Математический практикум
элективный курс по математике (5 класс)
Учебный курс по математике 5 класс
Скачать:
| Вложение | Размер |
|---|---|
| 396.5 КБ |
Предварительный просмотр:
РАБОЧАЯ ПРОГРАММА
учебного курса «Математический практикум»
для обучающихся 5 классов
Заинск, 2024
ПОЯСНИТЕЛЬНАЯ ЗАПИСКААктуальность учебного курса: в ходе освоения содержания учебного курса учащиеся получают возможность развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру.
Данная программа призвана помочь учащимся развить умения и навыки в решении задач, научить грамотному подходу к решению текстовых задач. Курс содержит различные виды задач. С их помощью учащиеся получают опыт работы с величинами, постигают взаимосвязи между ними, получают опыт применения математики к решению практических задач.
Изучение данного курса актуально в связи с тем, что рассмотрение вопроса решения текстовых задач не выделено в отдельные блоки учебного материала. Решение задач встречается в разных темах, и не указываются основные общие способы их решения, как правило, не выделяются одинаковые взаимосвязи между компонентами задачи.
Арифметические способы решения текстовых задач позволяют развивать умение анализировать задачные ситуации, строить план решения с учётом взаимосвязей между известными и неизвестными величинами (с учётом типа задачи), истолковывать результат каждого действия в рамках условия задачи, проверять правильность решения с помощью обратной задачи, то есть формулировать и развивать важные общеучебные умения.
СОДЕРЖАНИЕ УЧЕБНОГО КУРСА
Натуральные числа (12 часов)
Как люди научились считать. Из науки о числах. Из истории развития арифметики. Почему нашу запись называют десятичной. Действия над натуральными числами. Приёмы рациональных вычислений. Числовое выражение. Вычисление значений числовых выражений, порядок выполнения действий. Использование при вычислениях переместительного и сочетательного свойств (законов) сложения и умножения, распределительного свойства умножения. Использование букв для обозначения неизвестного компонента и записи свойств арифметических действий. Решение уравнений. Решение задач с помощью уравнений.
Решение текстовых задач (9 часов)
Задачи на сложение и вычитание натуральных чисел. Задачи на умножение и деление натуральных чисел. Задачи на части. Задачи на нахождение двух чисел по их сумме и разности. Задачи на движение по реке. Задачи на движение.
Задачи на дроби (4 часа)
Задачи на сложение и вычитание обыкновенных чисел. Задачи на умножение и деление обыкновенных чисел. Задачи на нахождение дроби от числа, числа по его дроби.
Решение геометрических задач (7 часов)
Площади. Задачи на разрезание. Рисование фигур на клетчатой бумаге. Разрезание фигур на равные части. Геометрия в пространстве. Объемы геометрических тел.
Решение логических задач (2 часа)
Решение задач табличным методом. Решение логических задач ВПР.
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ
В процессе изучения учебного курса «Практическая математика» учащиеся получат возможность развить умения работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, приводить логические обоснования.
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
Личностные результаты освоения программы учебного курса «Математика» характеризуются:
1) патриотическое воспитание:
проявлением интереса к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках и прикладных сферах;
2) гражданское и духовно-нравственное воспитание:
готовностью к выполнению обязанностей гражданина и реализации его прав, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества (например, выборы, опросы), готовностью к обсуждению этических проблем, связанных с практическим применением достижений науки, осознанием важности морально-этических принципов в деятельности учёного;
3) трудовое воспитание:
установкой на активное участие в решении практических задач математической направленности, осознанием важности математического образования на протяжении всей жизни для успешной профессиональной деятельности и развитием необходимых умений, осознанным выбором и построением индивидуальной траектории образования и жизненных планов с учётом личных интересов и общественных потребностей;
4) эстетическое воспитание:
способностью к эмоциональному и эстетическому восприятию математических объектов, задач, решений, рассуждений, умению видеть математические закономерности в искусстве;
5) ценности научного познания:
ориентацией в деятельности на современную систему научных представлений об основных закономерностях развития человека, природы и общества, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации, овладением языком математики и математической культурой как средством познания мира, овладением простейшими навыками исследовательской деятельности;
6) физическое воспитание, формирование культуры здоровья и эмоционального благополучия:
готовностью применять математические знания в интересах своего здоровья, ведения здорового образа жизни (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность), сформированностью навыка рефлексии, признанием своего права на ошибку и такого же права другого человека;
7) экологическое воспитание:
ориентацией на применение математических знаний для решения задач в области сохранности окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды, осознанием глобального характера экологических проблем и путей их решения;
8) адаптация к изменяющимся условиям социальной и природной среды:
готовностью к действиям в условиях неопределённости, повышению уровня своей компетентности через практическую деятельность, в том числе умение учиться у других людей, приобретать в совместной деятельности новые знания, навыки и компетенции из опыта других;
необходимостью в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы об объектах и явлениях, в том числе ранее неизвестных, осознавать дефициты собственных знаний и компетентностей, планировать своё развитие;
способностью осознавать стрессовую ситуацию, воспринимать стрессовую ситуацию как вызов, требующий контрмер, корректировать принимаемые решения и действия, формулировать и оценивать риски и последствия, формировать опыт.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Познавательные универсальные учебные действия
Базовые логические действия:
- выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями, формулировать определения понятий, устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;
- воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие, условные;
- выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях, предлагать критерии для выявления закономерностей и противоречий;
- делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;
- разбирать доказательства математических утверждений (прямые и от противного), проводить самостоятельно несложные доказательства математических фактов, выстраивать аргументацию, приводить примеры и контрпримеры, обосновывать собственные рассуждения;
- выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).
Базовые исследовательские действия:
- использовать вопросы как исследовательский инструмент познания, формулировать вопросы, фиксирующие противоречие, проблему, самостоятельно устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;
- проводить по самостоятельно составленному плану несложный эксперимент, небольшое исследование по установлению особенностей математического объекта, зависимостей объектов между собой;
- самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;
- прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.
Работа с информацией:
- выявлять недостаточность и избыточность информации, данных, необходимых для решения задачи;
- выбирать, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
- выбирать форму представления информации и иллюстрировать решаемые задачи схемами, диаграммами, иной графикой и их комбинациями;
- оценивать надёжность информации по критериям, предложенным учителем или сформулированным самостоятельно.
Коммуникативные универсальные учебные действия:
- воспринимать и формулировать суждения в соответствии с условиями и целями общения, ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;
- в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения, сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций, в корректной форме формулировать разногласия, свои возражения;
- представлять результаты решения задачи, эксперимента, исследования, проекта, самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории;
- понимать и использовать преимущества командной и индивидуальной работы при решении учебных математических задач;
- принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы, обобщать мнения нескольких людей;
- участвовать в групповых формах работы (обсуждения, обмен мнениями, мозговые штурмы и другие), выполнять свою часть работы и координировать свои действия с другими членами команды, оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.
Регулятивные универсальные учебные действия
Самоорганизация:
- самостоятельно составлять план, алгоритм решения задачи (или его часть), выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.
Самоконтроль, эмоциональный интеллект:
- владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;
- предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, найденных ошибок, выявленных трудностей;
- оценивать соответствие результата деятельности поставленной цели и условиям, объяснять причины достижения или недостижения цели, находить ошибку, давать оценку приобретённому опыту.
ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
К концу обучения в 5 классе обучающийся получит следующие предметные результаты:
Числа и вычисления
Понимать и правильно употреблять термины, связанные с натуральными числами, обыкновенными и десятичными дробями.
Сравнивать и упорядочивать натуральные числа, сравнивать в простейших случаях обыкновенные дроби, десятичные дроби.
Соотносить точку на координатной (числовой) прямой с соответствующим ей числом и изображать натуральные числа точками на координатной (числовой) прямой.
Выполнять арифметические действия с натуральными числами, с обыкновенными дробями в простейших случаях.
Выполнять проверку, прикидку результата вычислений.
Округлять натуральные числа.
Решение текстовых задач
Решать текстовые задачи арифметическим способом и с помощью организованного конечного перебора всех возможных вариантов.
Решать задачи, содержащие зависимости, связывающие величины: скорость, время, расстояние, цена, количество, стоимость.
Использовать краткие записи, схемы, таблицы, обозначения при решении задач.
Пользоваться основными единицами измерения: цены, массы, расстояния, времени, скорости, выражать одни единицы величины через другие.
Извлекать, анализировать, оценивать информацию, представленную в таблице, на столбчатой диаграмме, интерпретировать представленные данные, использовать данные при решении задач.
Наглядная геометрия
Пользоваться геометрическими понятиями: точка, прямая, отрезок, луч, угол, многоугольник, окружность, круг.
Приводить примеры объектов окружающего мира, имеющих форму изученных геометрических фигур.
Использовать терминологию, связанную с углами: вершина, сторона, с многоугольниками: угол, вершина, сторона, диагональ, с окружностью: радиус, диаметр, центр.
Изображать изученные геометрические фигуры на нелинованной и клетчатой бумаге с помощью циркуля и линейки.
Находить длины отрезков непосредственным измерением с помощью линейки, строить отрезки заданной длины; строить окружность заданного радиуса.
Использовать свойства сторон и углов прямоугольника, квадрата для их построения, вычисления площади и периметра.
Вычислять периметр и площадь квадрата, прямоугольника, фигур, составленных из прямоугольников, в том числе фигур, изображённых на клетчатой бумаге.
Пользоваться основными метрическими единицами измерения длины, площади; выражать одни единицы величины через другие.
Распознавать параллелепипед, куб, использовать терминологию: вершина, ребро, грань, измерения, находить измерения параллелепипеда, куба.
Вычислять объём куба, параллелепипеда по заданным измерениям, пользоваться единицами измерения объёма.
Решать несложные задачи на измерение геометрических величин в практических ситуациях.
№ п/п | Тема урока | количество часов |
Как люди научились считать. Из науки о числах. Из истории развития арифметики. Почему нашу запись называют десятичной | 1 | |
Действия над натуральными числами | 1 | |
Как свойства действий помогают вычислять. Приёмы рациональных вычислений | 1 | |
Алгоритм решения задач на составление числовых и буквенных выражений | 1 | |
Решение уравнений | 1 | |
Решение уравнений повышенной сложности | 1 | |
Нахождение значения буквенных выражений | 1 | |
Упрощение буквенных выражений | 1 | |
Математическая модель. Решение задач с помощью уравнений | 1 | |
Решение задач с помощью уравнений. Составление математической модели | 1 | |
Решение задач с помощью уравнений. | 1 | |
Решение задач с помощью уравнений. | 1 | |
Решение задач на части | 1 | |
Решение задач на части с помощью уравнений | 1 | |
Зависимость трех компонентов движения | 1 | |
Зависимость трех компонентов движения | 1 | |
Задачи на движение на суше | 1 | |
Задачи на движение на суше. (В одном направлении. Встречное направление.) | 1 | |
Задачи на движение на суше. Противоположное направление | 1 | |
Задачи на движение по воде | 1 | |
Решение задач на комбинированное движение по воде | 1 | |
Задачи на нахождение дроби от числа, числа по его дроби | 1 | |
Задачи на нахождение дроби от числа, числа по его дроби | 1 | |
Задачи на сложение и вычитание обыкновенных дробей | 1 | |
Задачи на сложение и вычитание обыкновенных дробей | 1 | |
Фигуры на плоскости. Рисование фигур | 1 | |
Площадь геометрической фигуры. Палетка | 1 | |
Нахождение площадей фигур делением на части. | 1 | |
Развертка куба, прямоугольного параллелепипеда. Задачи с разверткой. | 1 | |
Задачи на разрезание. | 1 | |
Симметрия, ее виды. Центральная, осевая симметрия | 1 | |
Зеркальное отражение | 1 | |
Дерево возможных вариантов | 1 | |
Решение задач табличным методом | 1 |
По теме: методические разработки, презентации и конспекты
Математический практикум 7 класс
Может кому-нибудь этот материал пригодится....
Программа математического практикума .5 класс.
Из школьного компонента выделены часы на математический практикум....

Рабочая программа по курсу «Математический практикум» 2- я ступень образования ( 9 класс ).
С 2005-2006 учебного года государственная итоговая аттестация по математике за курс основной школы проводится в новой форме, которая, несмотря на очевидную связь с ЕГЭ, обладает некоторыми особе...

Рабочая программа курса " Математический практикум.11 класс"
Содержание курса в программе разбито на семь основных блоков: «Вычисления и преобразования» (4 часа); «Уравнения, неравенства, системы» (5 часов); «Таблицы и графики» (4 часа); «Производная. Первообра...

Рабочая программа «факультативного курса» «Математический практикум» 9 класс
Оптимальной формой подготовки к экзаменам являются факультативные курсы, которые позволяют повторить, расширить и углубить изучаемый материал по школьному курсу, развивают мышление и исследовательские...

