Разработка урока по теме "Атомно-молекулярное учение. Закон сохранения массы веществ"
методическая разработка по химии (8 класс) на тему

Тельнова Мария Алексеевна

УМК Рудзитиса и Фельдмана

Скачать:

ВложениеРазмер
Файл atomno-molekulyarnoe_uchenie.docx38.97 КБ
Файл atomno-molekulyarnoe_uchenie.pptx54.99 КБ

Предварительный просмотр:

Тема урока: «Атомно – молекулярное учение. Закон сохранения массы веществ».

Цель: систематизировать знания учащихся об атомах и молекулах, изучить основные положения атомно-молекулярного учения (АМУ). Продолжить формирование основных положений АМУ и на основе эксперимента подвести учащихся к выводу закона о сохранении массы веществ. Отметить важную роль М.В. Ломоносова в открытии закона. Показать научное и практическое значение этого закона.

Задачи урока:

Образовательные: сформировать знания учащихся об основных положениях атомно – молекулярного учения с учетом физических законов. На основе эксперимента рассмотреть закон сохранения массы веществ. Дать краткие сведения об истории открытия закона и научной деятельности ученых в этой области. Рассмотреть значимость этого закона в химии.

Ход урока:

«Однажды созданная материя не                          увеличивается и не уменьшается. Материя не возникает вновь и не исчезает, она может лишь подвергаться изменениям»

Аристотель.

  1. Организационный момент
  2. Актуализация знаний учащихся

- Фронтальный опрос

  1. Что такое валентность?
  2. Перечислите элементы, имеющие постоянную валентность.
  3. Что такое индекс и что он обозначает?
  4. Дайте определение химической формуле.

- Работа учащихся самостоятельно по вариантам

Вариант  №1 (Березин 8а, Зайченко 8 б)

  1. Определить неизвестную валентность элемента:

Сu2О;    Н2S ;   НgO ;    Р2О5;     Fe2O3

  1. Составить формулу, зная валентности химических элементов:

II           III           I            V   I      

СО;     NH;     NaO;    РСl;      ВО

3.  Найти    Мr (Р2О5)

Вариант  №2 (Воробьев, 8а, Кузнецова 8б)

  1. Определить неизвестную валентность элемента:

I              

ZnS;     Сu2S;      ZnCl2;    МgO;   В2О3

     2.   Составить формулу, зная валентности хим. элементов:

I     II                            V   I      

СuСl;     LiO;     AlO;     РСl;     КО

3.    Найти   Мr (Fe2О3)

Вариант  №3 (Днепровский 8а, Теремков 8 б)

1.  Определить неизвестную валентность элемента:

       К2О;      ZnO;    N2О3;    РbO2

2.  Составить формулу, зная валентности хим. элементов:

I          I             IV

СаО;      АlCl;      RbO;    NO

3.   НайтиМr (Н2SO4)

Вариант  №4 (Зайцев 8а, Таржимина 8б)

 1.  Определить неизвестную валентность элемента:

   Аl2О3;     НСl;      СО;       СО2;      Fe2О3  

2.  Составить формулу, зная валентности хим. элементов:

I       I V  

AICl;     ВаСl;      NaO;      CIO

3.  Найти   Мr (НNO2)

Вариант  №5 (Кузько 8а, Гордиенко 8б)

1.  Определить неизвестную валентность элемента:

Fe2О3 ; Мn2O5;   СО;     ZnCl2

2.  Составить формулу, зная валентности хим. элементов:

V         III                 I          II             III  

РО;     РН;     AlCl;      FeO;      FeO;

3.  Найти   Мr (Н2СО3)

Вариант  №6 (Павлов 8а, Губина 8б)

 1.  Определить неизвестную валентность элемента:

КСl;     MgCl2;     Аl2O3;     NO2;      NO

2.  Составить формулу, зная валентности хим. элементов:

I               I       V            

КО;      ВаCl;     AlBr;    NO;       СаО

3.   Найти   Мr (НNO3

  1. Предъявление нового материала.
  1. Атомно-молекулярное учение

Представление о том, что вещество состоит из отдельных, очень малых частиц, - атомная  гипотеза – возникло еще в Древней Греции. Однако создание научно обоснованного атомно-молекулярного учения стало возможным значительно позже – в ХVIII-XIX веках, когда физика стала базироваться на точном эксперименте. В химию количественные методы исследования были введены М. В. Ломоносовым во второй половине  ХVIII века

  • Основные положения атомно-молекулярного учения

Основы атомно-молекулярного учения впервые были изложены Ломоносовым в так называемой корпускулярной теории строения вещества.

Согласно представлениям Ломоносова, все вещества состоят из мельчайших «нечувствительных»  частичек, физически неделимых и обладающих способностью взаимного сцепления. Более мелкие «элементы» (атомы), а более крупные - «корпускулы» (молекулы). Каждая корпускула имеет тот же состав, что и все вещество. Химически разные вещества имеют и разные по составу корпускулы. Существуют корпускулы однородные и разнородные. Причиной различия веществ Ломоносов считал не только различие в составе корпускул, но и различное расположение элементов в корпускуле.

Ломоносов подчеркнул, что корпускулы движутся согласно законам механики и сталкиваясь друг с другом изменяются. Поэтому химические превращения должны изучаться не только методами химии, но и методами физики и математики.

С тех пор прошло более 200 лет, когда жил и работал Ломоносов, его идеи о строении вещества прошли всестороннюю проверку, и их справедливость была полностью подтверждена.

В настоящее время на атомно-молекулярном учении базируются все наши представления о строении материи, о свойствах веществ и о природе физических и химических явлений. Так, например, теперь известно, что не все вещества состоят из молекул.

1.Существуют вещества с молекулярным и немолекулярным строением.

2.Между молекулами имеются промежутки, размеры которых зависят от агрегатного состояния вещества и температуры. Наибольшие расстояния имеются между молекулами газов. Этим объясняется их легкая сжимаемость. Труднее сжимаются жидкости, где промежутки между молекулами значительно меньше. В твердых веществах промежутки еще меньше, поэтому они почти не сжимаются.

3.Молекулы находятся в непрерывном движении. Скорость движения молекул зависит от температуры, чем выше температура, тем выше скорость движения молекул.

4.Между молекулами существуют силы взаимного притяжения и отталкивания. В наибольшей степени эти силы выражены в твердых веществах, в наименьшей – в газах.

5.Атомы одного вида отличаются от атомов другого вида массой и свойствами.

6.При физических явлениях молекулы сохраняются, а при химических, как правило, разрушаются

7.У веществ с молекулярным строением в твердом состоянии в узлах кристаллических решеток находятся молекулы. Связи между молекул слабые и при нагревании разрушаются. Поэтому вещества с молекулярным строением имеют низкие температуры плавления.

8.У веществ с немолекулярным строением в узлах кристаллических решеток находятся атомы или другие частицы. Между этими частицами существуют сильные химические связи, для разрушения которых потребуется много энергии. Поэтому эти вещества имеют высокие температуры плавления.

Объяснение физических и химических явлений с точки зрения атомно-молекулярного учения

Физические и химические явления получают объяснения с позиций атомно-молекулярного учения. Так, например, процесс диффузии, объясняется способностью молекул (атомов, частиц) одного вещества проникать между молекулами (атомами, частицами) другого вещества. Это происходит потому, что молекулы (атомы, частицы) находятся в непрерывном движении и между ними имеются промежутки.

Сущность химических реакций заключается в разрушении химических связей между атомами одних веществ и в перегруппировке атомов с образованием других веществ.

2.Закон сохранения массы веществ.

  • Выполнение эксперимента

На основе атомно-молекулярного учения приходим к выводу, что сущность химических реакций заключается в разрушении химической связи между атомами одних веществ и в перегруппировке атомов с образованием других веществ. Атомы при химических реакциях сохраняются, значит должна сохраняться и масса каждого из них в отдельности, следовательно, должна сохраняться и масса всех атомов вместе взятых. А значит, что продукты любых химических реакций должны весить столько же, сколько весили исходные вещества. Но, лучше один раз увидеть, чем сто раз услышать. Необходимо провести опыт, доказывающий наш вывод.

Вывод: масса веществ, вступивших в реакцию, равна массе образовавшихся веществ в результате реакции.

Вывод является формулировкой закона сохранения массы веществ.        

  • История открытия закона.

Положение, которое звучит так: «Все изменяется, но ничто не исчезает» принималось за аксиому уже 500 лет до н.э. Оно в течение долгого времени сопутствовало человечеству, как умозаключение. Аристотель писал: «Однажды созданная материя не увеличивается и не уменьшается. Материя не возникает вновь и не исчезает, она может лишь подвергаться изменениям». Мысль о сохранении вещества высказывается в трудах многих ученых. Но все они его принимали за гипотезу, не подтверждая опытами.

Одним из первых ученых, поставивших опыты, был знаменитый английский химик Роберт Бойль (имя записывается на доске и в тетради), прокаливает металл. Он их взвешивал до и после нагревания, но масса металла становила больше. Основываясь на этих опытах, он не учёл роль воздуха. Бойль сделал вывод, что масса веществ в результате химической реакции изменяется, что было неправильно. Он говорил, что есть «какая-то огненная материя», которая при нагревании металла соединяет с ним, и за счёт этого увеличивается масса.

В отличие от Роберта Бойля М. В. Ломоносов, (имя записывается на доске и в тетради) прокаливал металл в запаянных ретортах, взвешивал их до и после прокаливания, масса оставалась неизменной. Ломоносов сделал вывод, что при прокаливании к металлам присоединяется какая-то часть воздуха. Результаты своих опытов он сформулировал так: «Все перемены, в натуре случающиеся, такого суть состояния, что сколько чего у одного тела отнимается, столько присовокупляется к другому. Так, еже ли где убудет материи, то умножиться в другом месте; сколько часов положит кто на бдение, столько же сну отнимает…». Эту формулировку Ломоносов дал в 1748 году.

В настоящее время этот закон звучит так: «Масса веществ, вступивших в реакцию, равна массе образовавшихся веществ в результате реакции».

Естественно, не только Ломоносов думал над этой проблемой. Независимо от него, но чуть позже, в 1789 году  закон сохранения массы веществ был установлен французским химиком Антуаном Лораном Лавуазье (имя записывается на доске и в тетради).

  • Значение закона
  1. Открытие закона нанесло серьезный удар флагистонной теории и религии.
  2. Способствовало дальнейшему развитию химии, как науки.
  3. На основе этого закона проводят практически важные расчеты.
  4. На основе закона сохранения массы веществ составляют уравнения химических реакций.
  1. Закрепление.

  • Фронтальная беседа
  1. Перечислите основные положения атомно-молекулярного учения.
  2. Кем и когда был открыт закон сохранения массы веществ?
  3. Назовите имена ученых, которые причастны к открытию закона.
  4. Дайте определение закону сохранения массы веществ.

  • Решение задач на закон сохранения массы веществ

Задача: При разложение 44,4 г малахита образуется 32 г СuO и 3,6 г воды Н2О. Какая масса углекислого газа СО2 образуется? (Слайд № 20)

Дано:                                    Решение:

m (малахита)=44,4 г       Т.к. по закону сохранения массы веществ, масса вступивших                            

                                          веществ равна

m (H2O)=3,6 г                  массе образовавшихся.

m (СuO)=32  г                  m (малахита)= m (СO2)+ m (H2O)+ m (СuO)

                                          Отсюда следует, что: m (СO2)= m (малахита)- m (СuO) - m(H2O)                                                                      

                                          m (СO2)= 44,4-32-3,6=8,8 г

m (СO2)= ?                       Ответ:  m (СO2)= 8,8 г

Задача. При нагревании Ag2O образовалось 43,2 г Ag и 3,2 г O2. Какая была масса разложившегося оксида? (Слайд № 21)

  1. Домашнее задание.(Слайд № 21)

§ 13-14, стр 42 ( вопросы 1-3)



Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Атомно-молекулярное учение. Закон сохранения массы.

Слайд 2

« Однажды созданная материя не увеличивается и не уменьшается. Материя не возникает вновь и не исчезает, она может лишь подвергаться изменениям » Аристотель.

Слайд 3

Основные положения атомно-молекулярного учения 1.Существуют вещества с молекулярным и немолекулярным строением. 2.Между молекулами имеются промежутки, размеры которых зависят от агрегатного состояния вещества и температуры. 3.Молекулы находятся в непрерывном движении. 4.Между молекулами существуют силы взаимного притяжения и отталкивания.

Слайд 4

5.Атомы одного вида отличаются от атомов другого вида массой и свойствами. 6.При физических явлениях молекулы сохраняются, а при химических, как правило, разрушаются 7.У веществ с молекулярным строением в твердом состоянии в узлах кристаллических решеток находятся молекулы. 8.У веществ с немолекулярным строением в узлах кристаллических решеток находятся атомы или другие частицы.

Слайд 5

Закон сохранения массы масса веществ, вступивших в реакцию, равна массе образовавшихся веществ в результате реакции.

Слайд 6

« Все перемены, в натуре случающиеся, такого суть состояния, что сколько чего у одного тела отнимается, столько присовокупляется к другому. Так, еже ли где убудет материи, то умножиться в другом месте; сколько часов положит кто на бдение, столько же сну отнимает…».

Слайд 7

Значение закона Открытие закона нанесло серьезный удар флагистонной теории и религии. Способствовало дальнейшему развитию химии, как науки. На основе этого закона проводят практически важные расчеты. На основе закона сохранения массы веществ составляют уравнения химических реакций.

Слайд 8

Задача: При разложение 44,4 г малахита образуется 32 г С uO и 3,6 г воды Н 2 О. Какая масса углекислого газа СО 2 образуется?

Слайд 9

При нагревании Ag 2 O образовалось 43,2 г Ag и 3,2 г O 2 . Какая была масса разложившегося оксида?

Слайд 10

Домашнее задание § 13-14, стр 42 ( вопросы 1-3)


По теме: методические разработки, презентации и конспекты

Разработка урока "Закон сохранения массы веществ"

Разработка содержит презентацию урока и технологическую карту...

Методическая разработка урока химии по теме: "Закон сохранения массы веществ". 8 класс.

Практико-значимый проект, с применением ИКТ и здоровьесберегающих технологий на различных этапах урока....

Закон сохранения массы веществ веществ. Химические уравнения

Презентация и конспект урока химии в 8 классе по теме "Закон сохранения массы веществ. Химические уравнения"...

Конспект урока: «Атомно – молекулярное учение. Закон сохранения массы веществ».

Тема урока: «Атомно – молекулярное учение. Закон сохранения массы веществ».Цель: систематизировать знания учащихся об атомах и молекулах, изучить основные положения атомно-молекулярного учения (АМУ). ...

Методическая разработка урока по химии в 8 классе. Тема: "Закон сохранения массы вещества"

Данная методическая разработка посвящена изучению закона сохранения массы и составлению на его основе уравнений химических реакций. Разработка может быть полезна, преподавателям химии, осуществляющим ...

Технологическая карта проблемно-диалогического урока химии в 8 классе. Тема урока "Закон сохранения массы веществ. Уравнения химических реакций"

Содержание урока позволяет сформировать понятие закона сохранения масс, научить составлять уравнения реакций. Использование проблемно-диалогического метода, обеспечивает творческое усвоение знаний уча...