Главные вкладки

    Конспект урока по теме "Возрастание и убывание функций" (11 класс, учебник Ш.А Алимова и др.)
    план-конспект урока по алгебре (11 класс) на тему

    Макевит Ирина Владимировна

    Конспект с приложением

    Скачать:

    ВложениеРазмер
    Файл konspekt_uroka_po_teme_vozrastanie_i_ubyvanie_funktsii.docx285.95 КБ

    Предварительный просмотр:

    Конспект урока по математике в 11-м классе

    Тема раздела: «Применение производной к исследованию функций»

    Тема: «Возрастание и убывание функции» (2 часа)

    Оборудование: ноутбук, проектор, экран, карточки для работы в парах,  опорные конспекты по теме.

    УМК: «Алгебра и начала анализа» 10-11 класс, для общеобразовательных учреждений (базовый уровень). Ш.А.Алимов, Ю.М.Колягин, М.В.Ткачева и др.

    Тип урока: урок формирования и первичного применения  новых знаний.

    Вид урока: комбинированный.

    Цели урока:

    Образовательные:  а) Сформировать у учащихся представления о связи монотонности функции с её производной;                                                                                                         б) Научить находить промежутки монотонности функции с помощью  производной.

     Развивающие:  а) Совершенствовать графическую культуру учащихся, культуру поисковой деятельности;                                                                                                            б) Развивать умение анализировать, сравнивать,  обобщать и формулировать выводы по результатам собственной  и коллективной деятельности.

    Воспитательные:  а) Воспитывать личную ответственность, положительное отношение к знаниям, умение работать в парах.

    Структура урока:

    1. Организационный момент.
    2. Актуализация опорных знаний и фиксация затруднений в деятельности.
    3. Постановка учебной задачи.
    4. Построение проекта выхода из затруднения.
    5. Первичное закрепление во внешней речи.
    6. Самостоятельная работа на отработку нового способа действий по эталону. Промежуточный контроль через дифференцированные задания.
    7. Рефлексия деятельности (итог урока)  
    8. Домашнее задание.

    Ход урока

    1. Организационный момент.

       Приветствие.  

       Мотивация: В этом году вы познакомились с понятием производной функции, операцией дифференцирования.  Учились работать по формулам и правилам дифференцирования.  Решали задачи, связанными с её геометрическим и механическим смыслами.

       Но  производная – это ещё и уникальный  аппарат для изучения свойств функции. Например, с помощью производной можно находить промежутки монотонности, ее наибольшее и наименьшее значение, решать практические задачи.

       Сегодня нам предстоит выяснить, как именно можно применять производную к нахождению промежутков возрастания и убывания функций.  

        Но прежде  -  немного повторения!  (Слайд 1)

    1. Актуализация опорных знаний и фиксация затруднений в деятельности

    1) Вспомним понятия возрастания, убывания и  монотонности функции  (Слайды 2,3,4).

    2) Какими способами нам удавалось определять промежутки монотонности? (Слайд5)

    1 способ. По определению возрастающей  (убывающей) функции.

    Рассмотрим пример.  (Слайд 6  и в  распечатках)

         f(x)= ,  D(f) =  (-∞;0)  (0;+∞)

    Пусть х2 > x1 , тогда f(x2) - f(x1) = -  = (х1 –х2)/ х2 х1 < 0, значит данная функция убывает на каждом из двух промежутков своей области определения.

    2 способ. По графику: готовому либо после его построения.

    Пример №2.  (Слайд 7, распечатки)    

           По графику функции y=f(x) ответьте на вопросы:

          Сколько промежутков возрастания у этой функции?

          Назовите наименьший из промежутков убывания этой функции

    http://festival.1september.ru/articles/549348/full_clip_image002.jpg

    Пример №3 (Слайд 8, распечатки) Задание В8 ЕГЭ по математике

    По графику функции y=f ´(x) ответьте на вопросы:

    Сколько промежутков возрастания у этой функции?

    Найдите длину промежутка убывания этой функции.

    http://festival.1september.ru/articles/549348/full_clip_image004.jpg

    2) Итог этапа: по результатам работы учащиеся констатируют:  пример №3 для них является невыполнимым.

    3. Постановка учебной задачи (Выявление того, где и почему возникло затруднение; Постановка цели урока, связанной с устранением причины затруднения; Формулировка темы урока.)

       Итак, что же нам сделать, чтобы решить проблему?  Какими будут цели урока? (Ответы: Найти связь между монотонностью и производной. Создать алгоритм решения задач на поиск промежутков монотонности функции….)  (Слайд 9)

    А как мы сформулируем тему урока в связи с поставленными целями?  (Слайд 10)

    1. Построение проекта выхода из затруднения.
    1. Для достижения поставленных целей предлагаю вам выполнить небольшое исследование.

          Выполнение исследовательской работы и фиксация результатов деятельности в форме гипотезы  (работа в парах).

    1. По окончании работы учащиеся представляют результаты своей деятельности (вносят данные в общую таблицу на доске, заготовленную учителем заранее).

    Функция

    Производная

    Монотонность функции на промежутках, где f/(x) > 0

    Монотонность функции на промежутках, где f/(x) < 0

    1

    f(x) = x3 – 3x2+ 4

    2

    f(x) = x3 + 3x2- 4

    3

    f(x) = x4 -2x2-3

    4

    f(x) = 2х3 -6х

    1. Обобщая итоги работы,  обратить внимание на изображение на слайде 11

              Гипотеза формулируется общими усилиями (слайд 12).

         4) Учитель подтверждает верность гипотезы формулировкой  теорем о достаточном условии возрастания  и убывания функций (слайд 13):

    Теорема1.

    «Если функция f(x)  дифференцируема на интервале (a;b)  и  f/(x) >0 для всех  х (a;b), то функция возрастает на интервале (a;b)».

    Теорема2.

    «Если функция  f(x)  дифференцируема на интервале  (a;b)  и  f/(x) < 0 для всех  х (a;b), то функция убывает на интервале (a;b)».

    5) Первый тог этапа. Делается вывод, что первой цели мы достигли и выполняется 5 задач на готовых чертежах (в том числе пример №3, ранее казавшийся невыполнимым). (Слайды  14-18):

    http://festival.1september.ru/articles/549348/full_clip_image006.jpg

    №1. Непрерывная функция y=f(x) задана на [-10;11]. На рисунке изображён график её производной. Укажите количество промежутков возрастания функции.

    http://festival.1september.ru/articles/549348/full_clip_image008.jpg

    №2. Непрерывная функция y=f(x) задана на (-10;6). На рисунке изображён график её производной. Укажите количество промежутков убывания функции.

    http://festival.1september.ru/articles/549348/full_clip_image010.jpg

    №3. Непрерывная функция y=f(x) задана на (-6;8). На рисунке изображён график её производной. Укажите длину промежутка убывания этой функции.

    http://festival.1september.ru/articles/549348/full_clip_image012.jpg

    №4. Непрерывная функция y=f(x) задана на (-4;10). На рисунке изображён график её производной. Опишите последовательно типы монотонностей функции.

     

    По графику функции y=f ´(x) ответьте на вопросы:

    Сколько промежутков возрастания у этой функции?

    Найдите длину промежутка убывания этой функции.

    http://festival.1september.ru/articles/549348/full_clip_image004.jpg

    6) Организуется беседа с учащимися о возможности создания алгоритма. В ходе обсуждения  следует подвести их к выводу, что для того, чтобы исследовать функцию на монотонность, необязательно строить график производной, достаточно определить знаки производной на промежутках, на которые  некоторые особые точки разбивают область определения функции. Через фронтальное обсуждение фактически составляется алгоритм исследования непрерывной функции на монотонность  (слайд 19):

    Алгоритм.

    1. Указать область определения функции.
    2. Найти производную функции y=f(x).
    3. Определить промежутки, в которых f/(x) )>0 и  f / (x)<0.
    4. Сделать выводы о монотонности функции.

    5) Второй итог этапа:  Делается вывод, что достигнута и вторая цель

    6. Первичное закрепление во внешней речи (на доске 3 человека  и в распечатках)

    Решение примера по алгоритму  с проговариванием шагов алгоритма (Слайд 20):

    Найти промежутки возрастания и убывания функций: а) f(х) = х- 2х2;

                                                                                                 б) f(х) = 3+;  в) f(х) =

    а) Решение:

    1. D(f) = R
    2.  f/(x) = 4х- 4х,
    3.  f/(x)>0, если 4х- 4х >0,  х- х >0,  х(х-1)(х+1)>0        

     f/(x):      -          +           -               +

    f(х):      -1            0            1                  х

    1. Функция убывает на промежутках  (-∞;-1)]  и [(0; 1)]

             Функция возрастает на промежутках    [(-1; 0)]  и [(1; + ∞)]  

     7. Самостоятельная работа с самопроверкой по эталону .

         Выполнение заданий из учебника на отработку алгоритма (уровень самостоятельности и сложности дифференцированы в таблице конспекта для учащихся)

     (По окончании урока учитель проводит проверку выполненных заданий у желающих сдать свою работу)

     8. Рефлексия деятельности (итог урока)

           На этом этапе проговариваются выводы, сделанные учащимися в ходе практической работы, отмечаются позитивные моменты урока, и, обязательно, надо отметить то, что каждый ученик на уроке занимался исследовательской деятельностью, создавая свой интеллектуальный продукт.

        Добавляется, что разработанный алгоритм в ближайшее время будет уточнен. (имеется в виду: после изучения понятий об особых точках)

    9.Домашнее задание (Слайд 21)

            §49, стр. 257 (Выучить формулировки теорем и алгоритм исследования функции на монотонность) ,  №№ 900 (1,2,4),  902(3),  903(2), 956(1,4).

            Дополнительно: №№ 904,905.

    Приложения к конспекту:

    1. Карточки с  исследовательским заданием для работы в парах .
    2. Опорные конспекты для учащихся.

                         2. Слайд - презентация к уроку.

    РЕЗЕРВ: вспомнить случаи, когда выражение с переменной имеет постоянный знак на области своего определения:

    1. Суммы четных степеней либо заведомо положительных функций
    2. Неполные квадраты сумм и разностей двух чисел
    3. Показательные функции
    4. Квадраты и модули выражений либо им противоположные и др.
    5. Некоторые случаи с синусом и косинусом

    Группа 1.                          Исследовательская работа по теме:

    «Зависимость монотонности функции от знака её производной»

    Указания к работе:

    1. Найдите производную  функции  f(x) =  x4 -3x2 + 4. (График функции задан.)
    2. В этой же системе координат постройте график её производной.
    3. Рассмотрев графики, заполните таблицы  1 и 2 для функции и её производной.

    Таблица 1. Промежутки знакопостоянства (в нижней строке используйте знаки + и - )

    х

        f/(x) = 

    Таблица 2. Промежутки монотонности (в нижней строке используйте знаки  и )

    х

    f(x) =  x4 -3x2 + 4

    1. Сформулируйте гипотезу о связи знака производной функции с монотонностью функции.

                На промежутках, где f/(x) > 0 функция _________________________

      На промежутках, где f/(x) < 0 функция_________________________

    Группа 2.                          Исследовательская работа по теме:

    «Зависимость монотонности функции от знака её производной»

    Указания к работе:

    1. Найдите производную  функции  f(x) =  x4 +3x2 - 4. (График функции задан.)
    2. В этой же системе координат постройте график её производной.
    3. Рассмотрев графики, заполните таблицы  1 и 2 для функции и её производной.

    Таблица 1. Промежутки знакопостоянства (в нижней строке используйте знаки + и - )

    х

    f/(x) = 

    Таблица 2. Промежутки монотонности (в нижней строке используйте знаки  и )

    х

    f(x) =  x4 +3x2 - 4

    1. Сформулируйте гипотезу о связи знака производной функции с монотонностью функции.

                На промежутках, где f/(x) > 0 функция _________________________

      На промежутках, где f/(x) < 0 функция_________________________

    Группа 3.                          Исследовательская работа по теме:

    «Зависимость монотонности функции от знака её производной»

    Указания к работе:

    1. Найдите производную  функции  f(x) =  3 + 2х2 – х4. (График функции задан.)
    2. В этой же системе координат постройте график её производной.
    3. Рассмотрев графики, заполните таблицы  1 и 2 для функции и её производной.

    Таблица 1. Промежутки знакопостоянства (в нижней строке используйте знаки + и - )

    х

        f/(x) = 

    Таблица 2. Промежутки монотонности (в нижней строке используйте знаки  и )

    х

    f(x)  = 3 + 2х2 – х4

    1. Сформулируйте гипотезу о связи знака производной функции с монотонностью функции.

                 На промежутках, где f/(x) > 0 функция _________________________

       На промежутках, где f/(x) < 0 функция_________________________

    Группа 4.                          Исследовательская работа по теме:

    «Зависимость монотонности функции от знака её производной»

    Указания к работе:

    1. Найдите производную  функции  f(x) =  6х – 2х3 . (График функции задан.)
    2. В этой же системе координат постройте график её производной.
    3. Рассмотрев графики, заполните таблицы  1 и 2 для функции и её производной.

    Таблица 1. Промежутки знакопостоянства (в нижней строке используйте знаки + и - )

    х

           f/(x) = 

    Таблица 2. Промежутки монотонности (в нижней строке используйте знаки  и )

    х

    f(x) =  6х – 2х3

    1. Сформулируйте гипотезу о связи знака производной функции с монотонностью функции.

                На промежутках, где f/(x) > 0 функция _________________________

      На промежутках, где f/(x) < 0 функция_________________________

             


    По теме: методические разработки, презентации и конспекты

    Методическая разработка схемы конспекта урока-практикума по технологии для 4 класса (учебник и рабочая тетрадь Т. М Геронимус) Тема урока: "Каскад колокольчиков"

    Схема конспекта    урока-практикумапо технологиидля 4 класса Карточка    [[{"type":"media","view_mode":"media_large","fid":"4135195","attributes":{"alt":"","class":"media...

    Проверочная работа. 11 класс,учебник Ш.А.Алимова.

    "ПРОИЗВОДНАЯ СТЕПЕННОЙ ФУНКЦИИ,ПРАВИЛА ДИФФЕРЕНЦИРОВАНИЯ"....

    Конспект урока по теме «Понятие вектора», 9 класс, учебник Л.С. Атанасян

    Конспект урока по теме «Понятие вектора», 9 класс, учебник Л.С. АтанасянЦель: создать условия для работы учащихся над понятиями и их определениями (определение вектора, изображение и обозначение векто...

    методическая разработка урока "Признаки возрастания и убывания функции. Точки экстремума"

    методическая разработка урока математики для студентов 1 курса СПО...

    Разработка урока по алгебре "Степенная функция, ее график и свойства" 10 класс, учебник Ш.А.Алимова

    Класс: 10Предмет: алгебра и начала математического анализа.Тема: «Степенная функция, ее свойства и график»Тип урока: изучение нового материала....

    План- конспект урока по столярному делу для 7 класса. Учебник Б.А.Журавлёв. "Столярное дело" 7-8 класс

    План урокаПо предмету: Столярное дело в  VII  классеНа «___»  ______________  20_____   годаТема раздела:   Непрозрачная отделка столярных изделий.Т...