Главные вкладки

    Урок математики в 9 классе по теме "Решение систем уравнений 2-й степени"
    методическая разработка по алгебре (9 класс) по теме

    Иванова Галина Павловна

     

    Содержание урока: Решение систем уравнений второй степени: графический и аналитический способы.

    Цель

    1.Сформировать умение решать системы уравнений аналитическим способом.

             2.Продолжить работу по формированию навыков решения систем уравнений графическим способом.

            3.Развивать познавательный интерес и творческую активность учащихся.

     План урока:

    1. Организационный момент.
    2. Актуализация знаний.
    3. Объяснение новой темы.
    4. Решение задач.
    5. Историческая справка
    6. Подведение итога урока.
    7. Домашнее задание.

    Скачать:

    ВложениеРазмер
    Microsoft Office document icon urok9.doc509.5 КБ

    Предварительный просмотр:

    «Решение систем уравнений второй степени»

                            9 класс, 1 час

    Учитель математики  МОУ «СОШ с. Большая Гусиха Базарно-Карабулакского муниципального района Саратовской области» -

    Иванова Галина Павловна, 13 разряд

    Содержание:

    Решение систем уравнений второй степени: графический и аналитический способы.

    Цель изучения:

    1. Сформировать умение решать системы уравнений аналитическим способом.
    2. Продолжить работу по формированию навыков решения систем уравнений графическим способом.
    3. Развивать познавательный интерес и творческую активность учащихся.

    Прогнозируемый результат:

    1. Знать способы и методы решения систем уравнений второй степени.
    2. Уметь правильно отбирать способы решения систем уравнений.
    3. Уметь строить графики, работать с рисунком.

    План урока: 

    1. Организационный момент.
    2. Актуализация знаний.
    3. Объяснение новой темы.
    4. Решение задач.
    5. Историческая справка
    6. Подведение итога урока.
    7. Домашнее задание.

    Эпиграф:

    Китайская мудрость:  « Я слышу – я забываю, я вижу – запоминаю,

    я делаю – я усваиваю»

                                

                                 ХОД   УРОКА

    1. Организационный  момент    

    Учащимся сообщается тема урока, формируются цель и задачи урока, виды деятельности учащихся для достижения цели.

    1. Проверка  домашнего  задания

    Во  время  перемены  консультанты  проверяют  домашнюю  работу  (предварительно  обсудив  ее  результаты  с  учителем).

    а)  В  начале  урока – доклад  консультантов  о  результатах  проверки.

    б)  Заслушать  ход  решения  дополнительной  задачи.

                                                            Задание:

      При  каких  значениях  параметра  а  система  уравнений  имеет  три  решения?

                                                y – х2 = a , х2 + у2= 4 .                                 

     Решение: парабола y= x2 +a будет иметь с окружностью x2 + y2 = 4 три общие точки только в случае а = - 2.

    Ответ:  а = - 2

    1. Актуализация  знаний учащихся.

    Прежде чем перейти к объяснению новой темы давайте вспомним некоторые знания по данной теме, которые помогут нам.

    1. Теоретический  опрос  по  вопросам:
    1. Что  называется  системой  уравнений  с  двумя  переменными?
    2. Что  значит  решить  систему  уравнений?
    3. Что  называется  решением  системы  уравнений  с  двумя  переменными?
    4. Сформулируйте  алгоритм  графического  решения  системы  уравнений.
    1. Проверочная  работа (Приложение 1). Листок  с  заданием  есть  у  каждого.

    Ученики  по  очереди  называют ответ,  комментируют  его,  после  обсуждения  каждого  уравнения  вывешивается  верный  номер.  На  обороте  карточек  с  номерами  должно  получиться  слово  «ПРАВИЛЬНО!».

    Ответ:  

    Номер уравнения

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Номер чертежа

    7

    3

    6

    9

    4

    1

    2

    5

    11

    10

    1. Работа  у доски  по  карточкам (Приложение 2).

    Двое  учащихся  у  доски  выполняют  индивидуальную  работу  по  карточкам.

    1. Устный  опрос.

    Пока  2  ученика  работают  у  доски,  с  остальными  учащимися  проводится  устная  работа:  один  из  учеников  отвечает,  остальные  при  необходимости  дополняют,  исправляют  ответ  своего  товарища.

    Задания.

    1. Определите  степень  уравнения:

    a) xy3 – 2y = 5       б) x2 – y4 = 2xy2 – y4      в) x2 + 3y2 = 0      

    Ответ:  a) 4,  б) 3,  в)2.

    1. Является  ли  пара  чисел  (1;  0)  решением  уравнения  

    а) x2 + y = 1      б)  xy + 3 = x      в)  y(x + 2) = 0

    Ответ:  да,   нет,    да.

    1. Укажите какие-нибудь  два  решения  уравнения

    а) xy = 6    б)  (x – 3)(y + 2) = 0      в) x2 – y2 = 0

    (Ученики предлагают свои варианты ответа)

    1. Имеет  ли  решения  система  и  сколько

    а)      y = 3,                    б)       x2 + y2 = 4,

             y = x2 – 6.                       y = x2 + 4.

    Ответ:  а)  имеет, 2.    б) не  имеет.

    А сейчас давайте послушаем своих товарищей, выполнявших работу у доски.  

    1. Введение  нового  материала  в  форме  фронтальной  работы  с  классом.

    Заслушиваются объяснения учащихся, работавших у доски.

    Учитель: Давайте сравним ответы. Чем они отличаются?

    -У первого ученика значения получены точные:  (-1;0),  (0;1),

     а у второго ученика из двух решений системы один корень приближенный:  x1 = -1,  y1 = 0;  x2 ≈ 0,6,  y2 ≈ 0,8.

    Учитель: А как быть? Нам нужны точные значения! Неужели нас не устраивает графический способ системы?

    Ученики делают вывод, что графический  способ  обычно  позволяет  находить  приближенные  значения  и  не обеспечивает  высокую  точность. Решить систему уравнений другим способом.

    Вывод:  получить  точные  значения  системы  уравнений  поможет  нам  аналитический  способ.

    Учитель: И такой способ есть - это аналитический способ решения систем уравнений 2-й степени. Он позволяет получить точные значения системы уравнений. Нам известны два метода решения систем аналитическим способом - это метод подстановки и метод сложения.

    Какой же из них выбрать для данной системы? Давайте обратимся к учебнику.

    1. Работа с учебником.

    Ученики в тексте учебника находят и изучают алгоритм аналитического способа решения систем уравнений методом подстановки.

    1. Применение изученного алгоритма на примере.

    x2 +у2 = 1, 2у – х = 1.      (2у-1)2+у2=1х=2у-1      у=0,у=0,8х=2у-1     х=-1,у=0х=0,6у=0,8.

    Ответ: (-1;0), (0,6;0,8).

    Вывод:  данную систему можно решить двумя способами - графическим (решение карточки № 2) и аналитическим. Но аналитический способ в отличие от графического способа дает возможность получить точные значения.

    V.    Закрепление.

    1.   Решение номеров из учебника учащимися у доски.

    № 244 (в)

    Решение: (образец записи решения)

    у-2х= 2,5x2-у= 1.      у=2х+2,5x2-(2х+2)=1.      х=-0,6,х=1у=2х+2     х=1,у=4х=-0,6у=0,8.

    Ответ: (1;4), (-0,6;0,8).

    № 246 (а)

    х-у=3,ху=-2.     

    Ответ: (2;-1), (1;-1).    

       2. Из истории...

    Учитель: В библейской легенде голубка приносит Ною весть о том, что Бог сменил гнев на  милость и что потоп кончился. Выражение «Голубь мира» приобрело особую популярность после того, как голубь, несущий в клюве оливковую ветвь, был использован художником при создании эмблемы для Всемирного конгресса сторонников мира (1949 год).

    Решите систему уравнений. Используя найденные ответы, узнайте методом исключений фамилию художника, создавшего эту эмблему.

    I вариант  х+у=-2,у2-3х=6.                  II вариант  х-у=7,х2+у2=9-2ху.

                     

    Сальвадор Дали

    Александр Дейнека

    Пабло Пикассо

    (-2;0), (1;-3)

    (5; -2), (2;-5)

    (-2;5), (-5;2)

    У доски работают сильные ученики от каждого варианта

    Ответы: I вариант  (-2; 0), (1; -3)

                   II вариант  (5; -2), (2;-5)

    Вывод: Пабло Пикассо.

    Учитель: Пикассо-и-Руис, Пабло испанец. Годы жизни: 1881 - 1973. Великий художник 20-го века, живописец, рисовальщик, скульптор, график, керамист. Жил и работал в Париже и разных окрестностях Франции. В Эрмитаже - 35 картин, богатое собрание графики, а также произведения керамики.

    VI.     Итог урока

    1. Наш урок подошел к концу. Чем мы сегодня занимались на уроке, что нового узнали?

    -повторили пройденный материал.

    1. научились решать системы уравнений 2-й степени аналитическим способом,

     правильно выбирать методы решения.

    2.Учитель демонстрирует системы (на карточках), а ученики
    указывают «минусы» графического способа решения этих систем.

    х2+у2=20,у=-х+3.

    х2+у2=-3,х+у=3.

    у=х2-37,у=37.

       Оценки за урок

    Комментируются и выставляются оценки за урок ученикам, работавшим у доски, а также наиболее отличившимся на уроке.

    VII.    Домашнее задание.

    Пункт 13 № 245 (а), № 254 (а), дополнительно  № 256 (а)

    Благодарю всех за работу и желаю успехов при выполнении домашнего задания. Урок окончен. До свидания.

    ПРИЛОЖЕНИЕ 1.

    Задание. Проанализируйте  уравнения,  их  графики  и  заполните  таблицу. Каждому  уравнению  поставьте  соответствующий  номер  рисунка.

    Формула  уравнения

    Преобразование  формул

    Номер  чертежа

    1

    x2 – y = 0

    2

    y + x2 – 1 = 0

    3

    y = (x – 1)2

    4

    y + (x +1)2 = 0

    5

    x3 – y = 0

    6

    xy = 1

    7

    x2 + y2 = 1

    8

    y + 1 =0

    9

    10

    y - |x| = 0

    ПРИЛОЖЕНИЕ 2.

    Задание  № 1

    На  чертеже  дан  график  одного  из  уравнений  системы.  Дополните  чертеж  графиком  другого  уравнения  и  найдите  решения  системы.

                                         

    Задание  № 2

    В  данную  систему  впишите  уравнение  окружности,  изображенной  на  чертеже.  Дополните  чертеж  линией,  уравнение  которой  уже  записано  в  системе.  Напишите  решение  системы.                                     


    По теме: методические разработки, презентации и конспекты

    Интегрированный урок в 9 классе математика+ физика «Применение математических методов решения уравнений 2-й степени при решении физических задач».

    Интегрированный урок в 9 классематематика+ физика«Применение математических методов решения уравнений 2-й степени при решении физических задач».     Разработали:  учитель...

    Урок-закрепление для 8 класса "Графическое решение систем уравнений"

    На этом уроке подробно рассмотрены решения различных систем уравнений графическим методом. К уроку создана наглядная презентация, облегчающая проведение устного опроса и проверки знаний....

    Открытый урок в 9 классе " методы решения систем уравнений"

    открытый урок в 9 классе по теме "Методы решения систем уроавнений". Урок систематизации и обобщения знаний. Урок проведен 29 октября 2014 года....

    Мотивация проектной деятельности на уроке математики "Решение задач с помощью систем уравнений"

    Тип урока: практикум по решению задач.Оборудование: тетради, учебники, компьютеры, телевизор, карточки для выполнения групповой и индивидуальной работы.Цель: развитие познавательного интереса при реше...

    урок математики 10 класс, Методы решения тригонометрических уравнений

    урок математики 10 класс, Методы решения тригонометрических уравнений...

    Урок алгебры "Решение задач с помощью систем уравнений второй степени", 9 класс

    Конспект  урока по теме "Решение задач с помощью систем уранений второй степени"...