Великий Пифагор
творческая работа учащихся по геометрии (8 класс) по теме
Презентация к уроку по геометрии 8 класс. Тема "Пифагор и его теорема".
Скачать:
Вложение | Размер |
---|---|
pifagor.pptx | 852.54 КБ |
Предварительный просмотр:
Подписи к слайдам:
“ Геометрия владеет двумя сокровищами: одно из них - это теорема Пифагора, а другое - деление отрезка в среднем и крайнем отношении… Первое можно сравнить с мерой золота; второе же больше напоминает драгоценный камень”. Иоганн Кеплер 2
Родился Пифагор где-то между 600 и 590 гг. до Рождества Христова и жил около ста лет. Много странных легенд дошло до наших дней о его рождении. Некоторые из них утверждают, что он не был обычным смертным человеком, а был одним из богов, принявших человеческий облик для того, чтобы войти в мир и учить человечество. 3 Бог-Творец как геометр Легенда о рождении Пифагора
№ Историческое место дата 1 Древний Китай (математическая книга Чу-пей) ~2400 г. до н. э. 2 Древний Египет (гарпедонапты или "натягиватели веревок") 2300 г. до н. э. 3 Вавилон ( Хаммураби ) 2000 г. до н. э. 4 Древняя Индия (сборник Сульвасутра ) 600 г. до н. э. 5 Пифагор 570 г. до н. э. 4 Хронология развития теоремы до Пифагора:
Исторический обзор начнём с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4". 5
Насчитывается более пятисот доказательств теоремы. Благодаря такому количеству доказательств теорема Пифагора попала в Книгу рекордов Гиннеса как теорема с наибольшим количеством доказательств. Это говорит о неослабевающем интересе к ней со стороны широкой математической общественности. Теорема Пифагора послужила источником для множества обобщений и плодородных идей. Глубина этой древней истины, по-видимому, далеко не исчерпана. 6
Приведём различные формулировки теоремы Пифагора в переводе с греческого, латинского и немецкого языков. 7
Существует три формулировки теоремы Пифагора: 1. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. 2. Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах. 3. Квадрат, построенный на гипотенузе прямоугольного треугольника, равносоставлен с квадратами, построенными на катетах. 8
9 Теорема Пифагора – важнейшее утверждение геометрии. Даже те, кто в своей жизни навсегда «распрощался» с математикой, сохраняют воспоминания о «пифагоровых штанах». Причина такой популярности теоремы Пифагора объясняется её простотой, красотой, значимостью.
Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах. 10 Доказательство Пифагора
11 Доказательство Эпштейна Дано: ABC - прямоугольный треугольник с прямым углом С; С∈EF; PO||EF; MN||EF; CD⊥EF. Доказать: квадрат на гипотенузе равен сумме квадратов, построенных на катетах Доказательство. Треугольники 1 совпадают при повороте друг друга на 90° ⇒ они равны. Треугольники 2 совпадают при осевом отображении относительно оси EF и параллельном переносе, т.е. они тоже равны. При параллельных переносах и поворотах совпадают и все остальные треугольники, т.е. они тоже равны между собой. Из всего этого следует, что квадрат на гипотенузе равен сумме квадратов, построенных на катетах. Теорема доказана.
12 7. Другие доказательства. Доказательство с помощью косинуса угла. Пусть АВС – данный прямоугольный треугольник с прямым углом С. Проведем высоту СD из вершины прямого угла С. По определению косинуса угла cosA=AD/AC=AC/AB. Отсюда АВ*AD=AC*АС. Аналогично cos B=BD/BC=BC/AB. Отсюда АВ*BD=BC*BC. Складывая полученные результаты почленно и замечая, что AD+DB=AB, получим: AC*AC + BC*BC = AB*AB. Теорема доказана.
Занимательные задачи по теме: "Теорема Пифагора". 13
На берегу реки рос тополь одинокий. Вдруг ветра порыв его ствол надломал. Бедный тополь упал. И угол прямой с теченьем реки его ствол составлял. Запомни теперь, что в том месте река в четыре лишь фута была широка. Верхушка склонилась у края реки, осталось три фута всего от ствола. Прошу тебя, скоро теперь мне скажи: у тополя как велика высота? 14 Задача индийского математика XII в. Бхаскары
Задача Бхаскары Решение. Пусть CD – высота ствола. BD = АВ По теореме Пифагора имеем АВ = 5 . CD = CB + BD, CD = 3 + 5 =8. Ответ: 8 футов. 15
Практическое применение теоремы Пифагора 16
Считать приложения теоремы Пифагора только теоретическими - большая ошибка. Заметим, что расчёт площади кровли можно заметно упростить, если воспользоваться одним очень простым правилом, справедливым во всех случаях, когда все скаты крыши, сколько бы их ни было, имеют одинаковый уклон. Оно гласит: "Чтобы найти поверхность крыши, все скаты которой имеют равный уклон, нужно умножить перекрываемую площадь на длину какого-нибудь стропила и разделить полученное произведение на проекцию этого стропила на перекрываемую площадь." 17
В романской архитектуре часто встречается мотив, представленный на рисунке. Если b по-прежнему обозначает ширину окна, то радиусы полуокружностей будут равны R = b / 2 и r = b / 4. Радиус p внутренней окружности можно вычислить из прямоугольного треугольника, изображенного на рис. пунктиром p = b /6. 18
Пифагоровы тройки 19
Изучение свойств натуральных чисел привело пифагорейцев к ещё одной «вечной» проблеме теоретической арифметики (теории чисел) — проблеме, ростки которой пробивались задолго до Пифагора в Древнем Египте и Древнем Вавилоне, а общее решение не найдено и поныне. Начнем с задачи, которую в современных терминах можно сформулировать так: решить в натуральных числах неопределенное уравнение а 2 + b 2 = c 2 . 20
Сегодня эта задача именуется задачей Пифагора, а её решения — тройки натуральных чисел, удовлетворяющих уравнению (а 2 + b 2 = c 2 )— называются пифагоровыми тройками. В силу очевидной связи теоремы Пифагора с задачей Пифагора последней можно дать геометрическую формулировку: найти все прямоугольные треугольники с целочисленными катетами а, b и целочисленной гипотенузой c . 21
Эти тройки можно найти по формулам: b =( a 2 -1)/2, c =( a 2 +1)/2. а 3 5 6 7 9 11 13 15 17 19 21 39 b 4 12 8 24 40 60 84 112 144 180 20 80 c 5 13 10 25 41 61 85 113 145 181 29 89 22 Пифагоровы числа обладают рядом интересных особенностей, которые мы перечислим без доказательств: Один из «катетов» должен быть кратным трём. Один из «катетов» должен быть кратным четырём. Одно из пифагоровых чисел должно быть кратно пяти.
Эпилог. Вечный кладезь мудрости. 23
И чем дальше неумолимое время уносит нас от времени Пифагора, тем острее видится поразительная прозорливость эллинского мудреца, объявившего два с половиной тысячелетия назад, что «Всё есть число». Если снять с этого тезиса мистическую паутину, то нам откроется гениальное пророчество, определившее весь последующий путь развития науки. Тогда древний пифагорейский тезис примет современное звучание: математика есть ключ к познанию всех тайн природы. 24
Именно так определяет роль Пифагора в истории естествознания современный американский математик и историк науки М. Клайн : «Но то ли по счастливому стечению обстоятельств, то ли благодаря гениальной интуиции пифагорейцам удалось сформулировать два тезиса, общезначимость которых подтвердило всё последующее развитие науки: во-первых, что основополагающие принципы, на которых зиждется мироздание, можно выразить на языке математики; во-вторых, что объединяющим началом всех вещей служат числовые отношения, которые выражают гармонию и порядок природы». 25
Самосская монета с изображением Пифагора. II - III вв. Прорисовка. Конечно, это не портрет Пифагора, а обобщённый образ учёного. 26
По теме: методические разработки, презентации и конспекты
Классный час "Путешествие в прошлое.Великий математик-Пифагор Самосский"
Конспект классного часа для 5 класса коррекционной школы VIII вида"...
Реферат по теме "Великий Пифагор"
Реферат ученицы 8 класса по теме "Великий Пифагор"....
Методический материал к урокам математики "Великие достижения. Великие люди. Великие награды"
Филдсовская премия (и медаль) являются самой престижной наградой в математике. По этой причине, а также потому, что Нобелевская премия математикам не вручается, Филдсовскую премию часто называют...
Додатковий позаурочний матеріал з математики з теми: «Великі досягнення. Великі люди. Великі нагороди».
Додатковий позаурочний матеріал з математики зтеми: «Великі досягнення. Великі люди. Великі нагороди».Мета:1.Навчальна:· додати нову інформа...
8 класс - Пифагор теоремасы. Грек галиме-Пифагор
Дәрес планы.1.Оештыру моменты.2.Актуальләштерү.3.Дәрес темасын һәм максатын әйтү.4. Яңа дәрес материалын аңлату.5. Яңа дәрес материалын ныгыту.6. Физкультминут.7.Язма эш.8. Дәресне йомгаклау.9. Өй эше...
О великом Пифагоре
О великом Пифагоре...
Внеклассное мероприятие по математике устный журнал « Великий Пифагор».
Внеклассное мероприятие «Устный журнал» приоткроет занавес и вы узнаете о жизни, творчестве великого ученого, имя которого Пифагор. Пифагор Самосский – один из...