билеты 9 класс
методическая разработка по геометрии (9 класс) по теме

Билеты по геометрии за курс 9 класса содержат 4 вопроса, 2 из которых теоритические 2 практические

Скачать:

ВложениеРазмер
Файл bilety_po_geometrii_9_klass.docx55.25 КБ
Реклама
Как сдать ЕГЭ на 80+ баллов?

Репетиторы Учи.Дома помогут подготовиться к ЕГЭ. Приходите на бесплатный пробный урок, на котором репетиторы определят ваш уровень подготовки и составят индивидуальный план обучения.

Бесплатно, онлайн, 40 минут

Подробнее >


Предварительный просмотр:

Билет № 1

1. Сформулируйте определение окружности, вписанной в треугольник. Сформулируйте теорему о центре вписанной окружности. Приведите пример применения теоремы о центре вписанной окружности.

2. Сформулируйте определение трапеции. Сформулируйте определение средней линии трапеции. Сформулируйте и докажите теорему о средней линии трапеции.

3. Задача: Сторона правильного шестиугольника, описанного около окружности, равна 2 см. Найдите сторону правильного треугольника, вписанного в эту окружность.

4. Задача:  В   ABC вписан равнобедренный прямоугольный   DEF так, что его гипотенуза DF параллельна стороне АС, а вершина Е лежит на стороне АС. Найдите высоту треугольника ABC, если  AC = 16 см; DF = 8 см.

Билет № 2

1. Сформулируйте определение синуса острого угла прямоугольного треугольника. Приведите пример его применения при решении прямоугольных треугольников.

2. Сформулируйте определение равнобедренного треугольника. Сформулируйте и докажите признак равнобедренного треугольника.

3. Задача: Стороны треугольника равны 3 см, 2 см и  3 см. Определите вид этого треугольника.

4. Задача: На стороне АВ параллелограмма ABCD как на диаметре построена окружность, проходящая через точку пересечения диагоналей и середину стороны AD. Найдите углы параллелограмма.

Билет № 3

1. Сформулируйте теорему Фалеса. Приведите пример ее применения.

2. Сформулируйте определение равнобедренного треугольника. Сформулируйте и докажите свойство углов при основании равнобедренного треугольника.

3. Задача: Угол между высотами BK и BL параллелограмма ABCD, проведенными из вершины его острого  B, в четыре раза больше самого АВС. Найдите углы параллелограмма.

4. Задача: Через вершину В равнобедренного АВС параллельно основанию АС проведена прямая ВD. Через точку К – середину высоты ВH проведен луч АК, пересекающий прямую ВD в точке D, а сторону ВС в точке N. Определите, в каком отношении точка N делит сторону ВС.

Билет № 4

1. Сформулируйте определение окружности. Приведите формулу длины окружности. Приведите формулу длины дуги окружности. Приведите примеры применения либо формулы длины окружности, либо формулы длины дуги окружности.

2. Сформулируйте определение медианы треугольника. Сформулируйте и докажите свойство медианы равнобедренного треугольника.

3. Задача: Сторона ромба равна 10, а один из его углов равен 30°. Найдите радиус окружности, вписанной в ромб.

4. Задача: Одна из диагоналей прямоугольной трапеции делит эту трапецию на два прямоугольных равнобедренных треугольника. Какова площадь этой трапеции, если ее меньшая боковая сторона равна 4?

Билет № 5

1. Сформулируйте неравенство треугольника. Приведите пример его применения.

2. Сформулируйте определение параллелограмма. Сформулируйте и докажите свойство диагоналей параллелограмма.

3. Задача: Найдите больший угол треугольника, если две его стороны видны из центра описанной окружности под углами 100° и 120°.

4. Задача: Известно, что в равнобокую трапецию с боковой стороной, равной 5, можно вписать окружность. Найдите длину средней линии трапеции.

Билет № 6

1. Приведите формулы площади прямоугольника и площади параллелограмма. Приведите примеры применения площади прямоугольника либо площади параллелограмма.

2. Сформулируйте определение равных треугольников. Сформулируйте признаки равенства треугольников и докажите один из них по выбору.

3. Задача: Определите вид четырехугольника, вершины которого являются серединами сторон произвольного выпуклого четырехугольника.

4. Задача: В   АВС  вписана окружность, которая касается сторон АВ и ВС в точках E и F соответственно. Касательная MK к этой окружности пересекает стороны АВ и BC соответственно в точках M и K. Найдите периметр  ВMK, если BE = 6 см.

Билет № 7

1. Приведите формулы для радиусов вписанных и описанных окружностей правильных многоугольников. Приведите пример их применения для n-угольников для любого n ≤ 6 (n определяет учащийся).

2. Сформулируйте определение параллельных прямых. Сформулируйте аксиому параллельных прямых. Сформулируйте признаки параллельности прямых и докажите один из них по выбору.

3. Задача: В трапеции ABCD диагональ BD является биссектрисой прямого ADC. Найдите отношение диагонали BD к стороне AB трапеции, если BAD = 30°.

4. Задача:  ABC, стороны которого 13 см,14 см и 15 см, разбит на три треугольника отрезками, соединяющими точку пересечения медиан М с вершинами треугольника. Найдите площадь  BMC.

Билет № 8

1. Сформулируйте определения круга и сектора. Приведите формулы площади круга и площади сектора. Приведите пример применения одной из формул: либо площади круга, либо площади сектора по выбору учащегося.

2. Сформулируйте определение прямоугольного треугольника. Сформулируйте и докажите теорему Пифагора.

3. Задача: Площадь треугольника, описанного около окружности, равна 84 см2. Найдите периметр треугольника, если радиус окружности равен 7 см.

4. Задача: В равнобокой трапеции одно из оснований в два раза больше другого. Диагональ трапеции является биссектрисой острого угла. Найдите меньшее основание трапеции, если ее площадь равна 27 см2.

Билет № 9

1. Сформулируйте определение окружности, описанной около треугольника. Сформулируйте теорему о центре описанной окружности. Приведите пример применения теоремы о центре описанной окружности.

2. Сформулируйте определение средней линии треугольника. Сформулируйте и докажите теорему о средней линии треугольника.

3. Задача: Из вершины B в   ABC проведены высота BH и биссектриса BD. Найдите угол между высотой BH и биссектрисой BD, если  BAC = 20° и   BCA = 60°.

4. Задача: Две окружности, радиусы которых равны 9 см и 3 см, касаются внешним образом в точке А. Через точку А проходит их общая секущая ВС, причем точка В принадлежит большей окружности. Найдите длину отрезка AB, если отрезок AC равен 5 см.

Билет № 10

1. Сформулируйте теорему о сумме углов треугольника. Приведите пример ее применения.

2. Сформулируйте определение ромба. Сформулируйте и докажите свойство диагоналей ромба.

3. Задача: Внутри равностороннего  ABC отмечена точка D, такая, что  BAD = BCD = 15°. Найдите ADC.

4. Задача: Окружность радиуса R касается гипотенузы равнобедренного прямоугольного треугольника в вершине его острого угла и проходит через вершину прямого угла. Найдите длину дуги, заключенной внутри треугольника, если R = .

Билет № 11

1. Сформулируйте определение выпуклого многоугольника. Сформулируйте теорему о сумме углов выпуклого многоугольника. Приведите пример ее применения.

2. Сформулируйте определение прямоугольника. Сформулируйте и докажите свойство диагоналей прямоугольника.

3. Задача: Через вершины А, В и С ромба АВСО проведена окружность, центром которой является вершина О. Найдите длину дуги АС, содержащей вершину В, если длина всей окружности равна 30 см.

4. Задача: При пересечении двух прямых n и m секущей k образовалось восемь углов. Четыре из них равны 60°, а четыре другие – 120°. Определите взаимное расположение прямых n и m.

Билет № 12

1. Приведите формулы площади треугольника. Приведите примеры их применения.

2. Сформулируйте определение параллелограмма. Сформулируйте и докажите признак параллелограмма по выбору учащегося.

3. Задача: Точки A, B и C делят окружность на три части так, что отношение

дуг AB :  BC : AC = 4 : 7 : 9. Определите наибольший угол треугольника ABC.

4. Задача: Углы при основании AD трапеции ABCD равны 60° и 30°, AD = 17 см, BC = 7 см. Найдите боковые стороны.

Билет № 13

1. Сформулируйте определение тангенса острого угла прямоугольного треугольника. Приведите пример его применения при решении прямоугольных треугольников.

2. Сформулируйте определение параллелограмма. Сформулируйте и докажите свойства углов и сторон параллелограмма.

3. Задача: Длины двух сторон равнобедренного треугольника равны соответственно 6 см и 2 см. Определите длину третьей стороны этого треугольника.

4. Задача: Два круга, радиусы которых равны 5 см, имеют общую хорду длины 5 см. Найдите площадь общей части этих кругов.

Билет № 14

1. Сформулируйте определение внешнего угла треугольника. Сформулируйте теорему о свойстве внешнего угла треугольника. Приведите пример ее применения.

2. Сформулируйте и докажите теорему косинусов. Приведите пример ее применения для решения треугольников.

3. Задача: Стороны треугольника равны 4 см, 5 см и 8 см. Найдите длину медианы, проведенной из вершины большего угла.

4. Задача: В параллелограмме ABCD диагональ BD перпендикулярна стороне AD. Найдите АС, если AD = 6 см, BD = 5 см.

Билет № 15

1. Приведите формулу площади трапеции. Приведите пример ее применения.

2. Сформулируйте определение равных треугольников. Сформулируйте признаки равенства прямоугольных треугольников и докажите один из них по выбору.

3. Задача: Большая диагональ ромба равна 12 см, а один из его углов равен 60°. Найдите длину вписанной в него окружности.

4. Задача: В равнобедренном треугольнике центр вписанной окружности делит высоту в отношении 17 : 15, а боковая сторона равна 34 см. Найдите основание треугольника.

Билет № 16

1. Сформулируйте теорему о зависимости между сторонами и углами треугольника. Приведите пример ее применения.

2. Сформулируйте определение подобных треугольников. Сформулируйте признаки подобия треугольников и докажите один из них по выбору.

3. Задача: Найдите меньший угол параллелограмма, если его стороны равны 1 и , а одна из диагоналей равна  .

4. Задача: В треугольник АВС вписан квадрат так, что две его вершины лежат на стороне АB и по одной вершине – на сторонах АC и ВС. Найдите площадь квадрата, если АB = 40 см, а высота, проведенная из вершины  С, имеет длину 24 см.

Билет № 17

1. Сформулируйте определение вектора. Сформулируйте определение суммы векторов. Сформулируйте свойства сложения векторов. Приведите примеры сложения векторов.

2. Сформулируйте и докажите теорему синусов. Приведите пример ее применения для решения треугольников.

3. Задача: Вписанный угол, образованный хордой и диаметром окружности, равен 72°. Определите, что больше: хорда или радиус окружности.

4. Задача: В трапеции АВСD стороны АВ и СD равны, биссектриса тупого угла В перпендикулярна диагонали АС и отсекает от данной трапеции параллелограмм. Найдите величину ВСD.

Билет № 18

1. Сформулируйте определение вектора. Сформулируйте определение произведения вектора на число. Сформулируйте свойства произведения вектора на число. Приведите примеры произведения вектора на число.

2. Сформулируйте определения центрального угла окружности и угла, вписанного в окружность. Сформулируйте и докажите теорему об измерении вписанного угла.

3. Задача: Медиана ВМ  в  АВС перпендикулярна его биссектрисе AD. Найдите АВ, если АС = 12 см.

4. Задача: В прямоугольной трапеции ABCD с основаниями 17 см и 25 см диагональ AC является биссектрисой острого  A. Найдите меньшую боковую сторону трапеции.

Билет № 19

1. Сформулируйте определение скалярного произведения векторов и определение угла между векторами. Приведите пример применения скалярного произведения векторов для определения угла между векторами.

2. Сформулируйте определение серединного перпендикуляра к отрезку. Сформулируйте и докажите свойство серединного перпендикуляра к отрезку.

3. Задача:

На рисунке:

1 = 55°; 2 = 125°; 3 = 123°.

Найдите: 4.

4. Задача:  АВС – равносторонний со стороной, равной а. На расстоянии а от вершины А взята точка D, отличная от точек В и С. Найдите угол BDC.

Билет № 20.

1. Сформулируйте свойство углов, образованных при пересечении параллельных прямых секущей. Приведите пример вычисления углов при пересечении параллельных прямых секущей.

2. Сформулируйте теоремы о пропорциональных отрезках в прямоугольном треугольнике и докажите один из них по выбору.

3. Задача: Из точки, лежащей на гипотенузе равнобедренного прямоугольного треугольника, на катеты треугольника опущены перпендикуляры. Найдите катет треугольника, если периметр полученного четырехугольника равен 12 см.

4. Задача: Около правильного шестиугольника со стороной 8,5 описана окружность. Около этой окружности описан правильный четырехугольник. Найдите сторону четырехугольника.

Билет № 21

1. Сформулируйте определение косинуса острого угла прямоугольного треугольника. Приведите пример его применения при решении прямоугольных треугольников.

2. Сформулируйте определение биссектрисы угла. Сформулируйте и докажите свойство биссектрисы треугольника.

3. Задача: Площадь ромба ABCD равна 242. Вычислите сторону ромба, если один из его углов равен 135°.

4. Задача: К окружности, радиус которой равен 3, из точки, удаленной от центра окружности на расстояние 5, проведены две касательные. Вычислите расстояние между точками касания.


По теме: методические разработки, презентации и конспекты

Билеты по экономики за курс 9 класса

Все билеты по экономи за курс 9 класса, содержат полные ответы по вопросам, схемы, таблицы, простое и понятное объяснение, что поможет как учителям, так и учиникам, при подготовки к экзамену по эконом...

Билеты по геометрии за 9 класс.

Билеты по геометрии за курс 9 класса содержат 3 вопроса: два теоретических и один практический(решение задачи)....

Билеты к итоговому зачёту по обществознанию 9 класс

Зачёт на основе последнего комплекта билетов к экзамену (3 вопроса)...

Методическая разработка: Геометрия, 8 класс. Билеты к устному зачету

Билеты для проведения зачета по геометрии в 1 четверти 8 класса....

\'\'Экзаменационные билеты по физике в 7 классе

В данном материале представлено 20 билетов по физике в переводных  классах...

Экзаменационные билеты 9 класс

Экзаменационные билеты 9 класс...

Билеты по литературе для 9 класса

Учебный материал, представляющий собой форму контроля знаний, умений и навыков учащихся по литературе с 5 по 9 классы....