Учебно-методическое пособие Решение задач по цитологии
материал для подготовки к егэ (гиа) по биологии (11 класс) на тему

Денисова Людмила Ивановна

Приводятся прмеры решения различных типов задач по цитологии

Скачать:

ВложениеРазмер
Файл reshenie_zadach_po_tsitologii.docx600.09 КБ

Предварительный просмотр:

 РЕШЕНИЕ  ЗАДАЧ ПО ЦИТОЛОГИИ

Учебно-методическое пособие                  

                                                           

Новое Аделяково 2014

Составитель: учитель биологии Л.И. Денисова

Решение задач по цитологии. Для учащихся 9-11 классов / ГБОУ СОШ с.Новое Аделяково»; сост. Л.И.Денисова. –  Новое Аделяково , 2014.

Учебно-методическое пособие составлено с целью использования учителями биологии и обчающимися при подготовке к итоговой аттестации, а так же к олимпиадам по биологии. Пособие содержит краткий теоритический материал по каждому типу задач и примеры решения задач. Предназначено для обучающихся 9-11 классов общеобразовательных учреждений и учителей биологии.

РЕКОМЕНДОВАНО:

методической комиссией естественно-математического цикла

«_____» ноября 2012 г.

Председатель комиссии

______Л.А. Пашковская

ОБСУЖДЕНО:

на заседании педагогического совета школы

протокол №_______ от

«_____» ноября 2012 г.

УТВЕРЖДЕНО:

и. о. директора МБОУ «Новостроевская СОШ»

________С.В. Шулепова

«_____» ноября 2012 г.

Содержание:

Введение……………………………………………………………..

Глава 1. Общие рекомендации.

1.1  Основные моменты,  которые необходимо помнить при решения задач по цитологии.

1.2. Письменное оформление  решения задач.

Глава2. Типы задач по цитологии.

2.1 Задачи, связанные с определением процентного содержания нуклеотидов в ДНК

2.2. Расчетные задачи, посвященные определению количества аминокислот в белке, а также количеству нуклеотидов и триплетов в ДНК или РНК.

2.3. Задачи на построение молекулы и-РНК, антикодонов т-РНК и последовательности аминокислот в полипептидной цепи. Работа  с таблицей генетического кода.

2.4.Задачи  на определение количества молекул ДНК и хромосом  в  процессе митоза и мейоза.

2.5. Задачи на определение длины отдельного участка ДНК или количества нуклеотидов в нем.

Глава 4. Примеры задач для самостоятельного решения.

Литература.

Введение.

Решение задач по цитологии входит в КИМ по биологии в ЕГЭ (39 задание). Выполнение этого задания предусматривают развернутый ответ и направлены на проверку умений

  • применять знания в новой ситуации;
  • устанавливать причинно-следственные связи;
  • анализировать, систематизировать и интегрировать знания;
  • обобщать и формулировать выводы.

По результатам анализа итогов ЕГЭ по биологии  к числу слабо сформированных у участников экзамена знаний и умений можно отнести следующие:

  1. определение хромосомного набора клеток в циклах развития растений;
  2. определение числа хромосом и ДНК в клетках в разных фазах митоза и мейоза;
  3. объяснение и обоснование полученного результата.

При изучении биологии на базовом уровне, недостаточно времени на практическую отработку решения задач по цитологии. После прохождения соответствующих тем, без постоянного повторения  практической отработки решения задач, навыки быстро забываются. Учащиеся могут иметь данное пособие всегда под рукой  для того чтобы вспомнить ход решения типовых задач. Тем более в сельской местности не у всех есть свободный доступ к Интернет ресурсам.

Задачи по цитологии, которые встречаются в ЕГЭ, можно разбить на несколько основных типов. В данном пособии предложены решения задач разных типов и приведены примеры для самостоятельной работы. В приложении дана таблица генетического кода, используемая при решении.

Данное учебно-методическое пособие составлено в помощь учителям биологии, обучающимся 9-11 классов общеобразовательных школ.

Глава 1. Общие рекомендации.

1.1  Основные моменты,  которые необходимо помнить при решения задач по цитологии.

  1. Каждая аминокислота доставляется к рибосомам одной тРНК, следовательно, количество аминокислот в белке равно количеству молекул тРНК, участвовавших в синтезе белка;
  2. каждая аминокислота кодируется тремя нуклеотидами (одним триплетом, или кодоном), поэтому количество кодирующих нуклеотидов всегда в три раза больше, а количество триплетов (кодонов) равно количеству аминокислот в белке;
  3. каждая тРНК имеет антикодон, комплементарный кодону иРНК, поэтому количество антикодонов, а значит и в целом молекул тРНК равно количеству кодонов иРНК;
  4. иРНК комплементарна одной из цепей ДНК, поэтому количество нуклеотидов иРНК равно количеству нуклеотидов ДНК. Количество триплетов, разумеется, также будет одинаковым.

При решении ряда задач данного раздела необходимо пользоваться таблицей генетического кода. Правила пользования таблицей обычно указываются в задании, но лучше научиться этому заранее. Для определения аминокислоты, кодируемой тем или иным триплетом, необходимо выполнить следующие действия:

  1. первый нуклеотид триплета находим в левом вертикальном ряду,
  2. второй - в верхнем горизонтальном,
  3. третий - в правом вертикальном ряду.
  4. соответствующая триплету аминокислота находится в точке пересечения воображаемых линий, идущих от нуклеотидов.

1.2. Письменное оформление  решения задач.

Дано:

Решение:

Определить:

Ответ:

Важным моментом при решении заданий  является объяснение выполняемых действий, особенно если в задаче так и написано: «Ответ поясните». Наличие пояснений позволяет проверяющему сделать вывод о понимании учащимся данной темы, а их отсутствие может привести к потере очень важного балла. Задание 39 оценивается в три балла, которые начисляются в случае полностью верного решения. Поэтому, приступая к задаче, в первую очередь необходимо выделить все вопросы. Количество ответов должно им соответствовать.

Глава2. Типы задач по цитологии.

2.1 Задачи, связаные с определением процентного содержания нуклеотидов в ДНК

Еще до открытия Уотсона и Крика, в 1950 г. австралийский биохимик Эдвин Чаргафф установил, что в ДНК любого организма количество адениловых нуклеотидов равно количеству тимидиловых, а количество гуаниловых нуклеотидов равно количеству цитозиловых нуклеотидов (А=Т, Г=Ц), или суммарное количество пуриновых азотистых оснований равно суммарному количеству пиримидиновых азотистых оснований (А+Г=Ц+Т). Эти закономерности получили название «правила Чаргаффа».

Дело в том, что при образовании двойной спирали всегда напротив азотистого основания аденин в одной цепи устанавливается азотистое основание тимин в другой цепи, а напротив гуанина – цитозин, то есть цепи ДНК как бы дополняют друг друга. А эти парные нуклеотиды комплементарны друг другу (от лат. complementum – дополнение).

Почему же этот принцип соблюдается? Чтобы ответить на этот вопрос, нужно вспомнить о химической природе азотистых гетероциклических оснований. Аденин и гуанин относятся к пуринам, а цитозин и тимин – к пиримидинам, то есть между азотистыми основаниями одной природы связи не устанавливаются. К тому же комплементарные основания соответствуют друг другу геометрически, т.е. по размерам и форме.  Таким образом, комплементарность нуклеотидов – это химическое и геометрическое соответствие структур их молекул друг другу.

В азотистых основаниях имеются сильноэлектроотрицательные атомы кислорода и азота, которые несут частичный отрицательный заряд, а также атомы водорода, на которых возникает частичный положительный заряд. За счет этих частичных зарядов возникают водородные связи между азотистыми основаниями антипараллельных последовательностей молекулы ДНК.

Задача. В молекуле ДНК насчитывается 23% адениловых нуклеотидов от общего числа нуклеотидов. Определите количество тимидиловых и цитозиловых нуклеотидов.

Дано:

В молекуле ДНК – 23% адениловых нуклеотидов

Решение:

1. По правилу Чаргаффа находим содержание тимидиловых нуклеотидов в данной молекуле ДНК: А=Т=23%.

 2. Находим сумму (в %) содержания адениловых и тимидиловых нуклеотидов в данной молекуле ДНК: 23% + 23% = 46%.

 3. Находим сумму (в %) содержания гуаниловых и цитозиловых нуклеотидов в данной молекуле ДНК: 100% – 46% = 54%.

 4. По правилу Чаргаффа, в молекуле ДНК Г=Ц, в сумме на их долю приходится 54%, а по отдельности: 54% : 2 = 27%.

Определить:

Количество тимидиловых и цитозиловых нуклеотидов.

Ответ: Т=23%; Ц=27%

Задача  Дана молекула ДНК с относительной молекулярной массой 69 тыс., из них 8625 приходится на долю адениловых нуклеотидов. Относительная молекулярная масса одного нуклеотида в среднем 345. Сколько содержится нуклеотидов по отдельности в данной ДНК? Какова длина ее молекулы?

Дано:

M(r) ДНК – 69000

Кол-во А – 8625

M(r) нуклетида – 345

Определить:

Кол-во нуклетидов в

ДНК

Решение:

1. Определяем, сколько адениловых нуклеотидов в данной молекуле ДНК: 8625 : 345 = 25.

 2. По правилу Чаргаффа, А=Г, т.е. в данной молекуле ДНК А=Т=25.

 3. Определяем, сколько приходится от общей молекулярной массы данной ДНК на долю гуаниловых нуклеотидов: 69 000 – (8625х2) = 51 750.

 4. Определяем суммарное количество гуаниловых и цитозиловых нуклеотидов в данной ДНК: 51 750:345=150.

 5. Определяем содержание гуаниловых и цитозиловых нуклеотидов по отдельности: 150:2 = 75;

 6. Определяем длину данной молекулы ДНК: (25 + 75) х 0,34 = 34 нм.

Ответ: А=Т=25; Г=Ц=75; 34 нм.

2.2. Расчетные задачи, посвященные определению количества аминокислот в белке, а также количеству нуклеотидов и триплетов в ДНК или РНК. 

  • Аминокислоты, необходимые для синтеза белка, доставляются в рибосомы с помощью т-РНК. Каждая молекула т-РНК переносит только одну аминокислоту.
  • Информация о первичной структуре молекулы белка зашифрована в молекуле ДНК.
  • Каждая аминокислота зашифрована последовательностью из трех нуклеотидов. Эта последовательность называется триплетом или кодоном.

Задача: в трансляции участвовало 30 молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

Дано:

Кол-во т-РНК - 30

Решение:

  1. Если в синтезе участвовало 30 т-РНК, то они перенесли 30 аминокислот.
  2. Одна аминокислота кодируется одним триплетом, значит число триплетов -30
  3. Один триплет – 3 нуклеотида, 3х30=90 нуклеотидов

Определить:

Кол-во а/к

Число триплетов

Число нуклеотидов

Ответ: Кол-во а/к – 30. Число триплетов – 30. Число нуклеотидов – 90.

Задача: По мнению некоторых ученых общая длина всех молекул ДНК в ядре одной половой клетки человека составляет около 102 см. Сколько всего пар нуклеотидов содержится в ДНК одной клетки (1 нм = 10–6 мм)?

Дано:

Длина ДНК – 102 см

Длина 1

нуклеотида – 0,34 нм.

Решение:

1. Переводим сантиметры в миллиметры и нанометры: 102 см = 1020 мм = 1 020 000 000 нм.

2. Зная длину одного нуклеотида (0,34 нм), определяем количество пар нуклеотидов, содержащихся в молекулах ДНК гаметы человека: (102 х 107) : 0,34 = 3 х 109 пар.

Определить:

Кол-во пар нуклетидов в ДНК

Ответ: 3х109 пар.

2.3. Задачи на построение молекулы и-РНК, антикодонов т-РНК и последовательности аминокислотв полипептидной цепи. Работа  с таблицей генетического кода.

  • Транскрипция (от лат. transcriptio — переписывание) — синтез РНК с использованием ДНК в качестве матрицы..
  • Транскрипция осуществляется по правилу комплементарности.
  • Трансля́ция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой
  • Молекула т-РНК синтезируется на ДНК по правилу комплементарности.
  • Не забудьте, что в состав РНК вместо тимина входит урацил.
  • Антикодон — это последовательность из трех нуклеотидов, комплементарных нуклеотидам кодона в и-РНК. В состав т-РНК и и-РНК входят одни те же нуклеотиды.
  • C:\Users\Людмила\Desktop\56c0967db6968.jpg 

Задача: В состав РНК вместо тимина входит урацил. В биосинтезе белка участвовали т-РНК с антикодонами: УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ. Определите нуклеотидную последовательность участка каждой цепи молекулы ДНК, который несет информацию о синтезируемом полипептиде, и число нуклеотидов, содержащих аденин, гуанин, тимин, цитозин в двухцепочечной молекуле ДНК

Дано:

 т-РНК  - УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ

Решение:

  1. Антикодоны т-РНК комплементарны кодонам и-РНК, а последовательность нуклеотидов и-РНК комплементарна одной из цепей ДНК.
  2. т-РНК: УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ
  3. и-РНК: ААУ-ЦЦГ-ГЦГ-УАА-ГЦА
  4. 1 цепь ДНК: ТТА-ГГЦ-ЦГЦ-АТТ-ЦГТ
  5. 2 цепь ДНК: ААТ-ЦЦГ-ГЦГ-ТАА-ГЦА.
  6. В молекуле ДНК:

Число А=Т=7,  число Г=Ц=8

Определить:

 -    нуклеотидную последовательность участка каждой цепи молекулы ДНК

- число нуклеотидов, содержащих аденин, гуанин, тимин, цитозин в молекуле ДНК

Задача: фрагмент одной из цепей ДНК имеет следующее строение: ААГГЦТАЦГТТГ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка.

Дано:

 Фрагмент  одной цепи ДНК – ААГГЦТАЦГТТГ

Решение:

  1. По правилу комплементарности определяем фрагмент и-РНК
  2. Разбиваем его на триплеты: УУЦ-ЦГА-УГЦ-ААУ.
  3. По таблице генетического кода определяем последовательность аминокислот: фен-арг-цис-асн.

Определить:

- нуклеотидную последовательность и-РНК                 - последовательность  аминокислот во фрагменте молекулы белка.

Ответ: фен-арг-цис-асн.

Задача: В пробирку поместили рибосомы из разных клеток, весь набор аминокислот и одинаковые молекулы и-РНК и т-РНК, создали все условия для синтеза белка. Почему в пробирке будет синтезироваться один вид белка на разных рибосомах.

Дано:

 Одинаковые молекулы и-РНК и т-РНК, рибосомы из разных клеток, весь набор аминокислот

Решение:

  1. Матрицей для синтеза белка является молекула и-РНК, а они в пробирке одинаковые.
  2.  К месту синтеза белка т-РНК транспортируют аминокислоты в соответствии с кодонами и-РНК

Определить:

Почему в пробирке будет синтезироваться один вид белка на разных рибосомах.

Ответ: На одной и-РНК синтезируется один и тот же белок, так как информация одна и та же.

  •  Задача: фрагмент и-РНК имеет следующее строение: ГАУГАГУАЦУУЦААА. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК.

Дано:

фрагмент и-РНК - ГАУГАГУАЦУУЦААА

  1. Решение:
  2. Разбиваем и-РНК на триплеты ГАУ-ГАГ-УАЦ-УУЦ-ААА.
  3. По таблице генетического кода определяем последовательность аминокислот - : асп-глу-тир-фен-лиз
  4. Антикодоны т-РНК определяем по правилу комплементарности: ЦУА, ЦУЦ, АУГ, ААГ, УУУ
  5. По правилу комплементарности определяем фрагмент ДНК – ЦТАЦТЦАТГААГТТТ.

 Определить:

- антикодоны т-РНК

-последовательность аминокислот

- фрагмент молекулы ДНК

Ответ : Последовательность аминокислот - : асп-глу-тир-фен-лиз.  Антикодоны т-РНК - ЦУА, ЦУЦ, АУГ, ААГ, УУУ. Фрагмент ДНК – ЦТАЦТЦАТГААГТТТ

2.4.Задачи  на определение количества молекул ДНК и хромосом  в  процессе митоза и мейоза.

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2.

Пресинтетический период (2n 2c, где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c) — репликация ДНК.

ВНИМАНИЕ!

После удвоения хромосомный набор остаётся диплоидным (2n), так как сестринские хроматиды остаются соединёнными в области центромеры.

C:\Users\Людмила\Desktop\slide_8.jpg

Постсинтетический период (2n 4c) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Профаза (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

Метафаза (2n 4c) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

Мейоз — это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c) образуются две гаплоидные (1n 2c).

Интерфаза 1 (в начале — 2n 2c, в конце — 2n 4c) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер.

C:\Users\Людмила\Desktop\760137_html_m599353d4.png

Метафаза 1 (2n 4c) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза 1 (2n 4c) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным.

Интерфаза 2, или интеркинез (1n 2c), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

http://bio-faq.ru/zubr/zubr093_pic001.jpg

Задача: У крупного рогатого скота в соматических клетках 60 хромосом. Определите число хромосом и молекул ДНК в клетках яичников в интерфазе перед началом деления и после деления мейоза I. Объясните, как образуется такое количество хромосом и молекул ДНК.

Дано:

в соматических клетках 60 хромосом

  1. Гаплоидный набор n = 30
  2. В интерфазе происходит удвоение хромосом -  2n4c -  2х30, 4х30 = 60хромосом и 120  молекул ДНК
  3. После мейозаI - 2n4c : 2 = 1n2с – одинарный набор двойных хромосом, это – 30 хромосом и 60 молекул ДНК

Определить:

 число хромосом и молекул ДНК в клетках яичников:

- в интерфазе

- поcле мейозаI

Ответ: В интерфазе - 60хромосом и 120  молекул ДНК. После мейозаI – 30 хромосом и 60 молекул ДНК.

Задача: Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в ядре (клетке) семязачатка перед началом мейоза I и мейоза II. Объясните результаты в каждом случае.

Дано:

Хромосомный набор соматических клеток = 28

Решение:

  1. Гаплоидный набор (n) = 14
  2. Перед началом мейоза I - 2n4c = 28 хромосом, 56 молекул ДНК
  3. В первом делении мейоза количество хромосом уменьшается в 2 раза, но они остаются двойными - 1n2c = 14 хромосом, 28 молекул ДНК.

Определить:

 хромосомный набор и число молекул ДНК в ядре семязачатка:

- перед началом мейоза I

-  мейоза II.

Ответ:  Перед началом мейоза I = 28 хромосом, 56 молекул ДНК.  Перед началом мейоза II = 14 хромосом, 28 молекул ДНК

Задача: Известно, что в соматических клетках капусты содержится 18 хромосом. Определите хромосомный набор и число молекул ДНК в одной из клеток семязачатка перед началом мейоза, в анафазе мейоза I и в анафазе мейоза II. Объясните, какие процессы происходят в эти периоды и как они влияют на изменение числа ДНК и хромосом.

Дано:

 в соматических клетках капусты - 18 хромосом

Гаплоидный набор n = 9

Перед началом мейоза 2n4c =18 хромосом, 36 молекул ДНК.

В анафазе мейоза I происходит расхождение двойных хромосом, но все хромосомы все еще находятся в одной клетке  - 18 хромосом, 36 молекул ДНК.

В анафазе II 18 одинарных хромосом еще находятся в одной клетке (18 хромосом, 18 молекул ДНК).

хромосомный набор и число молекул ДНК:

- перед началом мейоза,

- в анафазе мейоза I

- в анафазе мейоза II

Ответ: Перед началом мейоза  - 18 хромосом, 36 молекул ДНК. В анафазе мейоза I - 18 хромосом, 36 молекул ДНК. В анафазе  - 18 хромосом, 18 молекул ДНК.

2.5. Задачи на определение длины отдельного участка ДНК или количества нуклеотидов в нем.

Согласно модели американского биохимика Дж.Уотсона и английскогоо физика Ф. Крика,  молекулы ДНК представляют собой две правозакрученные вокруг общей оси полинуклеотидных цепи, или двойную спираль. На один виток спирали приходится примерно 10 нуклеотидных остатков. Цепи в этой двойной спирали антипараллельны, то есть направлены в противоположные стороны, так что 3'-конец одной цепи располагается напротив 5'-конца другой.  Размеры молекул ДНК обычно выражаются числом образующих их нуклеотидов. Эти размеры варьирует от нескольких тысяч пар нуклеотидов у бактериальных плазмид и некоторых вирусов до многих сотен тысяч пар нуклеотидов у высших организмов.

          C:\Users\Людмила\Desktop\DNA03.jpg

Линейная длина одного нуклеотида в нуклеиновой кислоте

 l н = 0,34 нм = 3,4 ангстрем

 

Средняя молекулярная масса одного нуклеотида

 Mr н = 345 а.е.м. (Da)

Задача. Контурная длина молекулы ДНК бактериофага составляет 17x10'6 м. После воздействия на него мутагенами длина оказалась 13,6x10-6 м. Определите, сколько пар азотистых оснований выпало в результате мутации, если известно, что расстояние между соседними нуклеотидами составляет 34x1011 м.

Дано:

Контурная длина молекулы ДНК - 17x10'6 м

После воздействия - 13,6x10-6 м

Расстояние между соседними нуклеотидами составляет  - 34x1011 м.

Решение.

1)        Вычислим общую длину отрезка ДНК бактериофага выпавшего в результате воздействия мутагенами. 17x10'6 - 13,6x106 = 3,4x10 6(м).

2)        Вычислим количество пар нуклеотидов в выпавшем фрагменте:

3,4x10-6 / 34x10'11 = 104 = 10 ООО (пар нуклеотидов)

Определить:

сколько пар азотистых оснований выпало в результате мутации

Ответ: 10 тысяч пар нуклеотидов.

         

Глава 4. Примеры задач для самостоятельного решения.

  1. В молекуле ДНК содержится 31% аденина. Определите, сколько (в %) в этой молекуле содержится других нуклеотидов.
  2. В трансляции участвовало 50 молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.
  3. Фрагмент ДНК состоит из 72 нуклеотидов. Определите число триплетов и нуклеотидов в иРНК, а также количество аминокислот, входящих в состав образующегося белка.
  4. Фрагмент одной из цепей ДНК имеет следующее строение: ГГЦТЦТАГЦТТЦ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка (для этого используйте таблицу генетического кода).
  5. Фрагмент и-РНК имеет следующее строение: ГЦУААУГУУЦУУУАЦ. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).
  6. Фрагмент ДНК имеет следующую последовательность нуклеотидов АГЦЦГАЦТТГЦЦ. Установите нуклеотидную последовательность т-РНК, которая синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК, если третий триплет соответствует антикодону т-РНК. Для решения задания используйте таблицу генетического кода.
  7. В клетке животного диплоидный набор хромосом равен 20. Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.
  8. В диссимиляцию вступило 15 молекул глюкозы. Определите количество АТФ после гликолиза, после энергетического этапа и суммарный эффект диссимиляции.
  9. В цикл Кребса вступило 6 молекул ПВК. Определите количество АТФ после энергетического этапа, суммарный эффект диссимиляции и количество молекул глюкозы, вступившей в диссимиляцию.

Ответы:

  1. Т=31%, Г=Ц= по 19%.
  2. 50 аминокислот, 50 триплетов, 150 нуклеотидов.
  3. 24 триплета, 24 аминокислоты, 24 молекулы т-РНК.
  4. и-РНК: ЦЦГ-АГА-УЦГ-ААГ. Аминокислотная последовательность: про-арг-сер-лиз.
  5. Фрагмент ДНК: ЦГАТТАЦААГАААТГ. Антикодоны т-РНК: ЦГА, УУА, ЦАА, ГАА, АУГ. Аминокислотная последовательность: ала-асн-вал-лей-тир.
  6. т-РНК: УЦГ-ГЦУ-ГАА-ЦГГ. Антикодон ГАА, кодон и-РНК — ЦУУ, переносимая аминокислота — лей.
  7. 2n=20. Генетический набор:
  1. перед митозом 40 молекул ДНК;
  2. после митоза 20 молекулы ДНК;
  3. после первого деления мейоза 20 молекул ДНК;
  4. после второго деления мейоза 10 молекул ДНК.
  1. Поскольку из одной молекулы глюкозы образуется 2 молекулы ПВК и 2АТФ, следовательно, синтезируется 30 АТФ. После энергетического этапа диссимиляции образуется 36 молекул АТФ (при распаде 1 молекулы глюкозы), следовательно, синтезируется 540 АТФ. Суммарный эффект диссимиляции равен 540+30=570 АТФ.
  2. В цикл Кребса вступило 6 молекул ПВК, следовательно, распалось 3 молекулы глюкозы. Количество АТФ после гликолиза — 6 молекул, после энергетического этапа — 108 молекул, суммарный эффект диссимиляции 114 молекул АТФ.

Литература:

Контрольные задания по генетике и методические рекомендации к их выполнению. [сост. Л.И. Лушина, С.В. Залящев, А.А. Семенов, О.Н.Носкова]. – Самара: СГПУ, 2007, 142с.

http://ege-study.ru

http://licey.net

http://reshuege.ru

http://www.fipi.ru

Приложение I Генетический код (и-РНК)

Первое основание

Второе основание

Третье основание

У

Ц

А

Г

У

Фен

Сер

Тир

Цис

У

Фен

Сер

Тир

Цис

Ц

Лей

Сер

— 

-

А

Лей

Сер

-

Три

Г

Ц

Лей

Про

Гис

Арг

У

Лей

Про

Гис

Арг

Ц

Лей

Про

Глн

Арг

А

Лей

Про

Глн

Арг

Г

А

Иле

Тре

Асн

Сер

У

Иле

Тре

Асн

Сер

Ц

Иле

Тре

Лиз

Арг

А

Мет

Тре

Лиз

Арг

Г

Г

Вал

Ала

Асп

Гли

У

Вал

Ала

Асп

Гли

Ц

Вал

Ала

Глу

Гли

А

Вал

Ала

Глу

Гли

Г


По теме: методические разработки, презентации и конспекты

Задачи по цитологии для подготовки к ЕГЭ по биологии

В презентации представлены несколько типов задач, включенных в задания ЕГЭ по биологии: в части А - А27, А28 и в части С - С5....

«Особенности решения и оформления задач по цитологии»

В данной статье дан алгоритм решения и оформления задач по биологи типа С-5...

Задачи по цитологии

Задачи по цитологии для подготовки к ЕГЭ...

Подготовка к ЕГЭ: решение задач по цитологии

Подготовка к ЕГЭ: решение задач по цитологии...

Решение биологических задач по цитологии и генетике

Данный материал показывает правилв решения задач по цитологии и генетике...

Задачи по цитологии по теме "Биосинтез белка" (10 класс)

Задания представлены в 2 варианта (в каждом по 5 задач). Аналогичны заданиям 36 и 40  части 2 ЕГЭ по заданной теме. Можно использовать в качестве закрепления материала или на контроль знаний....

Учебно-методическое пособие "Текстовые задачи".

Данный элективный курс рассчитан в первую оче­редь на учащихся, желающих расширить и углубить свои знания по математике, сделать правильный вы­бор профиля обучения в старших классах и качест...