Рабочая программа по математике 10 класс
рабочая программа по математике (10 класс)
Рабочая программа предназначена для учителей работающих в 10 классе
Скачать:
| Вложение | Размер |
|---|---|
| 54.11 КБ |
Предварительный просмотр:
РАССМОТРЕНА: на заседании ШМО МКОУ «Кульбакинская средняя общеобразовательная школа» Руководитель МО __________/Е. Н. Минакова/ Протокол №___1___ от 29 августа 2022 года | УТВЕРЖДЕНА: директором МКОУ «Кульбакинская средняя общеобразовательная школа» ___________________/Л. В. Пугачёва/ Приказ №____ от 30 августа 2022 года |
ПРИНЯТА: на заседании педагогического совета МКОУ «Кульбакинская средняя общеобразовательная школа» Протокол №_1__ от 30 августа 2022 года |
Рабочая программа
по математике
10 класс
Учитель: Дегтярева Наталья Николаевна
Категория: высшая
2022-2023 учебный год
Пояснительная записка
Рабочая программа по математике для 10 класса разработана и составлена в соответствии с федеральным компонентом государственного стандарта начального общего, основного общего и среднего (полного) общего образования. (Приказ МО РФ от 05.03.2004 №1089).
Рабочая программа разработана на основе:
- примерной программы общеобразовательных учреждений. Алгебра и начала математического анализа 10-11 кл./ Составитель: Т. А. Бурмистрова - М.: Просвещение, 2015;
- примерной программы общеобразовательных учреждений. Геометрия 10-11 классы. Составитель Т. А. Бурмистрова - М.: Просвещение, 2015;
- федерального базисного плана для образовательных учреждений РФ, реализующих программы общего образования. (Приказ МО РФ от 09. 03. 2004г №1312) (с изменениями в редакции приказа от 20.08. 2008 № 241);
Для реализации программного содержания используется следующие учебники:
- Алимов Ш А, Колягин Ю М и др. Алгебра и начала анализа : Учебник для 10-11 кл. общеобразовательных учреждений/ М.: Просвещение, 2015.
- Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия, 10–11: Учебник для общеобразовательных учреждений/ – М.: Просвещение, 2015.
Общая характеристика учебного предмета
При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия (стереометрия)», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:
систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
знакомство с основными идеями и методами математического анализа.
Цели
Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:
- формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
- развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
- овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
- воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.
Общеучебные умения, навыки и способы деятельности
В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:
- построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;
- выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;
- самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;
- проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;
- самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников
Место предмета в базисном учебном плане
Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе среднего общего образования отводится 175 часов из расчета 5 часа в неделю (алгебра - 3 ч. в неделю, геометрия - 2 ч. в неделю)
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ
В результате изучения математики на базовом уровне ученик должен
знать/понимать
- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
- вероятностный характер различных процессов окружающего мира;
АЛГЕБРА
уметь
- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
- проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
- вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
Функции и графики
уметь
- определять значение функции по значению аргумента при различных способах задания функции;
- строить графики изученных функций;
- описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
- решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
Начала математического анализа
уметь
- вычислять производные и первообразные элементарных функций, используя справочные материалы;
- исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
- вычислять в простейших случаях площади с использованием первообразной;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;
Уравнения и неравенства
уметь
- решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
- составлять уравнения и неравенства по условию задачи;
- использовать для приближенного решения уравнений и неравенств графический метод;
- изображать на координатной плоскости множества решений простейших уравнений и их систем;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для построения и исследования простейших математических моделей;
Элементы комбинаторики, статистики и теории вероятностей
уметь
- решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
- вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- анализа реальных числовых данных, представленных в виде диаграмм, графиков;
- анализа информации статистического характера.
ГЕОМЕТРИЯ
уметь
- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
- строить простейшие сечения куба, призмы, пирамиды;
- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
- использовать при решении стереометрических задач планиметрические факты и методы;
- проводить доказательные рассуждения в ходе решения задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
В результате изучения геометрии в 10 классе ученик должен знать и уметь:
- соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; различать и анализировать взаимное расположение фигур;
- изображать геометрические фигуры и тела, выполнять чертеж по условию задачи;
- решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат;
- проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса;
- вычислять линейные элементы и углы в пространственных конфигурациях, площади поверхностей пространственных тел и их простейших комбинаций;
- применять координатно-векторный метод для вычисления отношений, расстояний и углов;
- строить сечения многогранников;
Контроль уровня обученности
При изучении курса проводится 2 вида контроля:
текущий – контроль в процессе изучения темы;
формы: устный опрос, контрольные работы, самостоятельные работы, тестирование
итоговый – контроль в конце изучения зачетного раздела;
формы: устные и письменные зачетные работы по отдельным темам, собеседование, практические работы.
Методы обучения
В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: уровневой дифференциации, обучение с применением опорных схем, ИКТ.
ОСНОВНОЕ СОДЕРЖАНИЕ
АЛГЕБРА
Глава I. Действительные числа (11 часов)
Целые и рациональные числа. Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с рациональным и действительным показателями.
Контрольная работа № 1 по теме: «Действительные числа».
Входная контрольная работа.
Знать:
- понятие натурального числа;
- понятие целого числа;
- понятие действительного числа;
- понятие модуля числа;
- понятие арифметического корня n –й степени и его свойства;
- свойства степени с действительным показателем.
Уметь:
- уметь находить сумму бесконечно убывающей геометрической прогрессии;
- обращать бесконечно периодическую дробь в обыкновенную;
- уметь выполнять преобразования выражений, содержащих арифметические корни.
Глава II. Степенная функция (10 часов)
Степенная функция, её свойства и график. Взаимно обратные функции. Равносильные уравнения и неравенства. Иррациональные уравнения. Иррациональные неравенства.
Контрольная работа № 2 по теме: «Степенная функция»
Знать:
- свойства степенной функции во всех её разновидностях;
- определение и свойства взаимно обратных функций;
- определения равносильных уравнений и уравнения-следствия;
- понимать причину появления посторонних корней и потери корней;
- что при возведении в натуральную степень обеих частей уравнения получается уравнение – следствие;
- при решении неравенства можно выполнять только равносильные преобразования;
- что следует избегать деления обеих частей уравнения(неравенства) на выражение с неизвестным.
Уметь:
∙ схематически строить график степенной функции в зависимости
от принадлежности показателя степени;
- перечислять свойства;
- выполнять преобразования уравнений, приводящие к уравнениям-следствиям;
- решать иррациональные уравнения и неравенства.
Глава III. Показательная функция (10 часа)
Показательная функция, её свойства и график. Показательные уравнения. Показательные неравенства. Системы показательных уравнений и неравенств.
Контрольная работа № 3 по теме: «Показательная функция».
Знать:
- определение и свойства показательной функции;
- способы решения показательных уравнений.
Уметь:
- уметь строить график показательной функции в зависимости от значения основания а;
- описывать по графику свойства;
- применять знания о свойствах показательной функции к решению прикладных задач;
- решать уравнения, используя тождественные преобразования на основе свойств степени, с помощью разложения на множители выражений, содержащих степени, применяя способ замены неизвестной степени новым неизвестным;
- решать показательные неравенства на основе свойств монотонности показательной функции;
- решать системы показательных уравнений и неравенств.
Глава IV. Логарифмическая функция (14часов) +1
Логарифмы. Свойства логарифмов. Десятичные и натуральные логарифмы. Логарифмическая функция, её свойства и график. Логарифмические уравнения. Логарифмические неравенства.
Контрольная работа за 1 полугодие.
Контрольная работа №4 по теме: «Логарифмическая функция»
Знать:
- понятие логарифма числа и основное логарифмическое тождество;
- основные свойства логарифмов;
- понятие десятичного и натурального логарифмов;
- определение логарифмической функции;
- свойства логарифмической функции и её график.
Уметь:
- применять свойства логарифмов для преобразований логарифмических выражений;
- применять формулу перехода от логарифма по одному основанию к логарифму по другому основанию;
- применять свойства логарифмической функции при сравнении значений выражений и решении простейших логарифмических уравнений и неравенств;
- решать различные логарифмические уравнения и их системы с использованием свойств логарифмов и общих методов решения уравнений;
- решать логарифмические неравенства на основании свойств логарифмической функции.
Глава V. Тригонометрические формулы (21час)
Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса и тангенса угла. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом и тангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус и тангенс углов α и - α. Формулы сложения. Синус, косинус и тангенс двойного угла. Синус, косинус и тангенс половинного угла. Формулы приведения. Сумма и разность синусов. Сумма и разность косинусов
Контрольная работа № 5 по теме: «Тригонометрические формулы».
Знать:
- определения синуса, косинуса и тангенса;
- основные формулы, выражающие зависимость между синусом, косинусом и тангенсом
- определение радиана;
- понятие тождества как равенства;
Уметь:
- переводить радианную меру угла в градусы и обратно;
- поворачивать начальную точку единичной окружности вокруг начала координат на угол α и находить положение точки окружности, соответствующей данному действительному числу;
- находить синус, косинус тангенс для чисел вида Π/2k, k €; Z
- применять формулы для вычисления значений синуса, косинуса и тангенса числа по заданному значению одного из них;
- доказывать тождества с использованием изученных формул;
- выполнять преобразование тригонометрических выражений
Глава VI . Тригонометрические уравнения (13 часов)
Уравнение cos x=a. Уравнение sin x =a. Уравнение tg x =a. Решение тригонометрических уравнений .Примеры решения простейших
тригонометрических неравенств.
Контрольная работа № 6 по теме: «Тригонометрические уравнения».
Знать:
- понятия арккосинуса, арксинуса и арктангенса;
- формулы корней простейших тригонометрических уравнений;
- приёмы решений различных типов уравнений;
- приемы решения простейших тригонометрических неравенств.
Уметь:
- решать простейшие тригонометрические уравнения;
- применять различные приёмы при решении тригонометрических уравнений;
- решать простейшие тригонометрические неравенства.
Глава 7. Тригонометрические функции (13ч)
уметь
- определять значение функции по значению аргумента при различных способах задания функции;
- строить графики изученных функций;
- описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
- решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
использовать приобретенные знания и умения в практической деятельности и для повседневной жизни:
- описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
Повторение и решение задач (11 часов)+1
Итоговая контрольная работа.
ГЕОМЕТРИЯ
Содержание обучения.
- Введение.
Предмет стереометрии. Аксиомы стереометрии. Некоторые следствия из аксиом.
Основная цель – познакомить учащихся с содержанием курса стереометрии, с основными понятиями и аксиомами, принятыми в данном курсе, вывести первые следствия из аксиом, дать представление о геометрических телах и их поверхностях, об изображении пространственных фигур на чертеже, о прикладном значении геометрии.
- Параллельность прямых и плоскостей.
Параллельность прямых, прямой и плоскости. Взаимное расположение двух прямых в пространстве. Угол между двумя прямыми. Параллельность плоскостей. Тетраэдр и параллелепипед.
Основная цель – сформировать представления учащихся о возможных случаях взаимного расположения двух прямых в пространстве, прямой и плоскости, изучить свойства и признаки параллельности прямых и плоскостей.
- Перпендикулярность прямых и плоскостей.
Перпендикулярность прямой и плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью. Двугранный угол. Перпендикулярность плоскостей. Трехгранный угол. Перпендикулярность плоскостей.
Основная цель – ввести понятия перпендикулярности прямых и плоскостей, изучить признаки перпендикулярности прямой и плоскости, двух плоскостей.
- Многогранники.
Понятие многогранника. Призма. Пирамида. Правильные многогранники.
Основная цель – познакомить учащихся с основными видами многогранников (призма, пирамида, усеченная пирамида), с формулой Эйлера для выпуклых многогранников, с правильными многогранниками и элементами их симметрии.
- Повторение. Решение задач.
Требования к математической подготовке учащихся
Уровень обязательной подготовки обучающегося
- Уметь решать простые задачи по всем изученным темам, выполняя стереометрический чертеж.
- Уметь описывать взаимное расположение прямых и плоскостей в пространстве.
- Уметь анализировать в простейших случаях взаимное расположение объектов в пространстве.
- Уметь изображать основные многоугольники; выполнять чертежи по условию задач.
- Уметь строить простейшие сечения куба, призмы, пирамиды.
- Уметь решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей).
- Уметь использовать при решении стереометрических задач планиметрические факты и методы.
Уровень возможной подготовки обучающегося
- Уметь распознавать на чертежах и моделях пространственные формы.
- Уметь описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении.
- Проводить доказательные рассуждения в ходе решения задач.
- Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: исследования (моделирования) практических ситуаций на основе изученных формул и свойств фигур; вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства
Формы организации учебного процесса
Учебный процесс состоит из системы уроков, среди которых выделяются следующие виды:
- Урок- лекция
- Урок- практикум
- Комбинированный урок
- Урок –решения задач
- Урок- тест
Требования к математической подготовке учащихся
В результате изучения математики на базовом уровне ученик должен
знать/понимать:
- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
- вероятностный характер различных процессов окружающего мира.
АЛГЕБРА
уметь
- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
- проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
- вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
ФУНКЦИИ И ГРАФИКИ
уметь
- определять значение функции по значению аргумента при различных способах задания функции;
- строить графики изученных функций;
- описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
- решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
УРАВНЕНИЯ И НЕРАВЕНСТВА
уметь
- решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
- составлять уравнения и неравенства по условию задачи;
- использовать для приближенного решения уравнений и неравенств графический метод;
- изображать на координатной плоскости множества решений простейших уравнений и их систем;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- построения и исследования простейших математических моделей.
Календарно-тематическое планирование
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
По теме: методические разработки, презентации и конспекты
Рабочая программа по химии 10класс Рудзитис Г.Е.
Рабочая программа включает в себя пояснительную записку, содержание дисциплины,календарно-тематическое планирование, требования к знаниям и умениям...

рабочая программа по алгебре 10класс по учебнику С.М. Никольского 3ч/н
Данная рабочая программа предназначена для учителей работающих в 10 классе по учебнику С.М. Никольского по трехчасовой программе, базовый уровень....

Рабочая программа курса ОБЖ 10класс
Общая характеристика учебного предмета.Предмет основы безопасности жизнедеятельности обеспечивает формирование у обучаемых правила поведения в повседневной жизни и в различных опасных и чрезвыча...
Рабочая программа по ОБЖ 10класс
В рабочей программе отражается учебный материал по основам безопасности жизнедеятельности....

Рабочая программа по математике 10класс (базовый уровень)
Рабочая программа по математике 10 класс (базовый уровень) составлена на основе учебника алгебра 10 класс С.М. Никольский и геометрия10-11 Л.С. Атанасян...
Пояснительная записка к рабочей программе по химии 10класс профильный уровень
Данный учебный курс занимает важное место в системе общего образования школьников потому, что отражает современные тенденции в школьном химическом образовании, связанные с реформированием средней школ...
Календарно тематическое планирование к рабочей программе по химии 10класс профильный уровень.
календарно тематическое планирование по химии 10 класс профильный уровень...



