Презентация Фотосинтез 10 класс
презентация к уроку по биологии (10 класс)

Мокшанова Елена Валериевна

Презентация по теме "Фотосинтез" с полным разбором процесса и со схемами

Скачать:

ВложениеРазмер
Файл fotosintez_prezentatsiya1.pptx902.05 КБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Тема урока : Фотосинтез Учитель биологии Мокшанова Е. В. ГБОУ СОШНО №388 г. Москва

Слайд 2

Фотосинтез

Слайд 3

Фотосинтез у растений Фотосинтез — процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов.

Слайд 4

Лист как орган фотосинтеза Углекислый газ, который усваивается в процессе фотосинтеза, поступает в лист через устьица. К верхней стороне листа прилегает палисадная ткань, клетки которой богаты хлоропластом. Чтобы процесс фотосинтеза проходил непрерывно, клетки должны быть достаточно насыщенны водой, устьица регулируют этот процесс.

Слайд 5

Строение листовой пластинки

Слайд 6

1 — клетки верхнего эпидермиса; 2 — клетки нижнего эпидермиса; 3 — клетки столбчатой паренхимы; 4 — клетки губчатой паренхимы; 5 — замыкающие клетки устьиц, щель между каждой их парой — просвет устьица; 6 — кутикула, покрывающая слой как верхнего, так и нижнего эпидермиса; 7 — межклеточные пространства.

Слайд 8

У всех зеленых растений пигментный состав листа более-менее одинаков. У них имеется два хлорофилла: сине-зеленый хлорофилл а и желтовато-зеленый хлорофилл b . Желтую, красную и оранжевую окраску имеют каротиноиды . В состав каротинов не входят атомы кислорода, и они «уходят» далеко от старта, остальные каротиноиды (с кислородом в составе молекулы) относят к ксантофиллам. В настоящее время каротиноиды и хлорофиллы изучены очень хорошо. Замечательные успехи, достигнутые биохимией в области выделения, очистки, установления структуры и изучения биохимических реакций каротиноидов и хлорофиллов, были сделаны благодаря гениальному по простоте и изяществу методу хроматографического адсорбционного анализа, разработанному в 1903 г. М.С. Цветом.

Слайд 9

Основные классы фотосинтетических пигментов Хлорофиллы Каротиноиды Фикобилины

Слайд 10

Хроматография пигментов листа

Слайд 11

Хлорофиллы Хлорофи́лл (от греч. chloros - зеленый и phyllon -лист) — зелёный пигмент, обусловливающий окраску растений в зелёный цвет. При его участии осуществляется процесс фотосинтеза. По химическому строению хлорофиллы — магниевые комплексы различных тетрапирролов. Хлорофиллы имеют порфириновое строение и структурно близки гему.

Слайд 12

Каротиноиды Каротиноиды - природные органические пигменты фотосинтезируемые бактериями, грибами, водорослями и высшими растениями. Идентифицировано около 600 каротиноидов. Они имеют преимущественно жёлтый, оранжевый или красный цвет, по строению это циклические или ациклические изопреноиды. Каротины включают две основных группы структурно близких веществ: каротины ксантофиллы и другие растворимые в жирах пигменты.

Слайд 13

Каротины Каротин (от лат. carota — морковь) — желто-оранжевый пигмент, непредельный углеводород из группы каротиноидов. Эмпирическая формула С40H56. Нерастворим в воде, но растворяется в органических растворителях. α-каротин Содержится в листьях всех растений, а также в корне моркови, плодах шиповника и др. Является провитамином витамина А. Зарегистрирован в качестве пищевой добавки Е160a. Различают две формы каротина α-каротин и β-каротин. β-каротин встречается в желтых, оранжевых и зеленых листьях фруктов и овощей. Например в шпинате, салате, томатах, батате и других.

Слайд 14

Ксантофилл Ксантофи́лл — растительный пигмент, кристаллизуется в призматических кристаллах жёлтого цвета, входит в состав хлорофилла; легко уединяется при встряхивании спиртового раствора хлорофилла с бензином, оставаясь в нижнем, спиртовом слое, между тем как зелёный пигмент и жёлтый — каротин — переходят в бензин. В спектре поглощения ксантофилла характерны три полосы поглощения в сине-фиолетовой части.

Слайд 15

Флавоноидные пигменты Флавоноиды — наиболее многочисленная группа как водорастворимых , так и липофильных природных фенольных соединений. Представляют собой гетероциклические кислородсодержащие соединения преимущественно желтого, оранжевого, красного цвета. Они принадлежат к соединениям С6-С3-С6 ряда — в их молекулах имеются два бензольных ядра, соединенных друг с другом трехуглеродным фрагментом. Большинство флавоноидов можно рассматривать как производные хромана или флавона. Флавоноиды играют важную роль в растительном метаболизме и очень широко распространены в высших растениях. Они принимают участие в фотосинтезе, образовании лигнина и суберина .

Слайд 16

Световые и темновые реакции фотосинтеза Фотосинтез протекает в две фазы: световую, идущую только на свету, и темновую, которая идет как в темноте, так и на свету.

Слайд 18

Световые реакции 1. Введение энергии в биологические системы через воспринимающие пигментные системы 2. Преобразование энергии света в «биологическую энергию»

Слайд 19

Световая фаза фотосинтеза

Слайд 20

Световая фаза фотосинтеза Световая фаза фотосинтеза осуществляется в хлоропластах, где на мембранах расположены молекулы хлорофилла. Хлорофилл поглощает энергию солнечного света. Эта энергия используется на синтез молекул АТФ из АДФ и фосфорной кислоты и способствуют расщеплению молекул воды: 2H20=4H + +4+O2. Образующийся при этом кислород выделяется в окружающую среду. В результате фотолиза образуются: Электроны, заполняющие "дырки" в молекулах хлорофилла. Протоны H+, которые соединяются с веществом НАДФ+ - переносчиком ионов водорода и электронов и восстанавливают его до НАДФ•Н. Молекулярный кислород, который выделяется в окружающую среду. Таким образом, в результате световой фазы фотосинтеза восстанавливается НАДФ+ и образуется НАДФ•Н, синтезируется АТФ из АДФ и фосфорной кислоты, выделяется молекулярный кислород. АТФ и НАДФ•H используются в реакциях темновой фазы фотосинтеза.

Слайд 21

Темновая фаза фотосинтеза В темновую фазу фотосинтеза энергия, накопленная клетками в молекулах АТФ, используется на синтез глюкозы и других органических веществ. Глюкоза образуется при восстановлении углекислого газа - СО2; с участием протонов воды и НАДФ•Н. В молекуле углекислого газа содержится один атом углерода, а в молекуле глюкозы их шесть (C6H12O6). Углекислота, проникающая в лист из воздуха, вначале присоединяется к органическому веществу, состоящему из пяти углеродных атомов. При этом образуется очень непрочное шестиуглеродное соединение, которое быстро расщепляется на две трехуглеродные молекулы. В результате ряда реакций из двух трехуглеродных молекул образуется одна шестиуглеродная молекула глюкозы. Этот процесс включает ряд последовательных ферментативных реакций с использованием энергии, заключенной в АТФ. Молекулы НАДФ•Н; поставляют ионы водорода, необходимые для восстановления углекислого газа. Таким образом, в темновой фазе фотосинтеза в результате ряда ферментативных реакций происходит восстановление углекислого газа водородом воды до глюкозы.

Слайд 22

Световые и темновые реакции Световые реакции : Зависят от света Не зависят от температуры Быстрые < 10 (-5) сек Протекают на мембранах Темновые реакции : Не зависят от света Зависят от температуры Медленные ~ 10 (- 2 ) сек Протекают в строме Хл

Слайд 23

Из схемы видно, что энергия света обеспечивает: 1) синтез АТФ; 2) восстановление НАДФ в НАДФН; 3) фотолиз воды, который поставляет электроны для фотосистем I и II; 4) фотолиз воды ведет также к образованию кислорода, который не используется в фотосинтезе (но в отсутствие света служит для окисления органических веществ - углеводов, жиров). В этом основной результат световой фазы фотосинтеза. В темновой фазе фотосинтеза за счет энергии АТФ и восстанавливающей силы НАДФ-Н из углекислого газа (CO2) атмосферы синтезируется глюкоза. Эти процессы также идут при освещении растений, но могут происходить и в темноте, если в клетки вводят АТФ и НАДФН. По этой причине описанный этап фотосинтеза назван темновой фазой. Вверху (слева направо): клетки листа (выделено кружочком), хлоропласт с гранами, хлорофилл в гранах.

Слайд 24

Восстановление углерода происходит в строме хлоропласта в цикле реакций, известных как цикл Кальвина. Цикл Кальвина - не единственный путь фиксации углерода в темновых реакциях. У некоторых растений первый продукт фиксации СО2 - не трехуглеродная молекула 3-глицерофосфата, а четырехуглеродное соединение - оксалоацетат . Отсюда этот путь фотосинтеза получил название С4-пути (С4-растения). Оксалоацетат затем быстро превращается либо в малат , либо в аспартат , которые переносят СО2 к РБФ цикла Кальвина . Существует особая анатомическая структура в мезофиле листа ( кранц-структура ), сопряженная с С4-путем фотосинтеза. У С4-растений цикл Кальвина осуществляется по преимуществу в клетках обкладок проводящих пучков, а С4-путь - в клетках мезофилла . Иначе говоря, С4-растения используют оба пути фотосинтеза, но они в пределах одного растения пространственно разделены. С4-растения более экономно утилизируют СО2, чем С3-растения, отчасти благодаря тому, что фосфоенолпируваткарбоксилаза не ингибируется О2 и, таким образом, С4-растения обладают способностью поглощать СО2 с минимальной потерей воды. Кроме того, у С4-растений практически отсутствует фотодыхание - процесс выделения СО2 и поглощения О2 на свету.

Слайд 25

Суммарное уравнение синтеза глюкозы в ходе цикла Кальвина можно записать следующим образом: 6СО 2 +12NADН 2 +18АТФ-+С 6 Н 12 О 6 +12NAD+18АДФ+18Ф+6Н 2 О .

Слайд 26

С4- путь фотосинтеза У некоторых растений первый продукт фиксации СО2 - не трехуглеродная молекула 3-глицерофосфата, а четырехуглеродное соединение - оксалоацетат. Отсюда этот путь фотосинтеза получил название С4-пути. Оксалоацетат затем быстро превращается либо в малат, либо в аспартат, которые переносят СО2 к РБФ цикла Кальвина . Существует особая анатомическая структура в мезофиле листа ( кранц-структура ), сопряженная с С4-путем фотосинтеза. У С4-растений цикл Кальвина осуществляется по преимуществу в клетках обкладок проводящих пучков, а С4-путь - в клетках мезофилла . Иначе говоря, С4-растения используют оба пути фотосинтеза, но они в пределах одного растения пространственно разделены. С4-растения более экономно утилизируют СО2, чем С3-растения, отчасти благодаря тому, что фосфоенолпируваткарбоксилаза не ингибируется О2 и, таким образом, С4-растения обладают способностью поглощать СО2 с минимальной потерей воды. Кроме того, у С4-растений практически отсутствует фотодыхание - процесс выделения СО2 и поглощения О2 на свету. С4-растения известны среди 19 семейств цветковых. Однако практически все С4-растения адаптированы к высокой инсоляции, повышенным температурам и засухе. Оптимальная температура для роста и развития таких растений выше, чем у С3-растений; С4-растения процветают даже при температурах, которые губительны для многих С3-видов.

Слайд 27

фотосинтетически активная радиация ФОТОСИНТЕТИЧЕСКИ АКТИВНАЯ РАДИАЦИЯ (ФАР) , часть солнечной энергии, к-рая может использоваться растениями для фотосинтеза. Соответствует полосе видимого света и составляет ок. 50% от суммарной энергии солнечного излучения.

Слайд 28

Спектры поглощения ФАР : 380 – 710 нм Каротиноиды: 400-550 нм главный максимум: 480 нм Хлорофиллы: в красной области спектра 640-700 нм в синей - 400-450 нм

Слайд 29

Глобальное значение фотосинтеза 3 млрд. лет назад – первые водоросли фотосинтетики Насыщение атмосферы кислородом Гибель большинства анаэробов Появление аэробных организмов Появление многоклеточности Появление озонового слоя Выход организмов на сушу

Слайд 30

Значение фотосинтеза теперь Образуется первичное органическое вещество(более 450 млрд.т в год) Поддерживается состав атмосферы(более 200млрд.т кислорода в год) Канал, через который в экосистему планеты Земля приходит энергия Солнца, необходимая для жизни Озоновый экран Препятствует накоплению углекислого газа

Слайд 31

Зелёные насажде́ния Зелёные насажде́ния — совокупность древесных, кустарниковых и травянистых растений на определённой территории. В городах они выполняют ряд функций, способствующих созданию оптимальных условий для труда и отдыха жителей города, основные из которых — оздоровление воздушного бассейна города и улучшение его микроклимата. Этому способствуют следующие свойства зелёных насаждений: поглощение углекислого газа и выделение кислорода в ходе фотосинтеза; понижение температуры воздуха за счёт испарения влаги; снижение уровня шума; снижение уровня загрязнения воздуха пылью и газами; защита от ветров; выделение растениями фитонцидов — летучих веществ, убивающих болезнетворные микробы; положительное влияние на нервную систему человека.

Слайд 32

Зелёные насаждения делятся на три основные категории: общего пользования (сады, парки, скверы, бульвары); ограниченного пользования (внутри жилых кварталов, на территории школ, больниц, других учреждений); специального назначения (питомники, санитарно-защитные насаждения, кладбища и т. д.). Норма зелёных насаждений общего пользования для крупных городов — 21 м² на одного человека.


По теме: методические разработки, презентации и конспекты

презентация Фотосинтез

урок биологии в 6 классе...

презентация фотосинтез 9 класс

Понятие-фотосинтез. Стадии фотосинтеза...

презентация "Фотосинтез"

используется приизучении темы по фотосинтезу...

презентация фотосинтез и хемосинтез

Презентация по биологии для учащихся 9 класса . Линия В. Пасечника. В данной презентации рассматриваются особенности процессов фотосинтеза и хемосиентеза, их роль....

Фотосинтез и дыхание. Презентация 6 класс

Фотосинтез и дыхание. Презентация 6 класс...

Презентация "Фотосинтез"

•Слайд – презентация предназначена для использования на уроках общей биологии в 9-10 классах общеобразовательной школы.•Данный ЦОР может использоваться как:•1. Презентация (вступительная часть)  ...