Презентация Фотосинтез 10 класс
презентация к уроку по биологии (10 класс)
Презентация по теме "Фотосинтез" с полным разбором процесса и со схемами
Скачать:
| Вложение | Размер |
|---|---|
| 902.05 КБ |
Предварительный просмотр:
Подписи к слайдам:
Фотосинтез
Фотосинтез у растений Фотосинтез — процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов.
Лист как орган фотосинтеза Углекислый газ, который усваивается в процессе фотосинтеза, поступает в лист через устьица. К верхней стороне листа прилегает палисадная ткань, клетки которой богаты хлоропластом. Чтобы процесс фотосинтеза проходил непрерывно, клетки должны быть достаточно насыщенны водой, устьица регулируют этот процесс.
Строение листовой пластинки
1 — клетки верхнего эпидермиса; 2 — клетки нижнего эпидермиса; 3 — клетки столбчатой паренхимы; 4 — клетки губчатой паренхимы; 5 — замыкающие клетки устьиц, щель между каждой их парой — просвет устьица; 6 — кутикула, покрывающая слой как верхнего, так и нижнего эпидермиса; 7 — межклеточные пространства.
У всех зеленых растений пигментный состав листа более-менее одинаков. У них имеется два хлорофилла: сине-зеленый хлорофилл а и желтовато-зеленый хлорофилл b . Желтую, красную и оранжевую окраску имеют каротиноиды . В состав каротинов не входят атомы кислорода, и они «уходят» далеко от старта, остальные каротиноиды (с кислородом в составе молекулы) относят к ксантофиллам. В настоящее время каротиноиды и хлорофиллы изучены очень хорошо. Замечательные успехи, достигнутые биохимией в области выделения, очистки, установления структуры и изучения биохимических реакций каротиноидов и хлорофиллов, были сделаны благодаря гениальному по простоте и изяществу методу хроматографического адсорбционного анализа, разработанному в 1903 г. М.С. Цветом.
Основные классы фотосинтетических пигментов Хлорофиллы Каротиноиды Фикобилины
Хроматография пигментов листа
Хлорофиллы Хлорофи́лл (от греч. chloros - зеленый и phyllon -лист) — зелёный пигмент, обусловливающий окраску растений в зелёный цвет. При его участии осуществляется процесс фотосинтеза. По химическому строению хлорофиллы — магниевые комплексы различных тетрапирролов. Хлорофиллы имеют порфириновое строение и структурно близки гему.
Каротиноиды Каротиноиды - природные органические пигменты фотосинтезируемые бактериями, грибами, водорослями и высшими растениями. Идентифицировано около 600 каротиноидов. Они имеют преимущественно жёлтый, оранжевый или красный цвет, по строению это циклические или ациклические изопреноиды. Каротины включают две основных группы структурно близких веществ: каротины ксантофиллы и другие растворимые в жирах пигменты.
Каротины Каротин (от лат. carota — морковь) — желто-оранжевый пигмент, непредельный углеводород из группы каротиноидов. Эмпирическая формула С40H56. Нерастворим в воде, но растворяется в органических растворителях. α-каротин Содержится в листьях всех растений, а также в корне моркови, плодах шиповника и др. Является провитамином витамина А. Зарегистрирован в качестве пищевой добавки Е160a. Различают две формы каротина α-каротин и β-каротин. β-каротин встречается в желтых, оранжевых и зеленых листьях фруктов и овощей. Например в шпинате, салате, томатах, батате и других.
Ксантофилл Ксантофи́лл — растительный пигмент, кристаллизуется в призматических кристаллах жёлтого цвета, входит в состав хлорофилла; легко уединяется при встряхивании спиртового раствора хлорофилла с бензином, оставаясь в нижнем, спиртовом слое, между тем как зелёный пигмент и жёлтый — каротин — переходят в бензин. В спектре поглощения ксантофилла характерны три полосы поглощения в сине-фиолетовой части.
Флавоноидные пигменты Флавоноиды — наиболее многочисленная группа как водорастворимых , так и липофильных природных фенольных соединений. Представляют собой гетероциклические кислородсодержащие соединения преимущественно желтого, оранжевого, красного цвета. Они принадлежат к соединениям С6-С3-С6 ряда — в их молекулах имеются два бензольных ядра, соединенных друг с другом трехуглеродным фрагментом. Большинство флавоноидов можно рассматривать как производные хромана или флавона. Флавоноиды играют важную роль в растительном метаболизме и очень широко распространены в высших растениях. Они принимают участие в фотосинтезе, образовании лигнина и суберина .
Световые и темновые реакции фотосинтеза Фотосинтез протекает в две фазы: световую, идущую только на свету, и темновую, которая идет как в темноте, так и на свету.
Световые реакции 1. Введение энергии в биологические системы через воспринимающие пигментные системы 2. Преобразование энергии света в «биологическую энергию»
Световая фаза фотосинтеза
Световая фаза фотосинтеза Световая фаза фотосинтеза осуществляется в хлоропластах, где на мембранах расположены молекулы хлорофилла. Хлорофилл поглощает энергию солнечного света. Эта энергия используется на синтез молекул АТФ из АДФ и фосфорной кислоты и способствуют расщеплению молекул воды: 2H20=4H + +4+O2. Образующийся при этом кислород выделяется в окружающую среду. В результате фотолиза образуются: Электроны, заполняющие "дырки" в молекулах хлорофилла. Протоны H+, которые соединяются с веществом НАДФ+ - переносчиком ионов водорода и электронов и восстанавливают его до НАДФ•Н. Молекулярный кислород, который выделяется в окружающую среду. Таким образом, в результате световой фазы фотосинтеза восстанавливается НАДФ+ и образуется НАДФ•Н, синтезируется АТФ из АДФ и фосфорной кислоты, выделяется молекулярный кислород. АТФ и НАДФ•H используются в реакциях темновой фазы фотосинтеза.
Темновая фаза фотосинтеза В темновую фазу фотосинтеза энергия, накопленная клетками в молекулах АТФ, используется на синтез глюкозы и других органических веществ. Глюкоза образуется при восстановлении углекислого газа - СО2; с участием протонов воды и НАДФ•Н. В молекуле углекислого газа содержится один атом углерода, а в молекуле глюкозы их шесть (C6H12O6). Углекислота, проникающая в лист из воздуха, вначале присоединяется к органическому веществу, состоящему из пяти углеродных атомов. При этом образуется очень непрочное шестиуглеродное соединение, которое быстро расщепляется на две трехуглеродные молекулы. В результате ряда реакций из двух трехуглеродных молекул образуется одна шестиуглеродная молекула глюкозы. Этот процесс включает ряд последовательных ферментативных реакций с использованием энергии, заключенной в АТФ. Молекулы НАДФ•Н; поставляют ионы водорода, необходимые для восстановления углекислого газа. Таким образом, в темновой фазе фотосинтеза в результате ряда ферментативных реакций происходит восстановление углекислого газа водородом воды до глюкозы.
Световые и темновые реакции Световые реакции : Зависят от света Не зависят от температуры Быстрые < 10 (-5) сек Протекают на мембранах Темновые реакции : Не зависят от света Зависят от температуры Медленные ~ 10 (- 2 ) сек Протекают в строме Хл
Из схемы видно, что энергия света обеспечивает: 1) синтез АТФ; 2) восстановление НАДФ в НАДФН; 3) фотолиз воды, который поставляет электроны для фотосистем I и II; 4) фотолиз воды ведет также к образованию кислорода, который не используется в фотосинтезе (но в отсутствие света служит для окисления органических веществ - углеводов, жиров). В этом основной результат световой фазы фотосинтеза. В темновой фазе фотосинтеза за счет энергии АТФ и восстанавливающей силы НАДФ-Н из углекислого газа (CO2) атмосферы синтезируется глюкоза. Эти процессы также идут при освещении растений, но могут происходить и в темноте, если в клетки вводят АТФ и НАДФН. По этой причине описанный этап фотосинтеза назван темновой фазой. Вверху (слева направо): клетки листа (выделено кружочком), хлоропласт с гранами, хлорофилл в гранах.
Восстановление углерода происходит в строме хлоропласта в цикле реакций, известных как цикл Кальвина. Цикл Кальвина - не единственный путь фиксации углерода в темновых реакциях. У некоторых растений первый продукт фиксации СО2 - не трехуглеродная молекула 3-глицерофосфата, а четырехуглеродное соединение - оксалоацетат . Отсюда этот путь фотосинтеза получил название С4-пути (С4-растения). Оксалоацетат затем быстро превращается либо в малат , либо в аспартат , которые переносят СО2 к РБФ цикла Кальвина . Существует особая анатомическая структура в мезофиле листа ( кранц-структура ), сопряженная с С4-путем фотосинтеза. У С4-растений цикл Кальвина осуществляется по преимуществу в клетках обкладок проводящих пучков, а С4-путь - в клетках мезофилла . Иначе говоря, С4-растения используют оба пути фотосинтеза, но они в пределах одного растения пространственно разделены. С4-растения более экономно утилизируют СО2, чем С3-растения, отчасти благодаря тому, что фосфоенолпируваткарбоксилаза не ингибируется О2 и, таким образом, С4-растения обладают способностью поглощать СО2 с минимальной потерей воды. Кроме того, у С4-растений практически отсутствует фотодыхание - процесс выделения СО2 и поглощения О2 на свету.
Суммарное уравнение синтеза глюкозы в ходе цикла Кальвина можно записать следующим образом: 6СО 2 +12NADН 2 +18АТФ-+С 6 Н 12 О 6 +12NAD+18АДФ+18Ф+6Н 2 О .
С4- путь фотосинтеза У некоторых растений первый продукт фиксации СО2 - не трехуглеродная молекула 3-глицерофосфата, а четырехуглеродное соединение - оксалоацетат. Отсюда этот путь фотосинтеза получил название С4-пути. Оксалоацетат затем быстро превращается либо в малат, либо в аспартат, которые переносят СО2 к РБФ цикла Кальвина . Существует особая анатомическая структура в мезофиле листа ( кранц-структура ), сопряженная с С4-путем фотосинтеза. У С4-растений цикл Кальвина осуществляется по преимуществу в клетках обкладок проводящих пучков, а С4-путь - в клетках мезофилла . Иначе говоря, С4-растения используют оба пути фотосинтеза, но они в пределах одного растения пространственно разделены. С4-растения более экономно утилизируют СО2, чем С3-растения, отчасти благодаря тому, что фосфоенолпируваткарбоксилаза не ингибируется О2 и, таким образом, С4-растения обладают способностью поглощать СО2 с минимальной потерей воды. Кроме того, у С4-растений практически отсутствует фотодыхание - процесс выделения СО2 и поглощения О2 на свету. С4-растения известны среди 19 семейств цветковых. Однако практически все С4-растения адаптированы к высокой инсоляции, повышенным температурам и засухе. Оптимальная температура для роста и развития таких растений выше, чем у С3-растений; С4-растения процветают даже при температурах, которые губительны для многих С3-видов.
фотосинтетически активная радиация ФОТОСИНТЕТИЧЕСКИ АКТИВНАЯ РАДИАЦИЯ (ФАР) , часть солнечной энергии, к-рая может использоваться растениями для фотосинтеза. Соответствует полосе видимого света и составляет ок. 50% от суммарной энергии солнечного излучения.
Спектры поглощения ФАР : 380 – 710 нм Каротиноиды: 400-550 нм главный максимум: 480 нм Хлорофиллы: в красной области спектра 640-700 нм в синей - 400-450 нм
Глобальное значение фотосинтеза 3 млрд. лет назад – первые водоросли фотосинтетики Насыщение атмосферы кислородом Гибель большинства анаэробов Появление аэробных организмов Появление многоклеточности Появление озонового слоя Выход организмов на сушу
Значение фотосинтеза теперь Образуется первичное органическое вещество(более 450 млрд.т в год) Поддерживается состав атмосферы(более 200млрд.т кислорода в год) Канал, через который в экосистему планеты Земля приходит энергия Солнца, необходимая для жизни Озоновый экран Препятствует накоплению углекислого газа
Зелёные насажде́ния Зелёные насажде́ния — совокупность древесных, кустарниковых и травянистых растений на определённой территории. В городах они выполняют ряд функций, способствующих созданию оптимальных условий для труда и отдыха жителей города, основные из которых — оздоровление воздушного бассейна города и улучшение его микроклимата. Этому способствуют следующие свойства зелёных насаждений: поглощение углекислого газа и выделение кислорода в ходе фотосинтеза; понижение температуры воздуха за счёт испарения влаги; снижение уровня шума; снижение уровня загрязнения воздуха пылью и газами; защита от ветров; выделение растениями фитонцидов — летучих веществ, убивающих болезнетворные микробы; положительное влияние на нервную систему человека.
Зелёные насаждения делятся на три основные категории: общего пользования (сады, парки, скверы, бульвары); ограниченного пользования (внутри жилых кварталов, на территории школ, больниц, других учреждений); специального назначения (питомники, санитарно-защитные насаждения, кладбища и т. д.). Норма зелёных насаждений общего пользования для крупных городов — 21 м² на одного человека.
По теме: методические разработки, презентации и конспекты
презентация Фотосинтез
урок биологии в 6 классе...
презентация фотосинтез и хемосинтез
Презентация по биологии для учащихся 9 класса . Линия В. Пасечника. В данной презентации рассматриваются особенности процессов фотосинтеза и хемосиентеза, их роль....

Презентация "Фотосинтез"
•Слайд – презентация предназначена для использования на уроках общей биологии в 9-10 классах общеобразовательной школы.•Данный ЦОР может использоваться как:•1. Презентация (вступительная часть) ...




