Применение координатно-векторного метода при решении стереометрических задач
материал для подготовки к егэ (гиа, 11 класс)

Мастер-класс по теме "Применение координатно-векторного метода при решении стереометрических задач". Разбор задач ЕГЭ

Скачать:


Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение
средняя общеобразовательная школа №2

Мастер-класс по теме 
«Применение координатно-векторного метода при решении стереометрических задач»

Подготовила

учитель математики МБОУ СОШ №2

Гергель Анна Анатольевна

11 ноября 2020


 Если ученик берется за решение стереометрической задачи, то в большинстве случаев действует поэтапно-вычислительным методом, используя определения, признаки и свойства различных фигур. Однако этот метод требует безупречного знания и понимания основных теорем, связанных с взаимным расположением прямых и плоскостей в пространстве и не всегда оказывается эффективным.

Целью моего выступления является рассмотреть и проанализировать координатно-векторный метод решения стереометрических задач. Координатный метод позволяет избежать указанных трудностей. Основная нагрузка при решении задачи координатным методом приходится на вычислительную часть. Практика показывает, что учащиеся быстро осваивают метод координат, так как при его использовании необходимо придерживаться общего алгоритма:

– рационально расположить фигуру относительно системы координат;

вычислить координаты необходимых точек, расположенных на многогранниках;

– применить соответствующую формулу.

Координатным методом можно вычислять расстояния: между скрещивающимися прямыми, между точкой и плоскостью, между плоскостями. Следует отметить, что координатный метод в чистом виде применяется редко. На практике используют комбинированный, то есть координатно-векторный метод, который позволяет расширить спектр решаемых задач. Использование векторов позволяет находить углы между прямыми, между прямой и плоскостью, между плоскостями. Рассмотрим использование координатно-векторного метода для решения стереометрических задач, предлагаемых на ЕГЭ по математике профильного уровня. Для начала разберем наиболее удобные способы расположения системы координат относительно различных видов многогранников. 

1. Куб.

При таком расположении системы координат (рис. 4) вершины куба будут иметь следующие координаты: А(0;0;0), В(0;а;0), С(а;а;0), D(а;0;0), А1(0;0;а), В1(0;а;а), С1(а;а;а), D1(а;0;а).

Такое же расположение системы координат удобно использовать для прямоугольного параллелепипеда. Еще один вариант расположения кубаотносительно системы координат связан с размещением начала координат в точке пересечения диагоналей основания.

2. Правильная треугольная призма. Пусть в правильной треугольной призме АВСDА1В1С1D1 сторона основания равна а, а боковое ребро равно b. Разместим начало координат в точке А, ось абсцисс будет направлена вдоль ребра АС, ось ординат проходит через точку А перпендикулярно АС, ось Оz направлена вдоль бокового ребра АА1 (см. рис. 5).

Тогда вершины призмы будут иметь координаты: А(0;0;0), В(𝑎/2; 𝑎 √3/2;0), C(a;0;0), A1(0;0;b), B1(𝑎/2;𝑎√3/2;𝑏), C1(a;0;b).

Другой возможный вариант расположения правильной треугольной призмы относительно прямоугольной декартовой системы координат показан на рисунке 6.

3. Правильная шестиугольная призма.

Пусть в правильной шестиугольной призме АВСDЕFА1В1С1D1Е1F1 сторона основания равна а, а боковое ребро равно b. Разместим начало координат в точке А, ось абсцисс направим вдоль ребра АF, ось Оу – через точку А перпендикулярно АF, ось Оz – вдоль бокового ребра АА1 (смотри рисунок 7).

Тогда вершины призмы будут иметь координаты: А(0;0;0), В(−𝑎/2;𝑎√3/2;0),

C(0; a√3;0), D(а; a√3;0), Е(3а/2;𝑎√3/2;0), F(а;0;0), A1(0;0;b), B1(−𝑎/2;𝑎√3/2;𝑏),

C1(0; a√3;b), D1(а; a√3;b), Е1(3а/2;𝑎√3/2;𝑏), F1(а;0;b).

Другой вариант расположения правильной шестиугольной призмы относительно прямоугольной декартовой системы координат представлен на рисунке 8.

4. Правильная треугольная пирамида.

Пусть в правильной треугольной пирамиде МАВС сторона основания равна а, а высота равна h. Разместим начало координат в точке А, ось абсцисс

направим вдоль ребра АС, ось Оу – через точку А перпендикулярно АС, ось Оz– через точку А перпендикулярно плоскости АВС (смотри рисунок 9).

Тогда вершины пирамиды имеют координаты: А(0;0;0), В(𝑎/2;𝑎√3/2;0), C(а;0;0), М(𝑎/2;𝑎√3/6;ℎ).

Еще один вариант расположения правильной треугольной пирамиды относительно системы координат представлен на рисунке.

5. Правильная четырехугольная пирамида.

Пусть в правильной четырехугольной пирамиде МАВСD сторона основания равна а, а высота равна h.

Разместим начало координат в точке А, ось абсцисс направим вдоль ребра АD, ось Оу – вдоль ребра АВ, ось Оz – через точку А перпендикулярно плоскости АВС. Тогда вершины пирамиды имеют координаты: А(0;0;0), В(0;а;0), С(а;а;0), D(а;0;0), М(𝑎/2;𝑎/2;ℎ).

6. Правильная шестиугольная пирамида. Пусть в правильной шестиугольной пирамиде МАВСDЕF сторона основания равна а, а высота равна h. Разместим начало координат в точке А, ось абсцисс направим вдоль ребра АС, ось Оу – через точку А перпендикулярно АС, ось Оz – проходит через точку А перпендикулярно плоскости АВС (смотри рисунок 12).

Тогда вершины пирамиды имеют координаты А(0;0;0), В(−𝑎/2;𝑎√3/2;0),

C(0; a√3;0), D(а; a√3;0), Е(3𝑎/2;𝑎√3/2;0), F(а;0;0), М(𝑎/2;𝑎√3/2;ℎ).

Еще один вариант расположения правильной шестиугольной пирамиды относительно прямоугольной декартовой системы координат показан на рисунке 13

Примеры решения задач

(Сборник Лысенко Ф. Ф., Кулабухова С. Ю. Математика. Подготовка к ЕГЭ 2021. Профильный уровень.)

1. Вариант 16 № 14.

ABCDA1B1C1D1  - правильная четырехугольная призма, на ребре СС1 отмечена точка Р такая, что СР:РС1  =3:5. Плоскость проходит через точки D  и Р и параллельна прямой АС. Эта плоскость пересекает ребро ВВ1 в точке F.

а) Докажите, что сечение призмы плоскостью  является ромбом.

б) Найдите длину ребра ВВ1, если АВ=6, а площадь сечения призмы плоскостью  равна 72.

а) Т. к. противоположные грани параллелепипеда параллельны, то по свойству параллельных плоскостей сечение является параллелограммом. Для доказательства перпендикулярности диагоналей воспользуемся методом координат.

Введем прямоугольную систему координат, как показано на рисунке. Тогда D (6;0;0), К (0; 0; 3а), Р (6; 6; 3а), F (0; 6; z).  Значение z вычислим из равенства векторов DK и PF. DK{-6; 0; 3a},  PF {-6; 0 z-3a}. Z=6a.

 Вычислим скалярное произведение DF * KP. DF {-6; 6; 6a}, KP {6; 6; 0}.
DF * KP= -36+36+0=0, значит DF
 KP, а значит параллелограмм DKFP – ромб.

б) Sp = .

 (по условию)

2 + а2 =8

, ВВ1 = 8а = 8

Ответ: 8

2. Вариант 33 №14

Диаметр АВ верхнего основания цилиндра перпендикулярен диаметру СD нижнего основания, при этом диаметр основания цилиндра в раз больше высоты цилиндра. Докажите, что тетраэдр АВСD – правильный.

Задачи для самостоятельного решения

1. В единичном кубе АВСDА1В1С1D1 найти угол между прямой АD1 и плоскостью α, проходящей через точки А1, Е и М, где точка Е – середина ребра С1D1, а точка М лежит на ребре DD1, так, что D1М = 2DМ.

2. В правильной шестиугольной призме АВСDЕFА1В1С1D1Е1F1, все ребра которой равны 1, найти угол между прямой АВ1 и плоскостью АСЕ1.

3. В правильной четырехугольной пирамиде МАВСК, все ребра которой равны 1, найти угол между прямой КЕ, где Е – середина апофемы МР грани АМВ, и плоскостью АМС.

Справочный материал

1. Отрезок, для которого указано, какой из его концов считается началом, а какой – концом, называется вектором  

2. Длиной ненулевого вектора АВ называется длина отрезка АВ

3. Два ненулевых вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых

4. Векторы называются равными, если они сонаправлены и их длины равны.

5. Сложение векторов:

Правило треугольника:

- отложить от какой-нибудь точки А вектор АВ, равный а (см. рис.);

- отложить от точки В вектор ВС, равный в;

- вектор АС , называется суммой векторов а и в .

Правило параллелограмма

- отложить векторы а   и в  от одной точки;

- построить на векторах а и в  параллелограмм;

- диагональ полученного параллелограмма будет суммой векторов 𝑎а  и в (см. рис.).

Правило многоугольника:

построение суммы трех и более векторов выполняют по правилу

многоугольника, состоящему в использовании правила треугольника нужное число раз.

6. Произведением ненулевого вектора а  на число к называется такой вектор в , длина которого равна |∙|в |, причем векторы а и в сонаправлены при k > 0 и противоположно направлены при k < 0.

7. На плоскости любой вектор можно разложить по двум данным неколлинеарным векторам, причем коэффициенты разложения определяются единственным образом

8. Скалярным произведением двух векторов называется произведение их длин на косинус угла между ними

9. Условие перпендикулярности векторов: два вектора перпендикулярны, если их скалярное произведение равно нулю.

10. Скалярный квадрат вектора равен квадрату его длины

11. Координаты вектора. Каждая координата вектора равна разности соответствующих координат его конца и начала.

12. Длина вектора  вычисляется по формуле

13. Координаты середины отрезка.

Каждая координата середины отрезка равна полусумме соответствующих координат его концов, т.е. если С(х; у) – середина отрезка АВ, А(х1; у1) и В(х2; у2) – его концы, то х=(х12)/2, у=(у12)/2

14. Расстояние между двумя точками.

Если М1(х1; у1) и М2(х2; у2), то М1М2 =

15. Уравнение окружности радиуса r с центром в точке О(х0; у0) имеет вид (х х0)2 + (у у0)2 = r2.

16. Уравнение прямой ах + by + c = 0.

17. Направляющим вектором прямой l называют ненулевой вектор р(а;в) лежащий на данной прямой l

18. Расстояние от точки М(х0; у0) до прямой ах + by + c = 0 вычисляется по формуле

19. Угол между прямыми. Если 𝑎 (𝑥1;𝑦1;𝑧1) и 𝑏⃗ (𝑥2;𝑦2;𝑧2) – направляющие векторы прямых a и b, φ – угол между прямыми a и b, то

20. Ненулевой вектор п , перпендикулярный к плоскости α, называют нормальным вектором плоскости α.

21. Расстояние от точки до плоскости. Если М(х0, у0, z0) - данная точка,
aх + bу +сz +d = 0 – уравнение данной плоскости α, то

Литература

1. Атанасян, Л.С., Бутузов, В.Ф., Кадомцев С.Б. и др. Геометрия. 7-9 классы: учеб. для общеобразоват. организаций. – М.: Просвещение, 2018

2. Александров А.Д. Геометрия. 9 класс: учеб. для общеобразоват. организаций. – М.: Просвещение, 2014.

3. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия. 10-11 классы: учеб. для общеобразоват. организаций. – М.: Просвещение, 2020.

4. Корянов А.Г., Прокофьев А.А. Многогранники: типы задач и методы их решения. – 102

5. Лысенко Ф. Ф., Кулабухова С. Ю. Математика. Подготовка к ЕГЭ 2021. Профильный уровень.


По теме: методические разработки, презентации и конспекты

Урок- консультация в 11 классе «Применение координатно-векторного метода при решении задач С2"

Стереометрические задачи, благодаря ЕГЭ в общем, и заданиям С2 в частности, вызывают повышенный  интерес у большинства старшеклассников. Но для основной части выпускников задание С2 так и остаетс...

Использование координатно - векторного метода при решении стереометрических задач

Изучение данного метода является неотъемлемой частью школьного курса геометрии. Но нельзя забывать, что при решении задач координатно- векторным  методом необходим навык алгебраических вычислений...

Методическая разработка по теме: "Применение векторно-координатного метода в решении стереометрических задач"

    Учёные всегда стремились упростить себе жизнь – придумывали новые, простые методы решения, универсальные для множества задач, позволяющие быстро решить даже самую трудную задачу. ...

Методическая разработка по теме: "Применение векторно-координатного метода в решении стереометрических задач"

    Учёные всегда стремились упростить себе жизнь – придумывали новые, простые методы решения, универсальные для множества задач, позволяющие быстро решить даже самую трудную задачу. ...

Применение элементов аналитической геометрии к решению стереометрических задач

В данной работе рассмотрены возможности применения элементов аналитической геометрии к решению стереометрических задач....

Определение области применения координатного метода при решении стереометрических задач на примере задания 14 ЕГЭ

Векторно-координатный метод — весьма эффективный и универсальный способ нахождения любых углов или расстояний между стереометрическими объектами в пространстве Автор обосновывает использование в...

рабочая программа курса по выбору "Векторный и координатный метод в решении стереометрических задач""

Содержит характеристику курса и учебно-тематическое планирование...