниями (щелочами). При этом в растворе образуются комплексные соли. При этом гидроксид хрома (III) проявляет кислотные свойства.

Например, гидроксид хрома (III) взаимодействует с избытком гидроксидом натрия  с образованием гексагидроксохромата:

Cr(OH) +  3NaOH  →  Na3[Cr(OH)6]

4. Гидроксид хрома (III) разлагается при нагревании:

2Cr(OH)3  →  Cr2O3 + 3H2O

5. Под действием окислителей в щелочной среде переходит в хромат.

Например, при взаимодействии с бромом в щелочной среде гидроксид хрома (III) окисляется до хромата:

2Cr(OH)3  +  3Br2  +  10KOH   →  2K2CrO4  +   6KBr   +   8H2O

Гидроксид хрома (II)

Способы получения

1. Гидроксид хрома (II) можно получить действием раствора аммиака на соли хрома (II).

Например, хлорид хрома (II) реагирует с водным раствором аммиака с образованием гидроксида хрома (II) и хлорида аммония:

CrCl +  2NH3  +  2H2O   →   Cr(OH)2  +  2NH4Cl

2. Гидроксид хрома (II) можно получить действием щелочи на соли хрома (II).

Напримерхлорид хрома (II) реагирует с гидроксидом калия с образованием гидроксида хрома (II) и хлорида калия:

CrCl2  +  2KOH  →  Cr(OH)2↓ +  2KCl

Химические свойства

1. Гидроксид хрома (II) проявляет основные свойства. В частности, реагирует с растворимыми кислотами.

Например, гидроксид хрома (II) взаимодействует с соляной кислотой с образованием хлорида хрома (II). Соли хрома (II) окрашивают раствор в синий цвет.

Cr(OH)2  +   2HCl  →   CrCl2  +  2H2O

2. Гидроксид хрома (II) взаимодействует с кислотными оксидами сильных кислот.

Например, гидроксид хрома (II) взаимодействует с оксидом серы (VI) с образованием сульфата хрома (II):

Cr(OH)2  +  SO3   →  CrSO4  + H2O

3. Гидроксид хрома (II) – сильный восстановитель.

Например, под действием кислорода воздуха гидроксид хрома (II)  окисляется до гидроксида хрома (III):

4Cr(OН)2  +  O +  2Н2О   →   4Cr(OН)3

Соли хрома

Соли хрома (II)

Все соли хрома (II) – сильные восстановители. В растворах окисляются даже кислородом воздуха.

Напримерхлорид хрома (II) окисляется кислородом в растворе в присутствии щелочи до соединений хрома (III):

4CrCl2  +  O2  +  20KOH  +  2H2O  →   4K3[Cr(OH)6]  +  8KCl 

Концентрированные кислоты-окислители (азотная и серная) также окисляют соединения хрома (II):

CrCl2  + 4HNO3(конц) → Cr(NO3)3  + NO2↑ + 2HCl↑ + H2O   

2CrCl2 + 4H2SO4(конц) → Cr2(SO4)3 + SO2↑ + 4HCl↑ +2H2O

Соли хрома (III)

Хром с валентностью III образует два типа солей:

  • Соли, в которых хром (III) является катионом. Например, хлорид хрома (III) CrCl3.
  • Соли, в которых хром (III) входит в состав кислотного остатка – хромиты и гидроксокомплексы хрома (III)Например, хромит калия, KCrO2. или гексагидроксохромат (III) калия K3[Cr(OH)6].

1. Соли хрома (III) проявляют слабые восстановительные свойстваокисляются под действием сильных окислителей в щелочной среде.

Напримербром в присутствии гидроксида калия окисляет хлорид хрома (III):

2CrCl3  +  3Br2   +  16KOH   →  2K2CrO4  +   6KBr   +  6KCl  +  8H2O

или сульфат хрома (III):

Cr2(SO4)3  +  3Br2   +  16NaOH  →  2Na2CrO4  +  6NaBr  +  3Na2SO4   +  8H2O

Пероксид водорода в присутствии щелочи также окисляет соли хрома (III):

2CrCl3  +  3H2O2   +   10NaOH   →  2Na2CrO4  +   6NaCl    +  8H2O

Cr2(SO4)3  +  3H2O2  +  10NaOH   →  2Na2CrO4  +  3Na2SO4  +  8H2O

Даже перманганат калия в щелочной среде окисляет соли хрома (III):

Cr2(SO4)3  +  6KMnO4   +  16KOH    →  2K2CrO4   +  6K2MnO  +   3K2SO4  +  8H2O

Комплексные соли хрома (III) также окисляются сильными окислителями в присутствии щелочей.

Напримергексагидроксохроматы окисляются бромом в щелочи:

2Na3[Cr(OH)6]  +  3Br2  +  4NaOH  →  2Na2CrO4   +  6NaBr  +  8H2O

2K3[Cr(OH)6]  +  3Br2   +  4KOH   →  2K2CrO4  +  6KBr  +  8H2O

Оксид свинца (IV) также окисляет хромиты:

2KCrO2 + 3PbO+ 8KOH  →  2K2CrO4 + 3K2PbO2 + 4H2O

2. Соли хрома (III) в щелочной среде образуют гидроксид хрома (III), который сразу растворяется, образуя гидроксокомплекс.

2CrCl3  +  6KOH  →   2Cr(OH)3  +   6KCl

Cr(OH)3  +  3KOH  →   K3[Cr(OH)6]

3. Более активные металлы вытесняют  хром (III) из солей.

Например, цинк реагирует с хлоридом хрома (III):

2CrCl3  +  Zn  →  2CrCl2  +  ZnCl2

Хромиты

Соли, в которых хром (III) входит в состав кислотного остатка (хромиты) — образуются из оксида хрома (III) при сплавлении с щелочами и основными оксидами:

Cr2O3 + Na2O → 2NaCrO2

Для понимания свойств хромитов их удобно мысленно разделить на два отдельных вещества.

Напримерхромит натрия мы поделим мысленно на два вещества: оксид хрома (III) и оксид натрия.

NaСrO2 разделяем на Na2O и Cr2O3

При этом очевидно, что хромиты реагируют с кислотами. При недостатке кислоты образуется гидроксид хрома (III):

NaCrO2   +   HCl (недостаток)    +   H2O  →   Cr(OH)3   +   NaCl

В избытке кислоты гидроксид хрома (III) не образуется:

NaCrO2   +   4HCl (избыток)  →   CrCl3   +   NaCl   + 2H2O

NaCrO2  +  4HCl   →   CrCl3  +  NaCl  +  2H2O

NaCrO2  +  4HNO3    →   Cr(NO3)3  +  NaNO3  +  2H2O

2NaCrO2  +  4H2SO4    →   Cr2(SO4)3   +  Na2SO4  +  4H2O

Под действием избытка воды хромиты гидролизуются:

NaCrO2   +   2H2O  →  Cr(OH)3↓ +   NaОН

Соли хрома (VI)

Оксиду хрома (VI) соответствуют две кислоты – хромовая Н2CrO и дихромовая  Н2Cr2O7. Поэтому хром в степени окисления +6 образует два типа солей: хроматы и дихроматы.

Напримерхромат калия K2CrO4 и дихромат калия K2Cr2O7.

1. Различить эти соли довольно легко: хроматы желтые, а дихроматы оранжевые. Хроматы устойчивы в щелочной среде, а дихроматы устойчивы в кислой среде.

При добавлении к хроматам кислот они переходят в дихроматы.

Напримерхромат калия взаимодействует с серной кислотой и разбавленной соляной кислотой с образованием дихромата калия:

2K2CrO4 + H2SO4(разб.)  →   K2Cr2O7 + K2SO4 + H2O

2K2CrO4 + 2HCl(разб.)  →  K2Cr2O7 + 2KCl + H2O

И наоборот: дихроматы реагируют с щелочами с образованием хроматов.

Напримердихромат калия взаимодействует с гидроксидом калия с образованием хромата калия:

K2Cr2O7   +  2KOH  →  2K2CrO4 + H2O

Видеоопыт взаимных переходов хроматов и дихроматов при добавлении кислоты или щелочи можно посмотреть здесь.

2. Хроматы и дихроматы проявляют сильные окислительные свойства. При взаимодействии с восстановителями они восстанавливаются до соединений хрома (III).

В нейтральной среде хроматы и дихроматы восстанавливаются до гидроксида хрома (III).

Напримердихромат калия реагирует с сульфитом натрия в нейтральной среде:

K2Cr2O7  +  3Na2SO3  +  4H2O  →  2Cr(OH)3    +  3Na2SO4   +   2KOH

Хромат калия окисляет сульфид аммония:

2K2CrO   +   3(NH4)2S    +   2H2O    →   2Cr(OH)3↓  +   3S↓   +    6NH3↑   +   4KOH

При взаимодействии с восстановителями в щелочной среде хроматы и дихроматы образуют комплексные соли.

Например, хромат калия окисляет гидросульфид аммония в щелочной среде:

2K2CrO4  +  3NH4HS  +  2H2O  +  2KOH   →  3S  +  2K3[Cr(OH)6]  +  3NH3 

Хромат натрия окисляет сернистый газ:

2Na2CrO4   +  3SO2  +  2H2O  +  8NaOH  →  2Na3[Cr(OH)6]  +  3Na2SO4

Хромат натрия окисляет сульфид натрия:

2Na2CrO4   +  3Na2S   +  8H2O  →  3S  +  2Na3[Cr(OH)6]  +  4NaOH

При взаимодействии с восстановителями в кислой среде хроматы и дихроматы образуют соли хрома (III).

Напримердихромат калия окисляет сероводород в присутствии серной кислоты:

3H2S  +  K2Cr2O7   +  4H2SO4   →  K2SO4    +   Cr2(SO4)  +   3S   +  7H2O

Дихромат калия окисляет йодид калия, фосфид кальция, соединения железа (II), сернистый газ,  концентрированную соляную кислоту:

K2Cr2O7  +  7H2SO4   +  6KI  →   Cr2(SO4)3    +   3I2   +  4K2SO4  +   7H2O

8K2Cr2O7  +  3Ca3P2   +  64HCl  →  3Ca3(PO4)2  +  16CrCl3  + 16KCl   +   32H2O

K2Cr2O7  +  7H2SO4  +  6FeSO4  →  Cr2(SO4)3  +  3Fe2(SO4)3   +  K2SO4  +  7H2O

K2Cr2O7  +  4H2SO4  +  3KNO2  →  Cr2(SO4)3   +  3KNO3   +  K2SO4   +  4H2O

K2Cr2O7  +   3SO2  +  8HCl   →  2KCl  +   2CrCl3    +   3H2SO4  +   H2O

K2Cr2O7   +  14HCl  →  3Cl2  +  2CrCl3     +   7H2O   +  2KCl


Способы получения 

Железо в промышленности получают из железной руды, гематита Fe2O3  или магнетита (Fe3O4или FeO·Fe2O3).

1. Один из основных способов производства железа – доменный процесс. Доменный процесс основан на восстановлении железа из оксида углеродом в доменной печи.

В печь загружают руду, кокс и флюсы.

Шихта  смесь исходных материалов, а в некоторых случаях и топлива в определённой пропорции, которую обрабатывают в печи.

Каменноугольный кокс  это твёрдый пористый продукт серого цвета, получаемый путем коксования каменного угля при температурах 950—1100 °С без доступа воздуха. Содержит 96—98 % углерода.

Флюсы  это неорганические вещества, которые добавляют к руде при выплавке металлов, чтобы снизить температуру плавления и легче отделить металл от пустой породы.

Шлак  расплав (а после затвердевания  стекловидная масса), покрывающий поверхность жидкого металла. Шлак состоит из всплывших продуктов пустой породы с флюсами и предохраняет металл от вредного воздействия газовой среды печи, удаляет примеси.

В печи кокс окисляется до оксида углерода (II):

2C   +  O  →  2CO

Затем нагретый угарный газ восстанавливает оксид железа (III):

3CO   +  Fe2O3    →   3CO2    +   2Fe

Процесс получения железа – многоэтапный и зависит от температуры.

Наверху, где температура обычно находится в диапазоне между 200 °C и 700 °C, протекает следующая реакция:

3Fe2O3    +   CO   →    2Fe3O4      +    CO2

Ниже в печи, при температурах приблизительно 850 °C, протекает восстановление смешанного оксида железа (II, III)  до оксида железа (II):

Fe3O4   +   CO   →   3FeO   +   CO2

Встречные потоки газов разогревают шихту, и происходит разложение известняка:

CaCO3    →    CaO    +       CO2

Оксид железа (II) опускается в область с более высоких температур (до 1200oC), где протекает следующая реакция:

FeO   +   CO   →   Fe   +   CO2

Углекислый газ поднимается вверх и реагирует с коксом, образуя угарный газ:

CO2   +    C   →    2CO

2. Также железо получают прямым восстановлением из оксида водородом:

Fe2O3    +   3H2   →    2Fe      +    3H2O

При этом получается более чистое железо, т.к.  получаемое железо не загрязнено серой и фосфором, которые являются примесями в каменном угле.

3. Еще один способ получения железа в промышленности – электролиз растворов солей железа.

Качественные реакции

 

Качественные реакции на ионы железа +2.

– взаимодействие солей железа (II) с щелочами. При этом образуется серо-зеленый студенистый осадок гидроксида железа (II).

Например, хлорид железа (II) реагирует с гидроксидом натрия:

 

2NaOH  +   FeCl2    →    Fe(OH)2   + 2NaCl

Гидроксид железа (II) на воздухе буреет, так как окисляется до гидроксида железа (III):

4Fe(OH)2   +    O2   +   2H2O    →   4Fe(OH)3

– ионы железа +2 окрашивают раствор в светлый желто-зеленый цвет.

Качественные реакции на ионы железа +3

 

– взаимодействие солей железа (III) с щелочами. При этом образуется бурый осадок гидроксида железа (III).

Например, хлорид железа (III) реагирует с гидроксидом натрия:

 

3NaOH  +   FeCl3    →    Fe(OH)3   + 3NaCl

 

Химические свойства

 

1. При обычных условиях железо малоактивно, но при нагревании, в особенности в мелкораздробленном состоянии, оно становится активным и реагирует почти со всеми неметаллами.

1.1. Железо реагирует с галогенами с образованием галогенидов. При этом активные неметаллы (фтор, хлор и бром) окисляют железо до степени окисления +3:

2Fe  +  3Cl2  → 2FeCl3

Менее активный йод окисляет железо до степени окисления +2:

Fe  +  I2  →  FeI2

1.2. Железо реагирует с серой с образованием сульфида железа (II):

Fe  +  S   →  FeS

1.3. Железо реагирует с фосфором. При этом образуется бинарное соединения – фосфид железа:

Fe  +  P   →   FeP

 

1.4. С азотом железо реагирует в специфических условиях.

 

1.5. Железо реагирует с углеродом и кремнием с образованием карбида и силицида.

 

1.6. При взаимодействии с кислородом железо образует окалину – двойной оксид железа (II, III):

3Fe  +  2O2  →  Fe3O4

При пропускании кислорода через расплавленное железо возможно образование оксида железа (II):

2Fe  +  O2  →  2FeO

2. Железо взаимодействует со сложными веществами.

2.1. При обычных условиях железо с водой практически не реагирует. Раскаленное железо может вступать в реакцию при температуре 700-900оС с водяным паром:

3Fe0 + 4H2+O  →  Fe+33O4 + 4H20

В воде в присутствии кислорода или во влажном воздухе железо медленно окисляется (корродирует):

4Fe  +  3O2   +   6H2O    →   4Fe(OH)3

2.2. Железо взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой). При этом образуются соль железа со степенью окисления +2 и водород.

Например, железо бурно реагирует с соляной кислотой:

Fe + 2HCl   →   FeCl2  +  H2

2.3. При обычных условиях железо не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV)сульфат железа (III) и вода:

2Fe + 6H2SO4(конц.)   →  Fe2(SO4)3 + 3SO2 + 6H2O

2.4. Железо не реагирует при обычных условиях с концентрированной азотной кислотой также из-за пассивации. При нагревании реакция идет с образованием нитрата железа (III), оксида азота (IV) и воды:

Fe  +  6HNO3(конц.)   →   Fe(NO3)3  +  3NO2↑   +  3H2O

С разбавленной азотной кислотой железо реагирует с образованием оксида азота (II):

Fe   +  4HNO3(разб.гор.)  →   Fe(NO3)3  +  NO  +  2H2O

При взаимодействии железа с очень разбавленной азотной кислотой образуется нитрат аммония:

8Fe  +  30HNO3(оч. разб.)  →  8Fe(NO3)3   +   3NH4NO3   +  9H2O

2.5. Железо может реагировать с щелочными растворами или расплавами сильных окислителей. При этом железо окисляет до степени окисления +6, образуя соль (феррат).

Например, при взаимодействии железа с расплавом нитрата калия в присутствии гидроксида калия железо окисляется до феррата калия, а азот восстанавливается либо до нитрита калия, либо до аммиака:

Fe  +  2KOH  +  3KNO3  →   3KNO2   +  K2FeO4  +  H2O

2.6. Железо восстанавливает менее активные металлы из оксидов и солей.

Например, железо вытесняет медь из сульфата меди (II). Реакция экзотермическая:

Fe  +  CuSO4  →   FeSO4  +  Cu

Еще пример: простое вещество железо восстанавливает железо до степени окисления +2  при взаимодействии с соединениями железа +3:

2Fe(NO3)3   +  Fe  → 3Fe(NO3)2  

2FeCl3  +  Fe  → 3FeCl2

Fe2(SO4)3   +  Fe  →   3FeSO4

Оксид железа (II)

 Оксид железа (II) – это твердое, нерастворимое в воде вещество черного цвета.

Способы получения

Оксид железа (II) можно получить различными методами:

1. Частичным восстановлением оксида железа (III).

Например частичным восстановлением оксида железа (III) водородом:

 Fe2O3   +   H2   →   2FeO   +  H2O

Или частичным восстановлением оксида железа (III) угарным газом:

 Fe2O3   +   CO   →   2FeO   +  CO2

Еще один пример: восстановление оксида железа (III) железом:

 Fe2O3   +   Fe   →   3FeO

2. Разложение гидроксида железа (II) при нагревании:

Fe(OH)2   →   FeO   +  H2O

Химические свойства

Оксид железа (II) — типичный основный оксид.

1. При взаимодействии оксида железа (II) с кислотными оксидами образуются соли.

Например, оксид железа (II) взаимодействует с оксидом серы (VI):

FeO  +  SO3   →   FeSO4

2. Оксид железа (II) взаимодействует с растворимыми кислотами. При этом также образуются соответствующие соли.

Например, оксид железа (II) взаимодействует с соляной кислотой:

FeO  +  2HCl  → FeCl+  H2O

3. Оксид железа (II) не взаимодействует с водой.

4. Оксид железа (II) малоустойчив, и легко окисляется до соединений железа (III).

Например, при взаимодействии с концентрированной азотной кислотой образуются нитрат железа (III), оксид азота (IV) и вода

FeO  +  4HNO3(конц.)   →   NO2  +  Fe(NO3)3  +  2H2O

При взаимодействии с разбавленной азотной кислотой образуется оксид азота (II). Реакция идет при нагревании:

3FeO  +  10HNO3(разб.)   →   3Fe(NO3)3  +  NO  +  5H2O

5. Оксид железа (II) проявляет слабые окислительные свойства.

Например, оксид железа (II) реагирует с угарным газом при нагревании:

FeO   +   CO  →   Fe   +  CO2

Оксид железа (III)

 Оксид железа (III) – это твердое, нерастворимое в воде вещество красно-коричневого цвета.

Способы получения

Оксид железа (III) можно получить различными методами:

1. Окисление оксида железа (II) кислородом.

 4FeO   +   O2   →   2Fe2O3

2. Разложение гидроксида железа (III) при нагревании:

2Fe(OH)3   →   Fe2O3   +  3H2O

 

Химические свойства

Оксид железа (III) – амфотерный.

1. При взаимодействии оксида железа (III) с кислотными оксидами и кислотами образуются соли.

Например, оксид железа (III) взаимодействует с азотной кислотой:

Fe2O3  +  6HNO3   →  2Fe(NO3)3  +  3H2O

2. Оксид железа (III) взаимодействует с щелочами и основными оксидами. Реакция протекает в расплаве, при этом образуется соответствующая соль (феррит).

Например, оксид железа (III) взаимодействует с гидроксидом натрия:

Fe2O3  +  2NaOH   →   2NaFeO2  +  H2O

3. Оксид железа (III) не взаимодействует с водой.

4. Оксид железа (III) окисляется сильными окислителями до соединений железа (VI).

Напримерхлорат калия в щелочной среде окисляет оксид железа (III) до феррата

Fe2O3  +  KClO3  +  4KOH   →  2K2FeO4  +  KCl  +  2H2O

Нитраты и нитриты в щелочной среде также окисляют оксид железа (III):

Fe2O3  +  3KNO3  +  4KOH   →  2K2FeO4  +  3KNO2  +  2H2O

5. Оксид железа (III) проявляет окислительные свойства.

Например, оксид железа (III) реагирует с угарным газом при нагревании. При этом возможно восстановление как до чистого железа, так и до оксида железа (II) или железной окалины:

Fe2O3  +  3СO  →  2Fe  +  3CO2

Также оксид железа (III) восстанавливается водородом:

Fe2O3  +  3Н →  2Fe  +  3H2O

Железом можно восстановить оксид железа только до оксида железа (II):

Fe2O3  +  Fe   →  3FeO 

Оксид железа (III) реагирует с более активными металлами.

Например, с алюминием (алюмотермия):

Fe2O3  +  2Al  →  2Fe  +  Al2O3

Оксид железа (III) реагирует также с некоторыми другими сильными восстановителями.

Например, с гидридом натрия:

Fe2O3  +  3NaH  →  3NaOH  +  2Fe

6. Оксид железа (III) – твердый, нелетучий  и амфотерный. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например, из карбоната натрия:

Fe2O3  +  Na2CO3 → 2NaFeO2  +  CO2

 

Оксид железа (II, III)

Оксид железа (II, III) (железная окалина, магнетит) – это твердое, нерастворимое в воде вещество черного цвета.

Способы получения

Оксид железа (II, III) можно получить различными методами:

1. Горение железа на воздухе:

3Fe  +  2O2  →  Fe3O4

2. Частичное восстановление оксида железа (III) водородом или угарным газом:

3Fe2O3  +  Н →  2Fe3O4  +  H2O

3. При высокой температуре раскаленное железо реагирует с водой, образуя двойной оксид железа (II, III):

3Fe  +  4H2O(пар)  → Fe3O4  +  4H2

Химические свойства

Свойства оксида железа (II, III) определяются свойствами двух оксидов, из которых он состоит: основного оксида железа (II) и амфотерного оксида железа (III).

1. При взаимодействии оксида железа (II, III) с кислотными оксидами и кислотами образуются соли железа (II) и железа (III).

Например, оксид железа (II, III) взаимодействует с соляной кислотой. При это образуются две соли – хлорид железа (II) и хлорид железа (III):

Fe3O4  +  8HCl  →   FeCl2  +  2FeCl3  +  4H2O

Еще пример: оксид железа (II, III) взаимодействует с разбавленной серной кислотой.

Fe3O4   +  4H2SO4(разб.)  →  Fe2(SO4)3  +  FeSO4  +  4Н2О

2. Оксид железа (II, III) взаимодействует с сильными кислотами-окислителями (серной-концентрированной и азотной). 

Например, железная окалина окисляется концентрированной азотной кислотой:

Fe3O4  +  10HNO3(конц.) →  NO2↑  +  3Fe(NO3)3  +  5H2O

Разбавленной азотной кислотой окалина окисляется при нагревании:

 3Fe3O4   +  28HNO3(разб.) →  9Fe(NO3)3   +   NO   +  14H2O

Также оксид железа (II, III) окисляется концентрированной серной кислотой:

2Fe3O4   +  10H2SO4(конц.)  →  3Fe2(SO4)3  +  SO2   +   10H2O

Также окалина окисляется кислородом воздуха:

4Fe3O4  +  O2(воздух)  →  6Fe2O3

3. Оксид железа (II, III) не взаимодействует с водой.

4. Оксид железа (II, III) окисляется сильными окислителями до соединений железа (VI), как и прочие оксиды железа (см. выше).

5. Железная окалина проявляет окислительные свойства.

Например, оксид железа (II, III) реагирует с угарным газом при нагревании. При этом возможно восстановление как до чистого железа, так и до оксида железа (II):

Fe3O4  +  4CO  →  3Fe  +  4CO2

Также железная окалина восстанавливается водородом:

Fe3O4   +  4H2  →  3Fe   +   4H2O

Оксид железа (II, III) реагирует с более активными металлами.

Например, с алюминием (алюмотермия):

3Fe3O4  +  8Al  →  9Fe  +  4Al2O3

Оксид железа (II, III) реагирует также с некоторыми другими сильными восстановителями (йодидами и сульфидами).

Например, с йодоводородом:

Fe3O4  +  8HI  →  3FeI2  +  I2  +  4H2O

 

Гидроксид железа (II)

Способы получения

 

1. Гидроксид железа (II) можно получить действием раствора аммиака на соли железа (II).

Например, хлорид железа (II) реагирует с водным раствором аммиака с образованием гидроксида железа (II) и хлорида аммония:

FeCl2   +   2NH3   +   2H2O  →  Fe(OH)2   +   2NH4Cl

2. Гидроксид железа (II) можно получить действием щелочи на соли железа (II).

Напримерхлорид железа (II) реагирует с гидроксидом калия с образованием гидроксида железа (II) и хлорида калия:

FeCl2 + 2KOH  →  Fe(OH)2↓ + 2KCl

Химические свойства

1. Гидроксид железа (II) проявляется основные свойства, а именно реагирует с кислотами. При этом образуются соответствующие соли.

Например, гидроксид железа (II) взаимодействует с соляной кислотой с образованием хлорида железа (II):

Fe(OH)2  +  2HCl →  FeCl2  +  2H2O

Fe(OH)2  +  H2SO4  → FeSO4  +  2H2O

Fe(OH)2  +  2HBr →  FeBr2  +  2H2O

 

2. Гидроксид железа (II) взаимодействует с кислотными оксидами сильных кислот.

Например, гидроксид железа (II) взаимодействует с оксидом серы (VI) с образованием сульфата железа (II):

Fe(OH)2 + SO3  →   FeSO4 + 2H2O

 

3. Гидроксид железа (II) проявляет сильные восстановительные свойства, и реагирует с окислителями. При этом образуются соединения железа (III).

Например, гидроксид железа (II) взаимодействует с кислородом в присутствии воды:

4Fe(OH)2  +  O2  +  2H2O  →   4Fe(OH)3

Гидроксид железа (II) взаимодействует с пероксидом водорода:

2Fe(OH)2   +  H2O2    →  2Fe(OH)3

При растворении Fe(OH)2  в азотной или концентрированной серной кислотах образуются соли железа (III):

2Fe(OH)2  +  4H2SO4(конц.)  → Fe2(SO4)3  +  SO2  +  6H2O

 

4. Гидроксид железа (II) разлагается при нагревании:

Fe(OH)2  →  FeO  +  H2O

 

Гидроксид железа (III)

Способы получения

 1. Гидроксид железа (III) можно получить действием раствора аммиака на соли железа (III).

Например, хлорид железа (III) реагирует с водным раствором аммиака с образованием гидроксида железа (III) и хлорида аммония:

FeCl3 + 3NH3 + 3H2O = Fe(OH)3 + 3NH4Cl

 

2. Окислением гидроксида железа (II) кислородом или пероксидом водорода:

4Fe(OH)2  +  O2  +  2H2O  →   4Fe(OH)3

2Fe(OH)2   +  H2O2    →  2Fe(OH)3

 

3. Гидроксид железа (III) можно получить действием щелочи на раствор соли железа (III).

Напримерхлорид железа (III) реагирует с раствором гидроксида калия с образованием гидроксида железа (III) и хлорида калия:

FeCl3 + 3KOH    →   Fe(OH)3↓ + 3KCl

4. Также гидроксид железа (III) образуется при взаимодействии растворимых солей железа (III) с растворами карбонатов и сульфитов. Карбонаты и сульфиты железа (III) необратимо гидролизуются в водном растворе.

Например: бромид железа (III) реагирует с карбонатом натрия. При этом выпадает осадок гидроксида железа (III), выделяется углекислый газ и образуется бромид натрия:

2FeBr3  +  3Na2CO3  + 3H2O  =  2Fe(OH)3↓  +  CO2↑ +  6NaBr

Но есть исключение! Взаимодействие солей железа (III) с сульфитами в ЕГЭ по химии — окислительно-восстановительная реакция. Соединения железа (III) окисляют сульфиты, а также сульфиды и иодиды.

Взаимодействие хлорида железа (III) с сульфитом, например, калия — очень интересная реакция. Во-первых, в некоторых источниках указывается, что в ней таки может протекать необратимый гидролиз. Но для ЕГЭ лучше считать, что при этом протекает ОВР. Во-вторых, ОВР можно записать в разных видах:

2FeCl3  +  Na2SO3  + H2O =  2FeCl2  +  Na2SO4  + 2HCl

 

Также допустима такая запись:

2FeCl3  +  Na2SO3 + H2O =  FeSO4  +  2NaCl  + FeCl2 + 2HCl

 

Химические свойства

 

1. Гидроксид железа (III) проявляет слабовыраженные амфотерные свойства, с преобладанием основных. Как основание, гидроксид железа (III) реагирует с растворимыми кислотами.

Например, гидроксид железа (III) взаимодействует с азотной кислотой с образованием нитрата железа (III):

Fe(OH)3 + 3HNO3 → Fe(NO3)3 + 3H2O

Fe(OH)3  +  3HCl →  FeCl3  +  3H2O

2Fe(OH)3  +  3H2SO4  → Fe2(SO4)3  +  6H2O

Fe(OH)3  +  3HBr →  FeBr3  +  3H2O

 

2. Гидроксид железа (III) взаимодействует с кислотными оксидами сильных кислот.

Например, гидроксид железа (III) взаимодействует с оксидом серы (VI) с образованием сульфата железа (III):

2Fe(OH)3 + 3SO3 → Fe2(SO4)3 + 3H2O

 

3. Гидроксид железа (III) взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются солиферриты, а в растворе реакция практически не идет. При этом гидроксид железа (III) проявляет кислотные свойства.

Например, гидроксид железа (III) взаимодействует с гидроксидом калия в расплаве с образованием феррита калия и воды:

KOH  +  Fe(OH)3  → KFeO+ 2H2O

 

4. Гидроксид железа (III) разлагается при нагревании:

2Fe(OH)3 → Fe2O3 + 3H2O

Соли железа Нитраты железа

 Нитрат железа (II) при нагревании разлагается на оксид железа (III)оксид азота (IV)  и кислород:

4Fe(NO3)2 → 2Fe2O3  +  8NO2  +   O2

Нитрат железа (III) при нагревании разлагается также на оксид железа (III)оксид азота (IV)  и кислород:

4Fe(NO3)3 → 2Fe2O3  +  12NO2  +   3O2

 

Окислительные свойства железа (III)

Соли железа (III) под проявляют довольно сильные окислительные свойств. Так, при взаимодействии соединений железа (III) с сульфидами протекает окислительно-восстановительная реакция.

Например: хлорид железа (III) взаимодействует с сульфидом натрия. При этом образуется сера, хлорид натрия и либо черный осадок сульфида железа (II) (в избытке сульфида натрия), либо хлорид железа (II) (в избытке хлорида железа (III)):

2FeCl3  +  3Na2S  →   2FeS  +  S  +  6NaCl

2FeCl3  +  Na2S  →   2FeCl2  +  S   +  2NaCl

По такому же принципу соли железа (III) реагируют с сероводородом:

2FeCl3  +  H2S  →   2FeCl2  +  S   +  2HCl

Соли железа (III) также вступают в окислительно-восстановительные реакции с йодидами.

Например, хлорид железа (III) взаимодействует с йодидом калия. При этом образуются хлорид железа (II), молекулярный йод и хлорид калия:

2FeCl3  +  2KI    →   2FeCl2  +  I2   +  2KCl

Интерес представляют также реакции солей железа (III) с металлами. Мы знаем, что более активные металлы вытесняют из солей менее активные металлы. Иначе говоря, металлы, которые стоят в электрохимическом ряду левее, могут взаимодействовать с солями металлов, которые расположены в этом ряду правее. Исходя из этого правила, соли железа могут взаимодействовать только с металлами, которые расположены до железа. И они взаимодействуют.

Однако, соли железа со степенью окисления +3 в этом ряду являются небольшим исключением. Ведь для железа характерны две степени окисления: +2 и +3. И железо со степенью окисления +3 является более сильным окислителем. Таким образом, условно говоря, железо со степенью окисления +3 расположено в ряду активности после меди. И соли железа (III) могут реагировать еще и с металлами, которые расположены правее железа! Но до меди, включительно. Вот такой парадокс.

И еще один момент. Соединения железа (III) с этими металлами реагировать будут, а вот соединения железа (II) с ними реагировать не будут. Таким образом, металлы, расположенные в ряду активности между железом и медью (включая медь) при взаимодействии с солями железа (III) восстанавливают железо до степени окисления +2. А вот металлы, расположенные до железа в ряду активности, могут восстановить железо и до простого вещества.

Например, хлорид железа (III) взаимодействует с медью. При этом образуются хлорид железа (II) и хлорид меди (II):

2FeCl3   +  Cu  →   2FeCl2   +   CuCl2

А вот реакция нитрата железа (III) с цинком протекает уже по привычному механизму. И железо восстанавливается до простого вещества:

2Fe(NO3)3   +   3Zn  →  2Fe  +   3Zn(NO3)2


По теме: методические разработки, презентации и конспекты

Тест "Металлы побочных подгрупп" 9 класс

Тематический тест предназначен для проверки знаний обучающихся по теие "Железо и его соединения"и подготовке к ГИА в новой форме...

"Железо - представитель металлов побочных подгрупп", Методическая разработка урока, 9 класс

Урок построен как путешествие в оздоровительный комплекс "Железо", что позволяет раскрыть практическую значимость этого металла. В разработке много интересного дополнительного материала и использованы...

"Железо - представитель металлов побочных подгрупп", Методическая разработка урока, 9 класс

Урок построен как путешествие в оздоровительный комплекс "Железо", что позволяет раскрыть практическую значимость этого металла. В разработке много интересного дополнительного материала и использованы...

Элективный курс "Металлы побочных подгрупп".

Элективный курс "Металлы побочных подгрупп" предназначен для учащихся 9-го класса. Курс  является предметно-ориентированным. Содержание курса направлено,  в первую очередь, на углубление зна...

Урок по теме: «Металлы побочных подгрупп. Железо»

Цели урока:·         Показать строение  железа, его физические свойства,  разнообразие химических свойств железа на примере задания С-2; рассмотреть к...

Элективный курс «Человек и металлы побочных подгрупп»

Тема «Металлы побочных подгрупп» в курсе основной и средней школы рассматривается в недостаточном объёме. В 9 классе при изучении данной темы больший упор делается на характеристику химических элемент...

4. Металлы побочных подгрупп

Задание:1. Заполните таблицу, используя интернет ресурсыМеталлы побочных подгруппХарактеристикаМедьТитанЗолотоЖелезоФизические свойства    Химические свойства...